Update scripts / maze.py
Browse files- scripts / maze.py +693 -0
scripts / maze.py
CHANGED
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from collections import defaultdict
|
5 |
+
import copy
|
6 |
+
import json
|
7 |
+
import pickle
|
8 |
+
from math import floor, ceil
|
9 |
+
import os
|
10 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
11 |
+
import traceback
|
12 |
+
from maze_loader import MazeLoader
|
13 |
+
|
14 |
+
from rooms import NameGenerator
|
15 |
+
|
16 |
+
|
17 |
+
class MazeGenerator:
|
18 |
+
"""A class for generating mazes with locked doors and distributed keys.
|
19 |
+
|
20 |
+
The maze is generated using Kruskal's algorithm and includes features like:
|
21 |
+
- Locked doors requiring keys
|
22 |
+
- Keys distributed throughout the maze
|
23 |
+
- Sub-problems with reduced complexity
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
N, # number of rows
|
29 |
+
M, # number of columns
|
30 |
+
rescue_agent="Bob", # the name of the rescue agent
|
31 |
+
victim="Alice", # the name of the victim
|
32 |
+
max_big_loop_count=5, # retry logic parameter
|
33 |
+
max_retry_count=10, # retry logic parameter
|
34 |
+
N_locked_doors=2, # the number of locked doors in the maze for the most difficult sub-problem
|
35 |
+
generate_sub_problems=True, # whether to generate sub-problems from the original problem (reduced N_locked_doors without changing the maze pattern)
|
36 |
+
verbose=True, # whether to print the maze parameters
|
37 |
+
random_seeds=None,
|
38 |
+
# shuffle_room_names=False,
|
39 |
+
shuffle_key_ids=False,
|
40 |
+
):
|
41 |
+
|
42 |
+
# random_seeds = {'random_room_name_pool': 1744527184380, 'key_ids': 1744527184480, 'maze_generation': 1744527184580, 'door_distribution': 1744527184680, 'problem_generation': 22869, 'end_room': 993550, 'remove_key': 1744527184980, 'remove_key_1': 63332129, 'remove_key_2': 3892716716, 'remove_key_3': 4053259202, 'remove_key_4': 2836627271, 'remove_key_5': 2154501613, 'remove_key_6': 3371613490, 'remove_key_7': 638681366}
|
43 |
+
if random_seeds is None:
|
44 |
+
self.random_seeds = {
|
45 |
+
"key_ids": random.randint(100, 2**32 - 1),
|
46 |
+
"maze_generation": random.randint(100, 2**32 - 1),
|
47 |
+
"door_distribution": random.randint(100, 2**32 - 1),
|
48 |
+
"problem_generation": random.randint(100, 2**32 - 1),
|
49 |
+
"end_room": random.randint(100, 2**32 - 1),
|
50 |
+
"remove_key": random.randint(100, 2**32 - 1),
|
51 |
+
}
|
52 |
+
else:
|
53 |
+
self.random_seeds = random_seeds
|
54 |
+
self.name_generator = NameGenerator(N, M)
|
55 |
+
self.N = N # Number of rows
|
56 |
+
self.M = M # Number of columns
|
57 |
+
self.rescue_agent = rescue_agent
|
58 |
+
self.victim = victim
|
59 |
+
self.max_big_loop_count = max_big_loop_count
|
60 |
+
self.max_retry_count = max_retry_count
|
61 |
+
self.N_locked_doors = N_locked_doors # the number of locked doors in the maze for the most difficult sub-problem
|
62 |
+
self.generate_sub_problems = generate_sub_problems # whether to generate sub-problems from the original problem (N_locked_doors)
|
63 |
+
self.verbose = verbose
|
64 |
+
self.shuffle_key_ids = shuffle_key_ids
|
65 |
+
self.parent = {} # Disjoint set for Kruskal's algorithm
|
66 |
+
self.rank = {} # Rank for union-find
|
67 |
+
self.edges = [] # List of possible edges
|
68 |
+
self.maze = np.ones((2 * N + 1, 2 * M + 1)) # Initialize grid with walls
|
69 |
+
self.connected_cells = defaultdict(dict)
|
70 |
+
self.room_name = {}
|
71 |
+
self.doors = {}
|
72 |
+
# self.key_ids = #["0"*(6-len(str(i))) + f"{i}" for i in range(100000)]
|
73 |
+
self.key_ids = [f"{i}" for i in range(1, 10000)][::-1]
|
74 |
+
self.keys_locations = {}
|
75 |
+
# self.random_room_name_pool = ["R" + "0"*(6-len(str(i))) + f"{i}" for i in range(100000)]
|
76 |
+
# room_index_max = ceil((N * M) / 26) if N * M > 26 else 0
|
77 |
+
# self.random_room_name_pool = generate_letter_number_list(room_index_max)
|
78 |
+
# print(len(self.random_room_name_pool), room_index_max)
|
79 |
+
# if random_seeds is None:
|
80 |
+
self.random_seeds.update(
|
81 |
+
{
|
82 |
+
f"remove_key_{i+1}": random.randint(100, 2**32 - 1)
|
83 |
+
for i, _ in enumerate(range(self.N_locked_doors))
|
84 |
+
}
|
85 |
+
)
|
86 |
+
self.did_succeed = False
|
87 |
+
if verbose:
|
88 |
+
self.print_maze_parameters()
|
89 |
+
|
90 |
+
random.seed(self.random_seeds["key_ids"])
|
91 |
+
if self.shuffle_key_ids:
|
92 |
+
random.shuffle(self.key_ids)
|
93 |
+
|
94 |
+
def print_maze_parameters(self):
|
95 |
+
"""Print the current maze generation parameters."""
