Diffusers Bot
commited on
Upload folder using huggingface_hub
Browse files- main/lpw_stable_diffusion.py +58 -6
- main/lpw_stable_diffusion_xl.py +42 -6
main/lpw_stable_diffusion.py
CHANGED
|
@@ -13,13 +13,17 @@ from diffusers.configuration_utils import FrozenDict
|
|
| 13 |
from diffusers.image_processor import VaeImageProcessor
|
| 14 |
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 15 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
| 16 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 17 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
| 18 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 19 |
from diffusers.utils import (
|
| 20 |
PIL_INTERPOLATION,
|
|
|
|
| 21 |
deprecate,
|
| 22 |
logging,
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
from diffusers.utils.torch_utils import randn_tensor
|
| 25 |
|
|
@@ -199,6 +203,7 @@ def get_unweighted_text_embeddings(
|
|
| 199 |
text_input: torch.Tensor,
|
| 200 |
chunk_length: int,
|
| 201 |
no_boseos_middle: Optional[bool] = True,
|
|
|
|
| 202 |
):
|
| 203 |
"""
|
| 204 |
When the length of tokens is a multiple of the capacity of the text encoder,
|
|
@@ -214,7 +219,20 @@ def get_unweighted_text_embeddings(
|
|
| 214 |
# cover the head and the tail by the starting and the ending tokens
|
| 215 |
text_input_chunk[:, 0] = text_input[0, 0]
|
| 216 |
text_input_chunk[:, -1] = text_input[0, -1]
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
if no_boseos_middle:
|
| 220 |
if i == 0:
|
|
@@ -230,7 +248,10 @@ def get_unweighted_text_embeddings(
|
|
| 230 |
text_embeddings.append(text_embedding)
|
| 231 |
text_embeddings = torch.concat(text_embeddings, axis=1)
|
| 232 |
else:
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
| 234 |
return text_embeddings
|
| 235 |
|
| 236 |
|
|
@@ -242,6 +263,8 @@ def get_weighted_text_embeddings(
|
|
| 242 |
no_boseos_middle: Optional[bool] = False,
|
| 243 |
skip_parsing: Optional[bool] = False,
|
| 244 |
skip_weighting: Optional[bool] = False,
|
|
|
|
|
|
|
| 245 |
):
|
| 246 |
r"""
|
| 247 |
Prompts can be assigned with local weights using brackets. For example,
|
|
@@ -268,6 +291,16 @@ def get_weighted_text_embeddings(
|
|
| 268 |
skip_weighting (`bool`, *optional*, defaults to `False`):
|
| 269 |
Skip the weighting. When the parsing is skipped, it is forced True.
|
| 270 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
| 272 |
if isinstance(prompt, str):
|
| 273 |
prompt = [prompt]
|
|
@@ -334,10 +367,7 @@ def get_weighted_text_embeddings(
|
|
| 334 |
|
| 335 |
# get the embeddings
|
| 336 |
text_embeddings = get_unweighted_text_embeddings(
|
| 337 |
-
pipe,
|
| 338 |
-
prompt_tokens,
|
| 339 |
-
pipe.tokenizer.model_max_length,
|
| 340 |
-
no_boseos_middle=no_boseos_middle,
|
| 341 |
)
|
| 342 |
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=text_embeddings.device)
|
| 343 |
if uncond_prompt is not None:
|
|
@@ -346,6 +376,7 @@ def get_weighted_text_embeddings(
|
|
| 346 |
uncond_tokens,
|
| 347 |
pipe.tokenizer.model_max_length,
|
| 348 |
no_boseos_middle=no_boseos_middle,
|
|
|
|
| 349 |
)
|
| 350 |
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=uncond_embeddings.device)
|
| 351 |
|
|
@@ -362,6 +393,11 @@ def get_weighted_text_embeddings(
|
|
| 362 |
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
| 363 |
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
| 364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
if uncond_prompt is not None:
|
| 366 |
return text_embeddings, uncond_embeddings
|
| 367 |
return text_embeddings, None
|
|
@@ -549,6 +585,8 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 549 |
max_embeddings_multiples=3,
|
| 550 |
prompt_embeds: Optional[torch.Tensor] = None,
|
| 551 |
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 552 |
):
|
| 553 |
r"""
|
| 554 |
Encodes the prompt into text encoder hidden states.
