emnlp-submission commited on
Commit
62f385b
·
verified ·
1 Parent(s): 8ed01ac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -3
README.md CHANGED
@@ -1,3 +1,165 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - Large Language Models
7
+ - Sequential Reasoning
8
+ - Knowledge Graphs
9
+ - Scaling Laws
10
+ - Synthetic Benchmarks
11
+ - Commonsense Reasoning
12
+ - Spatial Reasoning
13
+ - Pathfinding
14
+ - Logical Depth
15
+ - Backtracking
16
+ - Noise Robustness
17
+ - LLM Evaluation
18
+ ---
19
+
20
+ # SeqBench: A Tunable Benchmark to Quantify Sequential Reasoning Limits of LLMs
21
+
22
+ ## Description
23
+
24
+ SeqBench is a programmatically generated benchmark designed to rigorously evaluate and analyze the sequential reasoning capabilities of language models. Task instances involve pathfinding in 2D grid environments, requiring models to perform multi-step inference over a combination of relevant and distracting textual facts.
25
+
26
+ The benchmark allows for fine-grained, orthogonal control over key complexity dimensions:
27
+
28
+ 1. **Logical Depth (L)**: The number of actions in the ground-truth optimal solution.
29
+ 2. **Backtracking Count (B)**: The number of locked doors on the optimal path that necessitate detours to find corresponding keys.
30
+ 3. **Noise Ratio (N)**: The proportion of distracting (irrelevant) facts relative to supporting (relevant) facts in the problem description.
31
+
32
+ This dataset (`seqBench_compact.jsonl.gz`) contains **7079 instances**, sampled to provide broad coverage across these complexity dimensions.
33
+
34
+ Each instance provides:
35
+ - `instance_id`: A unique identifier for the specific problem variant.
36
+ - `context`: The natural language problem description presented to the model.
37
+ - `completion`: The ground-truth sequence of actions representing the optimal solution.
38
+ - `complexity_parameters`: A dictionary containing the specific L, B, and N values for the instance.
39
+ - `instance_metadata`: Additional information, including maze dimensions and agent/target names.
40
+ - `structural_details`: A JSON string detailing the underlying base maze configuration. This includes room coordinate mappings, adjacency lists, door/key states, and all canonical facts (before noise application).
41
+
42
+ ## Dataset Structure and Schema
43
+
44
+ The dataset is provided in gzipped JSONL format (`seqBench_compact.jsonl.gz`). Each line is a JSON object representing a single problem instance with the following fields:
45
+
46
+ * **`instance_id`** (`string`): Unique identifier for the problem instance.
47
+ * **`context`** (`string`): Textual problem description.
48
+ * **`completion`** (`string`): Expected sequence of actions (e.g., ` "['action1: param1', 'action2: param2', ...]" `).
49
+ * **`complexity_parameters`** (`object`):
50
+ * `logical_depth_L` (`int64`): Logical Depth (L).
51
+ * `backtracking_count_B` (`int64`): Backtracking Count (B).
52
+ * `noise_ratio_N` (`float64`): Applied Noise Ratio (N).
53
+ * **`instance_metadata`** (`object`):
54
+ * `maze_rows` (`int64`): Number of rows in the maze grid.
55
+ * `maze_cols` (`int64`): Number of columns in the maze grid.
56
+ * `agent_name` (`string`): Agent's name.
57
+ * `target_name` (`string`): Target/victim's name.
58
+ * **`structural_details`** (`string`): A JSON string containing:
59
+ * `mappings` (`object`):
60
+ * `coordinate_to_name` (`object`): Maps coordinate strings (e.g., "3,6") to original room identifiers (e.g., "D5").
61
+ * `structure` (`object`):
62
+ * `adjacency_list` (`object`): Maps coordinate strings to a list of directly connected coordinate strings.
63
+ * `door_details` (`object`): Maps a door identifier string (lexicographically sorted coordinate strings joined by "_", e.g., "3,6_3,7") to an object: `{"status": "open" | "closed and locked", "key_id": "string"}`.
64
+ * `key_locations` (`object`): Maps a `key_id` string to the coordinate string of the room containing the key.
65
+ * `start_room_coord` (`string`): Coordinate string of the agent's starting room.
66
+ * `end_room_coord` (`string`): Coordinate string of the victim's room.
67
+ * `canonical_facts` (`list`): A list of objects, where each object represents a true factual statement about the base maze (before noise/shuffling). Each fact object has: `{"type": "string", "args": list_of_strings, "supporting": boolean}`. The `args` are specific to the `type` (e.g., for "connected_rooms", args might be `["coord1_str", "coord2_str", "status_str"]`).
68
+
69
+ A machine-readable metadata file (`croissant.json`) is included in the metadata/ directory of the main repository to facilitate dataset discovery and integration.
70
+
71
+ ## Using `structural_details`
72
+
73
+ The `structural_details` field offers a ground-truth representation of the maze.