|
96 |
+
print("\033[93m" + "the random seeds are: " + "\033[0m", self.random_seeds)
|
97 |
+
print("maze parameters are: ")
|
98 |
+
print(f"N: {self.N}")
|
99 |
+
print(f"M: {self.M}")
|
100 |
+
print(f"rescue_agent: {self.rescue_agent}")
|
101 |
+
print(f"victim: {self.victim}")
|
102 |
+
print(f"max_big_loop_count: {self.max_big_loop_count}")
|
103 |
+
print(f"max_retry_count: {self.max_retry_count}")
|
104 |
+
print(f"N_locked_doors: {self.N_locked_doors}")
|
105 |
+
print(f"generate_sub_problems: {self.generate_sub_problems}")
|
106 |
+
|
107 |
+
def find(self, node):
|
108 |
+
"""Find the root of the set containing node (with path compression).
|
109 |
+
This is used in the union function"""
|
110 |
+
if self.parent[node] != node:
|
111 |
+
self.parent[node] = self.find(self.parent[node])
|
112 |
+
return self.parent[node]
|
113 |
+
|
114 |
+
def union(self, node1, node2):
|
115 |
+
"""Union by rank - used in kruskal's algorithm"""
|
116 |
+
root1 = self.find(node1)
|
117 |
+
root2 = self.find(node2)
|
118 |
+
|
119 |
+
if root1 != root2:
|
120 |
+
if self.rank[root1] > self.rank[root2]:
|
121 |
+
self.parent[root2] = root1
|
122 |
+
elif self.rank[root1] < self.rank[root2]:
|
123 |
+
self.parent[root1] = root2
|
124 |
+
else:
|
125 |
+
self.parent[root2] = root1
|
126 |
+
self.rank[root1] += 1
|
127 |
+
return True
|
128 |
+
return False
|
129 |
+
|
130 |
+
def assign_room_name(self, cell):
|
131 |
+
return self.name_generator.get_name(cell)
|
132 |
+
|
133 |
+
def generate_edges(self):
|
134 |
+
"""Generate edges between adjacent cells."""
|
135 |
+
for r in range(self.N):
|
136 |
+
for c in range(self.M):
|
137 |
+
node = (r, c)
|
138 |
+
self.parent[node] = node
|
139 |
+
self.rank[node] = 0
|
140 |
+
if r < self.N - 1: # Vertical edge
|
141 |
+
self.edges.append(((r, c), (r + 1, c)))
|
142 |
+
if c < self.M - 1: # Horizontal edge
|
143 |
+
self.edges.append(((r, c), (r, c + 1)))
|
144 |
+
self.room_name[node] = self.assign_room_name(node)
|
145 |
+
|
146 |
+
def generate_maze_with_doors(self):
|
147 |
+
"""Generate the maze using Kruskal's algorithm."""
|
148 |
+
if self.verbose:
|
149 |
+
print("generating the maze with doors...")