|
|
@@ -597,6 +635,8 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 597 |
prompt=prompt,
|
| 598 |
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
| 599 |
max_embeddings_multiples=max_embeddings_multiples,
|
|
|
|
|
|
|
| 600 |
)
|
| 601 |
if prompt_embeds is None:
|
| 602 |
prompt_embeds = prompt_embeds1
|
|
@@ -790,6 +830,7 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 790 |
return_dict: bool = True,
|
| 791 |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 792 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
|
|
|
| 793 |
callback_steps: int = 1,
|
| 794 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 795 |
):
|
|
@@ -865,6 +906,9 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 865 |
is_cancelled_callback (`Callable`, *optional*):
|
| 866 |
A function that will be called every `callback_steps` steps during inference. If the function returns
|
| 867 |
`True`, the inference will be cancelled.
|
|
|
|
|
|
|
|
|
|
| 868 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 869 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 870 |
called at every step.
|
|
@@ -903,6 +947,7 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 903 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 904 |
# corresponds to doing no classifier free guidance.
|
| 905 |
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
| 906 |
|
| 907 |
# 3. Encode input prompt
|
| 908 |
prompt_embeds = self._encode_prompt(
|
|
@@ -914,6 +959,8 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 914 |
max_embeddings_multiples,
|
| 915 |
prompt_embeds=prompt_embeds,
|
| 916 |
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
|
|
|
| 917 |
)
|
| 918 |
dtype = prompt_embeds.dtype
|
| 919 |
|
|
@@ -1044,6 +1091,7 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 1044 |
return_dict: bool = True,
|
| 1045 |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 1046 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
|
|
|
| 1047 |
callback_steps: int = 1,
|
| 1048 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1049 |
):
|
|
@@ -1101,6 +1149,9 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 1101 |
is_cancelled_callback (`Callable`, *optional*):
|
| 1102 |
A function that will be called every `callback_steps` steps during inference. If the function returns
|
| 1103 |
`True`, the inference will be cancelled.
|
|
|
|
|
|
|
|
|
|
| 1104 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 1105 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1106 |
called at every step.
|
|
@@ -1135,6 +1186,7 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
| 1135 |
return_dict=return_dict,
|
| 1136 |
callback=callback,
|
| 1137 |
is_cancelled_callback=is_cancelled_callback,
|
|
|
|
| 1138 |
callback_steps=callback_steps,
|
| 1139 |
cross_attention_kwargs=cross_attention_kwargs,
|
| 1140 |
)
|
|
|
|
| 13 |
from diffusers.image_processor import VaeImageProcessor
|
| 14 |
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
| 15 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 16 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 17 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 18 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
| 19 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 20 |
from diffusers.utils import (
|
| 21 |
PIL_INTERPOLATION,
|
| 22 |
+
USE_PEFT_BACKEND,
|
| 23 |
deprecate,
|
| 24 |
logging,
|
| 25 |
+
scale_lora_layers,
|
| 26 |
+
unscale_lora_layers,
|
| 27 |
)
|
| 28 |
from diffusers.utils.torch_utils import randn_tensor
|
| 29 |
|
|
|
|
| 203 |
text_input: torch.Tensor,
|
| 204 |
chunk_length: int,
|
| 205 |
no_boseos_middle: Optional[bool] = True,
|
| 206 |
+
clip_skip: Optional[int] = None,
|
| 207 |
):
|
| 208 |
"""
|
| 209 |
When the length of tokens is a multiple of the capacity of the text encoder,
|
|
|
|
| 219 |
# cover the head and the tail by the starting and the ending tokens
|
| 220 |
text_input_chunk[:, 0] = text_input[0, 0]
|
| 221 |
text_input_chunk[:, -1] = text_input[0, -1]
|
| 222 |
+
if clip_skip is None:
|
| 223 |
+
prompt_embeds = pipe.text_encoder(text_input_chunk.to(pipe.device))
|
| 224 |
+
text_embedding = prompt_embeds[0]
|
| 225 |
+
else:
|
| 226 |
+
prompt_embeds = pipe.text_encoder(text_input_chunk.to(pipe.device), output_hidden_states=True)
