Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,139 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
size_categories:
|
4 |
+
- 10M<n<100M
|
5 |
+
---
|
6 |
+
|
7 |
+
# Geonames
|
8 |
+
|
9 |
+
A simple parquet conversion of the tab-separated, zipped textfile from https://download.geonames.org/export/dump/ allCountries.zip.
|
10 |
+
|
11 |
+
## Columns
|
12 |
+
|
13 |
+
allCountries.zip
|
14 |
+
|
15 |
+
```
|
16 |
+
The main 'geoname' table has the following fields :
|
17 |
+
---------------------------------------------------
|
18 |
+
geonameid : integer id of record in geonames database
|
19 |
+
name : name of geographical point (utf8) varchar(200)
|
20 |
+
asciiname : name of geographical point in plain ascii characters, varchar(200)
|
21 |
+
alternatenames : alternatenames, comma separated, ascii names automatically transliterated, convenience attribute from alternatename table, varchar(10000)
|
22 |
+
latitude : latitude in decimal degrees (wgs84)
|
23 |
+
longitude : longitude in decimal degrees (wgs84)
|
24 |
+
feature class : see http://www.geonames.org/export/codes.html, char(1)
|
25 |
+
feature code : see http://www.geonames.org/export/codes.html, varchar(10)
|
26 |
+
country code : ISO-3166 2-letter country code, 2 characters
|
27 |
+
cc2 : alternate country codes, comma separated, ISO-3166 2-letter country code, 200 characters
|
28 |
+
admin1 code : fipscode (subject to change to iso code), see exceptions below, see file admin1Codes.txt for display names of this code; varchar(20)
|
29 |
+
admin2 code : code for the second administrative division, a county in the US, see file admin2Codes.txt; varchar(80)
|
30 |
+
admin3 code : code for third level administrative division, varchar(20)
|
31 |
+
admin4 code : code for fourth level administrative division, varchar(20)
|
32 |
+
population : bigint (8 byte int)
|
33 |
+
elevation : in meters, integer
|
34 |
+
dem : digital elevation model, srtm3 or gtopo30, average elevation of 3''x3'' (ca 90mx90m) or 30''x30'' (ca 900mx900m) area in meters, integer. srtm processed by cgiar/ciat.
|
35 |
+
timezone : the iana timezone id (see file timeZone.txt) varchar(40)
|
36 |
+
modification date : date of last modification in yyyy-MM-dd format
|
37 |
+
```
|
38 |
+
|
39 |
+
## Conversion
|
40 |
+
|
41 |
+
```python
|
42 |
+
import pandas as pd
|
43 |
+
df = pd.read_csv('allCountries.txt', sep='\t', header=None, low_memory=False)
|
44 |
+
df.to_parquet('geonames_23_03_2025.parquet')
|
45 |
+
```
|
46 |
+
|
47 |
+
## Quality
|
48 |
+
|
49 |
+
Be warned, the quality - especially for other languages than English - might sometimes be low. Sometimes there are duplicates and very confusing entries.