|
150 |
+
self.generate_edges()
|
151 |
+
random.seed(self.random_seeds["maze_generation"])
|
152 |
+
random.shuffle(self.edges) # Shuffle edges for randomness
|
153 |
+
random.seed(self.random_seeds["door_distribution"])
|
154 |
+
ps = [(random.random(), random.random()) for _ in range(len(self.edges))]
|
155 |
+
for (cell1, cell2), p in zip(self.edges, ps):
|
156 |
+
if self.union(cell1, cell2): # Connect disjoint sets
|
157 |
+
# Convert lattice coordinates to maze coordinates
|
158 |
+
wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
|
159 |
+
wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
|
160 |
+
self.maze[2 * cell1[0] + 1, 2 * cell1[1] + 1] = 0 # Mark cell as open
|
161 |
+
self.maze[2 * cell2[0] + 1, 2 * cell2[1] + 1] = 0 # Mark cell as open
|
162 |
+
self.maze[wall_r, wall_c] = 0 # Remove wall
|
163 |
+
self.connected_cells[cell1][cell2] = 1
|
164 |
+
self.connected_cells[cell2][cell1] = 1
|
165 |
+
status = "open"
|
166 |
+
self.maze[
|
167 |
+
wall_r, wall_c
|
168 |
+
] = 4 # 3 if status == 'closed but unlocked' else 4
|
169 |
+
self.doors[(cell1, cell2)] = (status, self.key_ids.pop())
|
170 |
+
self.doors[(cell2, cell1)] = self.doors[(cell1, cell2)]
|
171 |
+
|
172 |
+
def flush_checkpoints(self, checkpoints, removed_key_count):
|
173 |
+
while len(checkpoints) > 1:
|
174 |
+
rooms_in_path = self.find_shortest_path(checkpoints[0], checkpoints[1])
|
175 |
+
if rooms_in_path is None:
|
176 |
+
rooms_in_path = []
|
177 |
+
for sub_room in rooms_in_path[
|
178 |
+
:-1
|
179 |
+
]: # we ensure we are not double counting the rooms
|
180 |
+
self.standardized_problem_solution_backward[removed_key_count] += [
|
181 |
+
("move_to", sub_room)
|
182 |
+
]
|
183 |
+
checkpoints.pop(0)
|
184 |
+
|
185 |
+
def standardize_sub_problems_and_solutions(self):
|
186 |
+
# use the strategy backward to generate the standardized problem and solution in the final desired format
|
187 |
+
self.standardized_problem_solution_backward = defaultdict(list)
|
188 |
+
removed_key_count = 0
|
189 |
+
self.sub_maze_configurations = {}
|
190 |
+
self.sub_problem_maze = copy.deepcopy(self.maze_original)
|
191 |
+
self.sub_problem_doors = copy.deepcopy(self.doors_original)
|
192 |
+
self.connected_cells = dict(self.connected_cells)
|
193 |
+
number_of_unlocking_actions_required = (
|
194 |
+
len(self.strategy_backward_original) - 2
|
195 |
+
) // 2
|
196 |
+
while removed_key_count <= (len(self.strategy_backward_original) - 2) // 2:
|
197 |
+
checkpoints = []
|
198 |
+
for i, (room, context, action) in enumerate(self.strategy_backward):
|
199 |
+
if action.split(":")[0] == "end_room":
|
200 |
+
self.standardized_problem_solution_backward[removed_key_count] += [
|
201 |
+
("rescue", self.victim)
|
202 |
+
]
|
203 |
+
checkpoints.append(room)
|
204 |
+
elif action.split(":")[0] == "unlock_door":
|
205 |
+
checkpoints.append(room)
|
206 |
+
checkpoints.append(context)
|
207 |
+
self.flush_checkpoints(checkpoints, removed_key_count)
|
208 |
+
self.standardized_problem_solution_backward[removed_key_count] += [
|
209 |
+
("unlock_and_open_door_to", room)
|
210 |
+
]
|
211 |
+
self.standardized_problem_solution_backward[removed_key_count] += [
|
212 |
+
("use_key", self.doors[(room, context)][1])
|
213 |
+
]
|
214 |
+
elif action.split(":")[0] == "pick_up_key":
|
215 |
+
checkpoints.append(room)
|
216 |
+
self.flush_checkpoints(checkpoints, removed_key_count)
|
217 |
+
self.standardized_problem_solution_backward[removed_key_count] += [
|
218 |
+
("pick_up_key", action.split(":")[1])
|
219 |
+
]
|
220 |
+
elif action.split(":")[0] == "start_room":
|
221 |
+
checkpoints.append(room)
|
222 |
+
self.flush_checkpoints(checkpoints, removed_key_count)
|
223 |
+
self.standardized_problem_solution_backward[removed_key_count] += [
|
224 |
+
("start", room)
|
225 |
+
]
|
226 |
+
self.flush_checkpoints(checkpoints, removed_key_count)
|
227 |
+
|
228 |
+
self.sub_maze_configurations[removed_key_count] = {
|
229 |
+
"maze": self.sub_problem_maze.astype(int).tolist(),
|
230 |
+
"doors": copy.deepcopy(self.sub_problem_doors),
|
231 |
+
"keys_locations": copy.deepcopy(self.keys_locations),
|
232 |
+
"number_of_unlocking_actions_required": number_of_unlocking_actions_required,
|
233 |
+
}
|
234 |
+