|
| 227 |
+
# Access the `hidden_states` first, that contains a tuple of
|
| 228 |
+
# all the hidden states from the encoder layers. Then index into
|
| 229 |
+
# the tuple to access the hidden states from the desired layer.
|
| 230 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
| 231 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
| 232 |
+
# representations. The `last_hidden_states` that we typically use for
|
| 233 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
| 234 |
+
# layer.
|
| 235 |
+
text_embedding = pipe.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
| 236 |
|
| 237 |
if no_boseos_middle:
|
| 238 |
if i == 0:
|
|
|
|
| 248 |
text_embeddings.append(text_embedding)
|
| 249 |
text_embeddings = torch.concat(text_embeddings, axis=1)
|
| 250 |
else:
|
| 251 |
+
if clip_skip is None:
|
| 252 |
+
clip_skip = 0
|
| 253 |
+
prompt_embeds = pipe.text_encoder(text_input, output_hidden_states=True)[-1][-(clip_skip + 1)]
|
| 254 |
+
text_embeddings = pipe.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
| 255 |
return text_embeddings
|
| 256 |
|
| 257 |
|
|
|
|
| 263 |
no_boseos_middle: Optional[bool] = False,
|
| 264 |
skip_parsing: Optional[bool] = False,
|
| 265 |
skip_weighting: Optional[bool] = False,
|
| 266 |
+
clip_skip=None,
|
| 267 |
+
lora_scale=None,
|
| 268 |
):
|
| 269 |
r"""
|
| 270 |
Prompts can be assigned with local weights using brackets. For example,
|
|
|
|
| 291 |
skip_weighting (`bool`, *optional*, defaults to `False`):
|
| 292 |
Skip the weighting. When the parsing is skipped, it is forced True.
|
| 293 |
"""
|
| 294 |
+
# set lora scale so that monkey patched LoRA
|
| 295 |
+
# function of text encoder can correctly access it
|
| 296 |
+
if lora_scale is not None and isinstance(pipe, StableDiffusionLoraLoaderMixin):
|
| 297 |
+
pipe._lora_scale = lora_scale
|
| 298 |
+
|
| 299 |
+
# dynamically adjust the LoRA scale
|
| 300 |
+
if not USE_PEFT_BACKEND:
|
| 301 |
+
adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
|
| 302 |
+
else:
|
| 303 |
+
scale_lora_layers(pipe.text_encoder, lora_scale)
|
| 304 |
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
| 305 |
if isinstance(prompt, str):
|
| 306 |
prompt = [prompt]
|
|
|
|
| 367 |
|
| 368 |
# get the embeddings
|
| 369 |
text_embeddings = get_unweighted_text_embeddings(
|
| 370 |
+
pipe, prompt_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle, clip_skip=clip_skip
|
|
|
|
|
|
|
|
|
|
| 371 |
)
|
| 372 |
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=text_embeddings.device)
|
| 373 |
if uncond_prompt is not None:
|
|
|
|
| 376 |
uncond_tokens,
|
| 377 |
pipe.tokenizer.model_max_length,
|
| 378 |
no_boseos_middle=no_boseos_middle,
|
| 379 |
+
clip_skip=clip_skip,
|
| 380 |
)
|
| 381 |
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=uncond_embeddings.device)
|
| 382 |
|
|
|
|
| 393 |
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
| 394 |
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
| 395 |
|
| 396 |
+
if pipe.text_encoder is not None:
|
| 397 |
+
if isinstance(pipe, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 398 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 399 |
+
unscale_lora_layers(pipe.text_encoder, lora_scale)
|
| 400 |
+
|
| 401 |
if uncond_prompt is not None:
|
| 402 |
return text_embeddings, uncond_embeddings
|
| 403 |
return text_embeddings, None
|
|
|
|
| 585 |
max_embeddings_multiples=3,
|
| 586 |
prompt_embeds: Optional[torch.Tensor] = None,
|
| 587 |
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 588 |
+
clip_skip: Optional[int] = None,
|
| 589 |
+
lora_scale: Optional[float] = None,
|
| 590 |
):
|
| 591 |
r"""
|
| 592 |
Encodes the prompt into text encoder hidden states.