|
50 |
+
|
51 |
+
## Query with DuckDB
|
52 |
+
|
53 |
+
### Example query for `München`
|
54 |
+
|
55 |
+
```python
|
56 |
+
import duckdb
|
57 |
+
import geopandas
|
58 |
+
df = duckdb.sql(f"SELECT * FROM 'geonames_23_03_2025.parquet' WHERE \"1\" = 'München' ").df() # you can add the country code to the query with AND \"8\" = 'GB'
|
59 |
+
gdf = geopandas.GeoDataFrame( df, geometry=geopandas.points_from_xy(x=df["5"], y=df["4"]))
|
60 |
+
gdf
|
61 |
+
```
|
62 |
+
|
63 |
+
| ID | Name | Alternate Name | Additional Info | Latitude | Longitude | Feature Class | Feature Code | Country Code | Admin Code | Admin1 | Admin2 | Admin3 | Admin4 | Population | Elevation | Time Zone | Last Update | Geometry |
|
64 |
+
|---------|---------|---------------|----------------|-----------|-----------|---------------|--------------|--------------|------------|--------|--------|---------|----------|------------|-----------|---------------|--------------|------------------------|
|
65 |
+
| 2867711 | München | Muenchen | None | 51.60698 | 13.31243 | P | PPL | DE | None | 11 | 00 | 12062 | 12062500 | 0 | NaN | Europe/Berlin | 2015-09-04 | POINT (13.312 51.607) |
|
66 |
+
| 2867713 | München | Munchen | None | 48.69668 | 13.46314 | P | PPL | DE | None | 02 | 092 | 09275 | 09275128 | 0 | NaN | Europe/Berlin | 2013-02-19 | POINT (13.463 48.697) |
|
67 |
+
|
68 |
+
Note that using the German spelling the query yields nonsense. Instead, query in English:
|
69 |
+
|
70 |
+
```python
|
71 |
+
import duckdb
|
72 |
+
import geopandas
|
73 |
+
df = duckdb.sql(f"SELECT * FROM 'geonames_23_03_2025.parquet' WHERE \"1\" = 'Munich' AND \"8\" = 'DE' ").df() # you can add the country code to the query with AND \"8\" = 'GB'
|
74 |
+
gdf = geopandas.GeoDataFrame( df, geometry=geopandas.points_from_xy(x=df["5"], y=df["4"]))
|
75 |
+
gdf
|
76 |
+
```
|
77 |
+
|
78 |
+
| ID | Name | Official Name | Alternate Names | Latitude | Longitude | Feature Class | Feature Code | Country Code | Admin Code | Admin1 | Admin2 | Admin3 | Admin4 | Population | Elevation | Time Zone | Last Update | Geometry |
|
79 |
+
|---------|--------|--------------|-----------------|-----------|-----------|---------------|--------------|--------------|------------|--------|--------|---------|----------|------------|-----------|--------------|--------------|------------------------|
|
80 |
+
| 2867714 | Munich | Munich | Lungsod ng Muenchen, Lungsod ng München, MUC, Min... | 48.13743 | 11.57549 | P | PPLA | DE | None | 02 | 091 | 09162 | 09162000 | 1260391 | NaN | 524 | Europe/Berlin | 2023-10-12 | POINT (11.575 48.137) |
|
81 |
+
|
82 |
+
This query returns only one entry with a city centroid, just as expected.
|
83 |
+
|
84 |
+
## Visualize with deck.gl
|
85 |
+
|
86 |
+
```python
|
87 |
+
import pydeck as pdk
|
88 |
+
import pandas as pd
|
89 |
+
import numpy as np
|
90 |
+
|
91 |
+
# load some gdf
|
92 |
+
gdf["coordinates"] = gdf.apply(lambda x: [x.geometry.x, x.geometry.y], axis=1)
|
93 |
+
|
94 |
+
# Define a layer to display on a map
|
95 |
+
layer = pdk.Layer(
|
96 |
+
"ScatterplotLayer",
|
97 |
+
# coordinates is an array
|
98 |
+
gdf[["1","coordinates"]], # super important! only pass what's needed. If geometry column from geopandas is passed, error!