# if the flag is not set, we stop the process after generating the first sub-problem (with N_locked_doors locked doors)
|
235 |
+
if not self.generate_sub_problems:
|
236 |
+
break
|
237 |
+
|
238 |
+
removed_key_count += 1
|
239 |
+
if len(self.on_optimal_path_locked_doors_indices) == 0:
|
240 |
+
break
|
241 |
+
|
242 |
+
random.seed(self.random_seeds[f"remove_key_{removed_key_count}"])
|
243 |
+
# ss = random.randint(0, floor((len(self.strategy_backward) - 2) / 2) - 1)
|
244 |
+
|
245 |
+
ss = self.on_optimal_path_locked_doors_indices.pop(0)
|
246 |
+
|
247 |
+
cell1, cell2 = (
|
248 |
+
self.drs[ss][0],
|
249 |
+
self.drs[ss][1],
|
250 |
+
)
|
251 |
+
status = "open"
|
252 |
+
self.sub_problem_doors[(cell1, cell2)] = (
|
253 |
+
status,
|
254 |
+
self.sub_problem_doors[(cell1, cell2)][1],
|
255 |
+
)
|
256 |
+
self.sub_problem_doors[(cell2, cell1)] = self.sub_problem_doors[
|
257 |
+
(cell1, cell2)
|
258 |
+
]
|
259 |
+
# updating the maze and doors to reflect that
|
260 |
+
wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
|
261 |
+
wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
|
262 |
+
self.sub_problem_maze[wall_r, wall_c] = 4
|
263 |
+
# don't need to change the key locations and can keep that as noise
|
264 |
+
# we remove the locked door knowing that the backward strategy pattern is
|
265 |
+
# inverse of ['start_room'] +['pick_up_key', 'unlock_door'] * N_locked_doors + ['end_room']
|
266 |
+
self.drs[ss] = (
|
267 |
+
self.drs[ss][0],
|
268 |
+
self.drs[ss][1],
|
269 |
+
"open",
|
270 |
+
self.drs[ss][3],
|
271 |
+
False,
|
272 |
+
)
|
273 |
+
(
|
274 |
+
extra_removed_keys,
|
275 |
+
number_of_unlocking_actions_required,
|
276 |
+
) = self.remove_redundant_steps_from_strategy_backward(
|
277 |
+
ss
|
278 |
+
) # if the rooms associated with a removed locked door is not on the optimal path, we remove it
|
279 |
+
removed_key_count += extra_removed_keys
|
280 |
+
|
281 |
+
if not removed_key_count <= (len(self.strategy_backward_original) - 2) // 2:
|
282 |
+
break
|
283 |
+
|
284 |
+
def remove_redundant_steps_from_strategy_backward(self, ss):
|
285 |
+
# prouning the ground truth to ensure optimality by tweaking the strategy backward
|
286 |
+
"""
|
287 |
+
get the list of all locked doors in the original backward strategy in the following format:
|
288 |
+
drs = [(cell1, cell2, status = 'open | locked', is_on_optimal_path[bool], included_in_gt_or_not[bool]),...]
|
289 |
+
when changing status of an item to open (as part of sub problem generation logic)
|
290 |
+
set drs[s]['included_in_gt_or_not'] = False, check prevoius item (s = s-1)
|
291 |
+
if drs[s]['is_on_optimal_path'] = False , set drs[s]['included_in_gt_or_not'] = False
|
292 |
+
and set s = s-1 and do the check again
|
293 |
+
if drs[s]['is_on_optimal_path'] = True, stop the process
|
294 |
+
return the number of extra removed keys
|
295 |
+
"""
|
296 |
+
inds_to_drop = []
|
297 |
+
# drop the opened door from the strategy backward
|
298 |
+
dr = self.drs[ss]
|
299 |
+
for i, item in enumerate(self.strategy_backward):
|
300 |
+
if (item[0] == dr[0] and item[1] == dr[1]) or (
|
301 |
+
item[0] == dr[1] and item[1] == dr[0]
|
302 |
+
):
|
303 |
+
inds_to_drop.append(i)
|
304 |
+
i = ss + 1
|
305 |
+
if i >= len(self.drs):
|
306 |
+
self.strategy_backward = [
|
307 |
+
self.strategy_backward[i]
|
308 |
+
for i in range(len(self.strategy_backward))
|
309 |
+
if i not in inds_to_drop and i - 1 not in inds_to_drop
|
310 |
+
]
|
311 |
+
number_of_unlocking_actions_required = (
|
312 |
+
len(self.strategy_backward) - 2
|
313 |
+
) // 2
|
314 |
+
return 0, number_of_unlocking_actions_required
|
315 |
+
is_on_optimal_path = self.drs[i][3]
|
316 |
+
extra_removed_keys = 0
|
317 |
+
|
318 |
+
while i < len(self.drs) and ((not is_on_optimal_path)):
|
319 |
+
dr = self.drs[i]
|
320 |
+
self.drs[i] = (dr[0], dr[1], dr[2], False, False)
|
321 |
+
# drop the removed door from the ground truth from the strategy backward
|
322 |
+
for j, item in enumerate(self.strategy_backward):
|
323 |
+
if (item[0] == dr[0] and item[1] == dr[1]) or (
|
324 |
+
item[0] == dr[1] and item[1] == dr[0]
|
325 |
+
):
|
326 |
+
inds_to_drop.append(j)
|
327 |
+
extra_removed_keys += 1
|
328 |
+
|
329 |
+
i += 1
|
330 |
+
if i >= len(self.drs):
|
331 |
+
break
|
332 |
+
is_on_optimal_path = self.drs[i][3]