|
|
|
|
| 635 |
prompt=prompt,
|
| 636 |
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
| 637 |
max_embeddings_multiples=max_embeddings_multiples,
|
| 638 |
+
clip_skip=clip_skip,
|
| 639 |
+
lora_scale=lora_scale,
|
| 640 |
)
|
| 641 |
if prompt_embeds is None:
|
| 642 |
prompt_embeds = prompt_embeds1
|
|
|
|
| 830 |
return_dict: bool = True,
|
| 831 |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 832 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 833 |
+
clip_skip: Optional[int] = None,
|
| 834 |
callback_steps: int = 1,
|
| 835 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 836 |
):
|
|
|
|
| 906 |
is_cancelled_callback (`Callable`, *optional*):
|
| 907 |
A function that will be called every `callback_steps` steps during inference. If the function returns
|
| 908 |
`True`, the inference will be cancelled.
|
| 909 |
+
clip_skip (`int`, *optional*):
|
| 910 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 911 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 912 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 913 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 914 |
called at every step.
|
|
|
|
| 947 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 948 |
# corresponds to doing no classifier free guidance.
|
| 949 |
do_classifier_free_guidance = guidance_scale > 1.0
|
| 950 |
+
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 951 |
|
| 952 |
# 3. Encode input prompt
|
| 953 |
prompt_embeds = self._encode_prompt(
|
|
|
|
| 959 |
max_embeddings_multiples,
|
| 960 |
prompt_embeds=prompt_embeds,
|
| 961 |
negative_prompt_embeds=negative_prompt_embeds,
|
| 962 |
+
clip_skip=clip_skip,
|
| 963 |
+
lora_scale=lora_scale,
|
| 964 |
)
|
| 965 |
dtype = prompt_embeds.dtype
|
| 966 |
|
|
|
|
| 1091 |
return_dict: bool = True,
|
| 1092 |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 1093 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 1094 |
+
clip_skip=None,
|
| 1095 |
callback_steps: int = 1,
|
| 1096 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1097 |
):
|
|
|
|
| 1149 |
is_cancelled_callback (`Callable`, *optional*):
|
| 1150 |
A function that will be called every `callback_steps` steps during inference. If the function returns
|
| 1151 |
`True`, the inference will be cancelled.
|
| 1152 |
+
clip_skip (`int`, *optional*):
|
| 1153 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 1154 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 1155 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 1156 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1157 |
called at every step.