|
99 |
+
pickable=True,
|
100 |
+
opacity=0.99,
|
101 |
+
stroked=True,
|
102 |
+
filled=True,
|
103 |
+
radius_scale=6,
|
104 |
+
radius_min_pixels=1,
|
105 |
+
radius_max_pixels=100,
|
106 |
+
line_width_min_pixels=1,
|
107 |
+
get_position="coordinates",
|
108 |
+
get_radius="1000",
|
109 |
+
get_fill_color=[255, 140, 0],
|
110 |
+
get_line_color=[255, 140, 0],
|
111 |
+
)
|
112 |
+
|
113 |
+
# Set the viewport location
|
114 |
+
view_state = pdk.ViewState(latitude=np.mean(gdf.geometry.y), longitude=np.mean(gdf.geometry.x), zoom=12, bearing=0, pitch=0)
|
115 |
+
|
116 |
+
# Render
|
117 |
+
r = pdk.Deck(layers=[layer], initial_view_state=view_state,height=2000, tooltip={"text": "{1}"})
|
118 |
+
r.to_html("scatterplot_layer.html")
|
119 |
+
```
|
120 |
+
|
121 |
+

|
122 |
+
|
123 |
+
## Sample
|
124 |
+
|
125 |
+
| ID | Name | Official Name | Alternate Names | Latitude | Longitude | Feature Class | Feature Code | Country Code | Admin Code | Admin1 | Admin2 | Admin3 | Admin4 | Population | Elevation | Time Zone | Last Update |
|
126 |
+
|----------|-------------------------------|------------------------------------|-------------------------------------------------|-----------|-----------|---------------|--------------|--------------|------------|--------|--------|--------|--------|------------|-----------|---------------|--------------|
|
127 |
+
| 2994701 | Roc Meler | Roc Meler | Roc Mele, Roc Meler, Roc Mélé | 42.58765 | 1.74180 | T | PK | AD | AD,FR | 02 | NaN | NaN | NaN | 0 | 2811 | Europe/Andorra | 2023-10-03 |
|
128 |
+
| 3017832 | Pic de les Abelletes | Pic de les Abelletes | Pic de la Font-Negre, Pic de la Font-Nègre, Pic ... | 42.52535 | 1.73343 | T | PK | AD | FR | A9 | 66 | 663 | 66146 | 0 | NaN | 2411 | Europe/Andorra | 2014-11-05 |
|
129 |
+
| 3017833 | Estany de les Abelletes | Estany de les Abelletes | Estany de les Abelletes, Etang de Font-Negre, Ét... | 42.52915 | 1.73362 | H | LK | AD | FR | A9 | NaN | NaN | NaN | 0 | NaN | 2260 | Europe/Andorra | 2014-11-05 |
|
130 |
+
| 3023203 | Port Vieux de la Coume d’Ose | Port Vieux de la Coume d'Ose | Port Vieux de Coume d'Ose, Port Vieux de Coume ... | 42.62568 | 1.61823 | T | PASS | AD | NaN | 00 | NaN | NaN | NaN | 0 | NaN | 2687 | Europe/Andorra | 2014-11-05 |
|
131 |
+
| 3029315 | Port de la Cabanette | Port de la Cabanette | Port de la Cabanette, Porteille de la Cabanette | 42.60000 | 1.73333 | T | PASS | AD | AD,FR | B3 | 09 | 091 | 09139 | 0 | NaN | 2379 | Europe/Andorra | 2014-11-05 |
|
132 |
+
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
|
133 |
+
| 13216940 | GLORIA Seamount | GLORIA Seamount | NaN | 45.03000 | -15.53500 | U | SMU | NaN | NaN | 00 | NaN | NaN | NaN | 0 | NaN | -9999 | NaN | 2025-02-19 |
|
134 |
+
| 13216941 | Yubko Hills | Yubko Hills | NaN | 13.01820 | -134.41130 | U | HLSU | NaN | NaN | 00 | NaN | NaN | NaN | 0 | NaN | -9999 | NaN | 2025-02-19 |
|
135 |
+
| 13216942 | Maguari Seamount | Maguari Seamount | NaN | 0.68832 | -44.31278 | U | SMU | NaN | NaN | 00 | NaN | NaN | NaN | 0 | NaN | -9999 | NaN | 2025-02-19 |
|
136 |
+
| 13216943 | Quintana Seamount | Quintana Seamount | NaN | -32.74950 | -38.67696 | U | SMU | NaN | NaN | 00 | NaN | NaN | NaN | 0 | NaN | -9999 | NaN | 2025-02-19 |
|
137 |
+
| 13216944 | Satander Guyot | Satander Guyot | NaN | -1.92806 | -37.82161 | U | DEPU | NaN | NaN | 00 | NaN | NaN | NaN | 0 | NaN | -9999 | NaN | 2025-02-19 |
|
138 |
+
|
139 |
+
13111559 rows × 19 columns
|