|
333 |
+
# remove both unlock and pickup from the strategy backward for dropped doors
|
334 |
+
self.strategy_backward = [
|
335 |
+
self.strategy_backward[i]
|
336 |
+
for i in range(len(self.strategy_backward))
|
337 |
+
if i not in inds_to_drop and i - 1 not in inds_to_drop
|
338 |
+
]
|
339 |
+
number_of_unlocking_actions_required = (len(self.strategy_backward) - 2) // 2
|
340 |
+
return extra_removed_keys, number_of_unlocking_actions_required
|
341 |
+
|
342 |
+
def generate_distributed_keys_rescue_positive_problem(self):
|
343 |
+
# positive means that the problem is solvable
|
344 |
+
# there are locked doors between start_room and end_room
|
345 |
+
# these locked doors have keys distributed throughout the maze
|
346 |
+
# Alex needs to find the keys and open the doors on its path to rescue Maggie
|
347 |
+
# Not all keys open all doors
|
348 |
+
# circular dependency can exist: when the key to open a
|
349 |
+
# locked door to room A is in a room B that is on the path to it has a locked door
|
350 |
+
# but the key to open that locked door is in room A -
|
351 |
+
# there is a circular dependency and it makes it impossible to rescue Maggie
|
352 |
+
|
353 |
+
### GENERATION PROCESS #########################################################
|
354 |
+
# We use a reverse back in time to build the problem configuration
|
355 |
+
# We move back in time from the moment Maggie is rescued to the moment Alex starts the rescue
|
356 |
+
# Initially all the rooms are unlocked
|
357 |
+
################################################################################
|
358 |
+
# 1. Pick a random room as the episode's final state (Maggie's location - Alex's final location):
|
359 |
+
self.maze_original = copy.deepcopy(self.maze)
|
360 |
+
self.doors_original = copy.deepcopy(self.doors)
|
361 |
+
self.keys_locations_original = copy.deepcopy(self.keys_locations)
|
362 |
+
self.random_seeds["problem_generation"] = random.randint(0, 1000000)
|
363 |
+
random.seed(self.random_seeds["problem_generation"])
|
364 |
+
succeeded = False
|
365 |
+
big_loop_count = 0
|
366 |
+
while not succeeded:
|
367 |
+
self.all_originally_locked_doors_on_optimal_path = []
|
368 |
+
self.strategy_backward = []
|
369 |
+
self.drs = []
|
370 |
+
big_loop_count += 1
|
371 |
+
if big_loop_count > self.max_big_loop_count:
|
372 |
+
return False
|
373 |
+
self.keys_locations = {}
|
374 |
+
self.random_seeds["end_room"] = random.randint(0, 1000000)
|
375 |
+
random.seed(self.random_seeds["end_room"])
|
376 |
+
end_room = random.choice(list(self.room_name.keys()))
|
377 |
+
current_room = copy.deepcopy(end_room)
|
378 |
+
self.end_room = end_room
|
379 |
+
step_count = 0
|
380 |
+
while True:
|
381 |
+
if step_count == 0:
|
382 |
+
self.strategy_backward += [(current_room, current_room, "end_room")]
|
383 |
+
step_count += 1
|
384 |
+
# 2. Select a random previous room from the list of all rooms accessible from current room.
|
385 |
+
# Alex moves back in time by going to a randomly selected previous room in the maze:
|
386 |
+
accessible_rooms = self.list_of_all_currently_accessible_rooms(
|
387 |
+
current_room
|
388 |
+
)
|
389 |
+
if self.N_locked_doors==0:
|
390 |
+
start_room = accessible_rooms[
|
391 |
+
random.randint(0, len(accessible_rooms) - 1)
|
392 |
+
][0]
|
393 |
+
self.start_room = start_room
|
394 |
+
self.strategy_backward += [(start_room, start_room, "start_room")]
|
395 |
+
succeeded = True
|
396 |
+
break
|
397 |
+
retry_count = 0
|
398 |
+
all_doors_on_path = []
|
399 |
+
while (
|
400 |
+
retry_count < self.max_retry_count and len(all_doors_on_path) == 0
|
401 |
+
):
|
402 |
+
if len(accessible_rooms) != 0:
|
403 |
+
previous_room = accessible_rooms[
|
404 |
+
random.randint(0, len(accessible_rooms) - 1)
|
405 |
+
][0]
|
406 |
+
# 3. Alex locks a randomly selected door on the way back to the previous room
|
407 |
+
# from all the blue doors it encounters:
|
408 |
+
all_doors_on_path = self.get_all_doors_on_path(
|
409 |
+
current_room, previous_room
|
410 |
+
)
|
411 |
+
if len(all_doors_on_path) == 0:
|
412 |
+
# need to ensure we choose a path that has at least one blue or green door
|
413 |
+
if self.verbose:
|
414 |
+
print(
|
415 |
+
f"no doors found between {current_room} and {previous_room} - retrying..."