|
|
|
|
| 1186 |
return_dict=return_dict,
|
| 1187 |
callback=callback,
|
| 1188 |
is_cancelled_callback=is_cancelled_callback,
|
| 1189 |
+
clip_skip=clip_skip,
|
| 1190 |
callback_steps=callback_steps,
|
| 1191 |
cross_attention_kwargs=cross_attention_kwargs,
|
| 1192 |
)
|
main/lpw_stable_diffusion_xl.py
CHANGED
|
@@ -25,21 +25,25 @@ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
| 25 |
from diffusers.loaders import (
|
| 26 |
FromSingleFileMixin,
|
| 27 |
IPAdapterMixin,
|
| 28 |
-
|
| 29 |
TextualInversionLoaderMixin,
|
| 30 |
)
|
| 31 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 32 |
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
|
|
|
| 33 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 34 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 35 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 36 |
from diffusers.utils import (
|
|
|
|
| 37 |
deprecate,
|
| 38 |
is_accelerate_available,
|
| 39 |
is_accelerate_version,
|
| 40 |
is_invisible_watermark_available,
|
| 41 |
logging,
|
| 42 |
replace_example_docstring,
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
from diffusers.utils.torch_utils import randn_tensor
|
| 45 |
|
|
@@ -261,6 +265,7 @@ def get_weighted_text_embeddings_sdxl(
|
|
| 261 |
num_images_per_prompt: int = 1,
|
| 262 |
device: Optional[torch.device] = None,
|
| 263 |
clip_skip: Optional[int] = None,
|
|
|
|
| 264 |
):
|
| 265 |
"""
|
| 266 |
This function can process long prompt with weights, no length limitation
|
|
@@ -281,6 +286,24 @@ def get_weighted_text_embeddings_sdxl(
|
|
| 281 |
"""
|
| 282 |
device = device or pipe._execution_device
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
if prompt_2:
|
| 285 |
prompt = f"{prompt} {prompt_2}"
|
| 286 |
|
|
@@ -429,6 +452,16 @@ def get_weighted_text_embeddings_sdxl(
|
|
| 429 |
bs_embed * num_images_per_prompt, -1
|
| 430 |
)
|
| 431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 433 |
|
| 434 |
|
|
@@ -549,7 +582,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 549 |
StableDiffusionMixin,
|
| 550 |
FromSingleFileMixin,
|
| 551 |
IPAdapterMixin,
|
| 552 |
-
|
| 553 |
TextualInversionLoaderMixin,
|
| 554 |
):
|
| 555 |
r"""
|
|
@@ -561,8 +594,8 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 561 |
The pipeline also inherits the following loading methods:
|
| 562 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 563 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 564 |
-
- [`~loaders.
|
| 565 |
-
- [`~loaders.
|
| 566 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 567 |
|
| 568 |
Args:
|
|
@@ -743,7 +776,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 743 |
|
| 744 |
# set lora scale so that monkey patched LoRA
|
| 745 |
# function of text encoder can correctly access it
|
| 746 |
-
if lora_scale is not None and isinstance(self,
|
| 747 |
self._lora_scale = lora_scale
|
| 748 |
|
| 749 |
if prompt is not None and isinstance(prompt, str):
|
|
@@ -1612,7 +1645,9 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 1612 |
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
| 1613 |
|
| 1614 |
# 3. Encode input prompt
|
| 1615 |
-
|
|
|
|
|
|
|
| 1616 |
|
| 1617 |
negative_prompt = negative_prompt if negative_prompt is not None else ""
|
| 1618 |
|
|
@@ -1627,6 +1662,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 1627 |
neg_prompt=negative_prompt,
|
| 1628 |
num_images_per_prompt=num_images_per_prompt,
|
| 1629 |
clip_skip=clip_skip,
|
|
|
|
| 1630 |
)
|
| 1631 |
dtype = prompt_embeds.dtype
|
| 1632 |
|
|
|
|
| 25 |
from diffusers.loaders import (
|
| 26 |
FromSingleFileMixin,
|
| 27 |
IPAdapterMixin,
|
| 28 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 29 |
TextualInversionLoaderMixin,
|
| 30 |
)
|
| 31 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 32 |
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