74
+
75
+ ```python
76
+ import gzip
77
+ import json
78
+
79
+ # Example: Load the first instance and inspect its structural_details
80
+ file_path = "seqBench_compact.jsonl.gz" # Path to your dataset file
81
+ instance_data = None
82
+ try:
83
+ with gzip.open(file_path, "rt", encoding="utf-8") as f:
84
+ first_line = f.readline()
85
+ if first_line:
86
+ instance_data = json.loads(first_line)
87
+ except FileNotFoundError:
88
+ print(f"Error: Dataset file not found at {file_path}")
89
+ except Exception as e:
90
+ print(f"Error loading dataset: {e}")
91
+
92
+ if instance_data:
93
+ print(f"Instance ID: {instance_data.get('instance_id', 'N/A')}")
94
+
95
+ # Parse the structural_details string
96
+ structural_details_str = instance_data.get("structural_details")
97
+ if structural_details_str:
98
+ structural_details = json.loads(structural_details_str)
99
+
100
+ structure = structural_details.get("structure", {})
101
+ start_coord_str = structure.get("start_room_coord")
102
+ print(f"Start Room Coordinate String: {start_coord_str}")
103
+
104
+ # Example: Door details for a hypothetical door
105
+ # Note: Door keys are formed by sorting coordinate strings and joining with '_'
106
+ coord1_str, coord2_str = "3,6", "3,7" # Replace with actual coordinates you want to check
107
+ door_dict_key = "_".join(sorted([coord1_str, coord2_str]))
108
+ door_info = structure.get("door_details", {}).get(door_dict_key)
109
+ if door_info:
110
+ print(f"Door info for {door_dict_key}: {door_info}")
111
+ else:
112
+ print(f"No direct door entry for {door_dict_key} (may not exist or names are different).")
113
+
114
+ print(f"Key locations: {structure.get('key_locations', {})}")
115
+
116
+ # print("First canonical fact:", structural_details.get("canonical_facts", [{}])[0])
117
+ else:
118
+ print("structural_details field is missing or empty.")
119
+
120
+ # For a deeper understanding of the data generation pipeline and semantics,
121
+ # refer to the scripts (`maze.py`, `maze_loader.py`, `rooms.py`)
122
+ # available in the main project repository.
123
+ ```
124
+
125
+ ## Dataset Statistics (for `seqBench_compact.jsonl.gz`)
126
+
127
+ * **Total Instances:** 7079
128
+ * **Logical Depth (L):**
129
+ * Range: [3, 774]
130
+ * Distribution: Instances span a wide range of L values. For L-bins of size 5 (e.g., L0-4, L5-9, etc.), there are typically 30-80 instances per bin in the lower to mid L-ranges.
131
+ * **Backtracking Count (B):**
132
+ * Range: [0, 6]
133
+ * Distribution:
134
+ * B = 0: 441 instances
135
+ * B = 1: 438 instances
136
+ * B = 2: 565 instances
137
+ * B = 3: 790 instances
138
+ * B = 4: 1046 instances
139
+ * B = 5: 1601 instances
140
+ * B = 6: 2198 instances
141
+ * **Noise Ratio (N):**
142
+ * Range: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
143
+ * Distribution: Instances are approximately evenly distributed across the 6 noise levels, each with roughly 1180 instances.
144
+ * **Combined Complexity:** The dataset is sampled to ensure coverage across (B, N) combinations (typically 60-380 instances per pair) and (L-bin, N) combinations (aiming for approximately 10 instances per L-bin of size 5 for each N, varying with the natural distribution of L).
145
+
146
+ ## Generation Process
147
+
148
+ The benchmark instances are generated through a multi-stage process:
149
+ 1. **Base Maze Generation**: Acyclic maze graphs are programmatically created on N x M grids.
150
+ 2. **Rewind Construction**: A target number of backtracking maneuvers (B_target) are embedded by working backward from a goal room, strategically placing keys and locked doors.
151
+ 3. **NLP Formulation**: For each base maze configuration, a list of canonical facts describing the environment and task is derived.
152
+ 4. **Noise Application**: A specified `noise_ratio_N` is used to select a proportion of distracting (irrelevant) facts to include alongside supporting (relevant) facts, forming the final `context`.
153
+
154
+ ## Citation
155
+ Please cite this work as:
156
+ ```bibtex
157
+ @misc{anonymous2025seqbench,
158
+ author = {Anonymous Submission},
159
+ title = {SeqBench: A Tunable Benchmark to Quantify Sequential Reasoning Limits of LLMs},
160
+ year = {2025},
161
+ publisher = {Proceedings of the Conference on Empirical Methods in Natural Language Processing},
162
+ note = {Special Theme: Interdisciplinary Recontextualization of NLP},
163
+ comment = {Dataset accessible at https://huggingface.co/datasets/emnlp-submission/seqBench}
164
+ }
165
+ ```