|
416 |
+
)
|
417 |
+
retry_count += 1
|
418 |
+
if retry_count == self.max_retry_count:
|
419 |
+
self.maze = copy.deepcopy(self.maze_original)
|
420 |
+
self.doors = copy.deepcopy(self.doors_original)
|
421 |
+
self.keys_locations = copy.deepcopy(self.keys_locations_original)
|
422 |
+
break
|
423 |
+
|
424 |
+
cell1, cell2 = random.choice(all_doors_on_path)
|
425 |
+
self.strategy_backward += [(cell1, cell2, "unlock_door")]
|
426 |
+
self.drs.append((cell1, cell2, "closed and locked", None, True))
|
427 |
+
self.all_originally_locked_doors_on_optimal_path.append((cell1, cell2))
|
428 |
+
self.doors[(cell1, cell2)] = (
|
429 |
+
"closed and locked",
|
430 |
+
self.doors[(cell1, cell2)][1],
|
431 |
+
)
|
432 |
+
self.doors[(cell2, cell1)] = self.doors[(cell1, cell2)]
|
433 |
+
wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
|
434 |
+
wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
|
435 |
+
self.maze[wall_r, wall_c] = 2 # 2 is the value for locked doors
|
436 |
+
# 4. Alex then leaves the associated key to this locked door in the selected previous room:
|
437 |
+
self.keys_locations[self.doors[(cell1, cell2)][1]] = previous_room
|
438 |
+
self.strategy_backward += [
|
439 |
+
(
|
440 |
+
previous_room,
|
441 |
+
(cell1, cell2),
|
442 |
+
f"pick_up_key:{self.doors[(cell1, cell2)][1]}",
|
443 |
+
)
|
444 |
+
]
|
445 |
+
current_room = copy.deepcopy(previous_room)
|
446 |
+
# 5. repeat the steps from 2 to 4 (while loop) until N keys are distributed and user goes to a final
|
447 |
+
# randomly accessible room
|
448 |
+
if len(self.keys_locations) == self.N_locked_doors:
|
449 |
+
accessible_rooms = self.list_of_all_currently_accessible_rooms(
|
450 |
+
current_room
|
451 |
+
)
|
452 |
+
if len(accessible_rooms) == 0:
|
453 |
+
start_room = current_room
|
454 |
+
else:
|
455 |
+
start_room = accessible_rooms.pop(
|
456 |
+
random.randint(0, len(accessible_rooms) - 1)
|
457 |
+
)[0]
|
458 |
+
self.start_room = start_room
|
459 |
+
self.strategy_backward += [(start_room, start_room, "start_room")]
|
460 |
+
succeeded = True
|
461 |
+
break
|
462 |
+
|
463 |
+
# no already locked doors should be traversed - the final room becomes the start room
|
464 |
+
# the process stops after N keys are distributed and user goes to a final randomly accessible room
|
465 |
+
if succeeded:
|
466 |
+
self.maze_original = copy.deepcopy(self.maze)
|
467 |
+
self.doors_original = copy.deepcopy(self.doors)
|
468 |
+
self.keys_locations_original = copy.deepcopy(self.keys_locations)
|
469 |
+
self.strategy_backward_original = copy.deepcopy(self.strategy_backward)
|
470 |
+
self.drs_set_3rd_item()
|
471 |
+
self.standardize_sub_problems_and_solutions()
|
472 |
+
self.did_succeed = True
|
473 |
+
return True
|
474 |
+
else:
|
475 |
+
return False
|
476 |
+
|
477 |
+
def drs_set_3rd_item(self):