| 33 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 34 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 35 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 36 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 37 |
from diffusers.utils import (
|
| 38 |
+
USE_PEFT_BACKEND,
|
| 39 |
deprecate,
|
| 40 |
is_accelerate_available,
|
| 41 |
is_accelerate_version,
|
| 42 |
is_invisible_watermark_available,
|
| 43 |
logging,
|
| 44 |
replace_example_docstring,
|
| 45 |
+
scale_lora_layers,
|
| 46 |
+
unscale_lora_layers,
|
| 47 |
)
|
| 48 |
from diffusers.utils.torch_utils import randn_tensor
|
| 49 |
|
|
|
|
| 265 |
num_images_per_prompt: int = 1,
|
| 266 |
device: Optional[torch.device] = None,
|
| 267 |
clip_skip: Optional[int] = None,
|
| 268 |
+
lora_scale: Optional[int] = None,
|
| 269 |
):
|
| 270 |
"""
|
| 271 |
This function can process long prompt with weights, no length limitation
|
|
|
|
| 286 |
"""
|
| 287 |
device = device or pipe._execution_device
|
| 288 |
|
| 289 |
+
# set lora scale so that monkey patched LoRA
|
| 290 |
+
# function of text encoder can correctly access it
|
| 291 |
+
if lora_scale is not None and isinstance(pipe, StableDiffusionXLLoraLoaderMixin):
|
| 292 |
+
pipe._lora_scale = lora_scale
|
| 293 |
+
|
| 294 |
+
# dynamically adjust the LoRA scale
|
| 295 |
+
if pipe.text_encoder is not None:
|
| 296 |
+
if not USE_PEFT_BACKEND:
|
| 297 |
+
adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
|
| 298 |
+
else:
|
| 299 |
+
scale_lora_layers(pipe.text_encoder, lora_scale)
|
| 300 |
+
|
| 301 |
+
if pipe.text_encoder_2 is not None:
|
| 302 |
+
if not USE_PEFT_BACKEND:
|
| 303 |
+
adjust_lora_scale_text_encoder(pipe.text_encoder_2, lora_scale)
|
| 304 |
+
else:
|
| 305 |
+
scale_lora_layers(pipe.text_encoder_2, lora_scale)
|
| 306 |
+
|
| 307 |
if prompt_2:
|
| 308 |
prompt = f"{prompt} {prompt_2}"
|
| 309 |
|
|
|
|
| 452 |
bs_embed * num_images_per_prompt, -1
|
| 453 |
)
|
| 454 |
|
| 455 |
+
if pipe.text_encoder is not None:
|
| 456 |
+
if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 457 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 458 |
+
unscale_lora_layers(pipe.text_encoder, lora_scale)
|
| 459 |
+
|
| 460 |
+
if pipe.text_encoder_2 is not None:
|
| 461 |
+
if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 462 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 463 |
+
unscale_lora_layers(pipe.text_encoder_2, lora_scale)
|
| 464 |
+
|
| 465 |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 466 |
|
| 467 |
|
|
|
|
| 582 |
StableDiffusionMixin,
|
| 583 |
FromSingleFileMixin,
|
| 584 |
IPAdapterMixin,
|
| 585 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 586 |
TextualInversionLoaderMixin,
|
| 587 |
):
|
| 588 |
r"""
|
|
|
|
| 594 |
The pipeline also inherits the following loading methods:
|
| 595 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 596 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 597 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 598 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 599 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 600 |
|
| 601 |
Args:
|
|
|
|
| 776 |
|
| 777 |
# set lora scale so that monkey patched LoRA
|
| 778 |
# function of text encoder can correctly access it
|
| 779 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
| 780 |
self._lora_scale = lora_scale
|
| 781 |
|
| 782 |
if prompt is not None and isinstance(prompt, str):
|
|
|
|
| 1645 |
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
| 1646 |
|
| 1647 |
# 3. Encode input prompt
|
| 1648 |
+
lora_scale = (
|
| 1649 |
+
self._cross_attention_kwargs.get("scale", None) if self._cross_attention_kwargs is not None else None
|
| 1650 |
+
)
|
| 1651 |
|
| 1652 |
negative_prompt = negative_prompt if negative_prompt is not None else ""
|
| 1653 |
|
|
|
|
| 1662 |
neg_prompt=negative_prompt,
|
| 1663 |
num_images_per_prompt=num_images_per_prompt,
|
| 1664 |
clip_skip=clip_skip,
|
| 1665 |
+
lora_scale=lora_scale,
|
| 1666 |
)
|
| 1667 |
dtype = prompt_embeds.dtype
|
| 1668 |
|