|
478 |
+
# [(cell1, cell2, status = 'open | locked', is_on_optimal_path[bool], included_in_gt_or_not[bool]),...]
|
479 |
+
self.on_optimal_path_locked_doors_indices = []
|
480 |
+
optimal_path = self.find_shortest_path(self.start_room, self.end_room)
|
481 |
+
for i, dr in enumerate(self.drs):
|
482 |
+
# self.drs[i][3]-> is_on_optimal_path
|
483 |
+
is_on_optimal_path = dr[0] in optimal_path and dr[1] in optimal_path
|
484 |
+
self.drs[i] = (dr[0], dr[1], dr[2], is_on_optimal_path, dr[4])
|
485 |
+
if is_on_optimal_path:
|
486 |
+
self.on_optimal_path_locked_doors_indices.append(i)
|
487 |
+
return None
|
488 |
+
|
489 |
+
def list_of_all_currently_accessible_rooms(
|
490 |
+
self, current_room, previous_room=None, steps=0
|
491 |
+
):
|
492 |
+
# consideriing the current room and the maze structure as well as status of all the doors
|
493 |
+
# return a list of all the rooms that are accessible from the current room
|
494 |
+
if previous_room is None:
|
495 |
+
self.accessible_rooms = []
|
496 |
+
adjacent_cells = list(self.connected_cells[current_room].keys())
|
497 |
+
for cell in adjacent_cells:
|
498 |
+
if cell == previous_room:
|
499 |
+
continue
|
500 |
+
if (current_room, cell) not in self.doors.keys() or self.doors[
|
501 |
+
(current_room, cell)
|
502 |
+
][0] == "open":
|
503 |
+
self.accessible_rooms.append((cell, steps + 1))
|
504 |
+
self.list_of_all_currently_accessible_rooms(
|
505 |
+
cell, previous_room=current_room, steps=steps + 1
|
506 |
+
)
|
507 |
+
return self.accessible_rooms
|
508 |
+
|
509 |
+
def find_shortest_path(self, room_A, room_B, path=[]):
|
510 |
+
|
511 |
+
if room_A == room_B:
|
512 |
+
return path + [room_B]
|
513 |
+
adjacent_cells = [
|
514 |
+
cell
|
515 |
+
for cell in list(self.connected_cells[room_A].keys())
|
516 |
+
if cell not in path and cell != room_A
|
517 |
+
]
|
518 |
+
for cell in adjacent_cells:
|
519 |
+
res = self.find_shortest_path(cell, room_B, path=path + [room_A])
|
520 |
+
if res is not None:
|
521 |
+
return res
|
522 |
+
return None
|
523 |
+
|
524 |
+
def get_all_doors_on_path(self, room_A, room_B):
|
525 |
+
if room_A == room_B:
|
526 |
+
return []
|
527 |
+
path = self.find_shortest_path(room_A, room_B)
|
528 |
+
if path is None:
|
529 |
+
return []
|
530 |
+
return [
|
531 |
+
(path[i], path[i + 1])
|
532 |
+
for i in range(len(path) - 1)
|
533 |
+
if (path[i], path[i + 1]) in self.doors.keys()
|
534 |
+
and self.doors[(path[i], path[i + 1])][0] == "open"
|
535 |
+
]
|
536 |
+
|
537 |
+
def display_maze(self):
|
538 |
+
"""Display the maze using Matplotlib."""
|
539 |
+
fig, ax = plt.subplots(figsize=(self.M / 2, self.N / 2))
|
540 |
+
# Create a custom colormap with red for locked doors
|
541 |
+
# create cmap to show black for walls (1 value), white for open space (0 value), and red for locked doors (2 value)
|
542 |
+
cmap = plt.cm.colors.ListedColormap(["white", "black", "red", "blue", "green"])
|
543 |
+
ax.imshow(self.maze, cmap=cmap, interpolation="nearest")
|
544 |
+
ax.set_xticks([]), ax.set_yticks([])
|
545 |
+
plt.show()
|
546 |
+
|
547 |
+
def save_maze(self):
|
548 |
+
# create the directory if it doesn't exist
|
549 |
+
os.makedirs(
|
550 |
+
f"generated_data/maze_{self.N}_{self.M}_{self.N_locked_doors}"
|
551 |
+
f"_{self.generate_sub_problems}",
|
552 |
+
exist_ok=True,
|
553 |
+
)
|
554 |
+
|
555 |
+
filename = (
|
556 |
+
f"generated_data/maze_{self.N}_{self.M}_{self.N_locked_doors}"
|
557 |
+
f"_{self.generate_sub_problems}/{self.random_seeds['problem_generation']}.pkl"
|
558 |
+
)
|
559 |
+
data = {}
|
560 |
+
data["world_parameters"] = {
|
561 |
+
"N": self.N,
|
562 |
+
"M": self.M,
|
563 |
+
"N_keys": len(self.keys_locations),
|
564 |
+
"N_locked_doors": self.N_locked_doors,
|
565 |
+
"rescue_agent": self.rescue_agent,
|
566 |
+
"victim": self.victim,
|
567 |
+
"random_seeds": self.random_seeds,
|
568 |
+
}
|
569 |
+
|
570 |
+
data.update(
|
571 |
+
{
|
572 |
+
"start_room": self.start_room,
|
573 |
+
"end_room": self.end_room,
|
574 |
+
"standardized_problem_solution": self.standardized_problem_solution_backward,
|
575 |
+
"sub_maze_configurations": self.sub_maze_configurations, # if any key values are ndarray, convert to list
|
576 |
+
"connected_cells": self.connected_cells,
|
577 |
+
"room_name": self.room_name,
|
578 |
+
}
|
579 |
+
)
|
580 |
+
|
581 |
+
pickle.dump(data, open(filename, "wb"))
|
582 |
+
return filename, None
|
583 |
+
|
584 |
+
|
585 |
+
def single_run(N, M, N_locked_doors, display_maze=False, verbose=False):
|
586 |
+
try:
|
587 |
+
print(f"Starting run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors}")
|
588 |
+
succeeded = False
|
589 |
+
counter = 0
|
590 |
+
|
591 |
+
while not succeeded:
|
592 |
+
counter += 1
|
593 |
+
maze = MazeGenerator(
|
594 |
+
N=N,
|
595 |
+
M=M,
|
596 |
+
rescue_agent="Alex",
|
597 |
+
victim="Maggie",
|
598 |
+
max_big_loop_count=500,
|
599 |
+
max_retry_count=100,
|
600 |
+
N_locked_doors=N_locked_doors,
|
601 |
+
generate_sub_problems=True,
|
602 |
+
verbose=verbose,
|
603 |
+
)
|
604 |
+
maze.generate_maze_with_doors()
|
605 |
+
maze.generate_distributed_keys_rescue_positive_problem()
|
606 |
+
succeeded = maze.did_succeed
|
607 |
+
|
608 |
+
if counter > 100:
|
609 |
+
print(f"Failed to generate {N}, M: {M}, N_locked_doors: {N_locked_doors}")
|
610 |
+
break
|
611 |
+
|
612 |
+
if succeeded:
|
613 |
+
if display_maze:
|
614 |
+
maze.display_maze()
|
615 |
+
|
616 |
+
# Save the maze data
|
617 |
+
filename, maze_file = maze.save_maze()
|
618 |
+
|
619 |
+
if maze_file:
|
620 |
+
maze_id = os.path.splitext(os.path.basename(maze_file))[0]
|
621 |
+
maze_dir = os.path.dirname(maze_file)
|
622 |
+
plots_dir = os.path.join(maze_dir, "plots")
|
623 |
+
os.makedirs(plots_dir, exist_ok=True)
|
624 |
+
|
625 |
+
maze_loader = MazeLoader(maze_file, hide_coordinates=True)
|
626 |
+
plot_path = os.path.join(plots_dir, f"{maze_id}.png")
|
627 |
+
maze_loader.pretty_plot(save_path=plot_path)
|
628 |
+
print(f"Saved maze visualization to {plot_path}")
|
629 |
+
|
630 |
+
return (
|
631 |
+
f"run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} succeeded",
|
632 |
+
filename,
|
633 |
+
)
|
634 |
+
else:
|
635 |
+
return (
|
636 |
+
f"run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} maxed out retry count",
|
637 |
+
None,
|
638 |
+
)
|
639 |
+
|
640 |
+
except Exception as e:
|
641 |
+
print(traceback.print_exc())
|
642 |
+
raise Exception(
|
643 |
+
f"Run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} failed"
|
644 |
+
)
|
645 |
+
|
646 |
+
|
647 |
+
def run_maze_generation(NMs, num_instances_per_parameter_combination=1):
|
648 |
+
fs = []
|
649 |
+
generated_maze_files = []
|
650 |
+
with ThreadPoolExecutor(max_workers=60) as executor:
|
651 |
+
for i in range(num_instances_per_parameter_combination):
|
652 |
+
print(
|
653 |
+
f"Running instance {i+1} of {num_instances_per_parameter_combination}..."
|
654 |
+
)
|
655 |
+
for N, M, N_locked_doors in NMs:
|
656 |
+
fs.append(
|
657 |
+
executor.submit(
|
658 |
+
single_run,
|
659 |
+
N,
|
660 |
+
M,
|
661 |
+
N_locked_doors,
|
662 |
+
display_maze=False,
|
663 |
+
verbose=False,
|
664 |
+
)
|
665 |
+
)
|
666 |
+
|
667 |
+
for f in as_completed(fs):
|
668 |
+
if f.exception() is None:
|
669 |
+
res = f.result()
|
670 |
+
print(res[0])
|
671 |
+
if res[1] is not None:
|
672 |
+
generated_maze_files.append(res[1])
|
673 |
+
|
674 |
+
return generated_maze_files
|
675 |
+
|
676 |
+
|
677 |
+
if __name__ == "__main__":
|
678 |
+
|
679 |
+
NMs = [(j,j) for j in range(6, 22, 2)]
|
680 |
+
|
681 |
+
NMs = [(it[0], it[1], i) for it in NMs for i in range(9,11)]
|
682 |
+
print(NMs)
|
683 |
+
generated_maze_files = run_maze_generation(
|
684 |
+
NMs, num_instances_per_parameter_combination=1000
|
685 |
+
)
|
686 |
+
print(generated_maze_files)
|
687 |
+
# fix weird behavior you are seeing with 8,8,6 reduced key count to 1 for maze_8_8_6_0.5_0.0_True/745275.pkl
|
688 |
+
|
689 |
+
# cognetive load is constraints on key lock distributions
|
690 |
+
# can we introduce a "time pressure" on cognetive load
|
691 |
+
# starting with small problems and deeply understanding the behaviors
|
692 |
+
# constraint reduction behavior of the model - as we reduce the number of keys distributed
|
693 |
+
#
|