erdikent commited on
Commit
55ee048
·
verified ·
1 Parent(s): fc1aaaa

Upload 6 files

Browse files
FraudDetectionAgent.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sklearn.ensemble import IsolationForest
3
+ from smolagents import CodeAgent
4
+
5
+
6
+ class FraudDetectionAgent:
7
+ pass
8
+
9
+
10
+ CodeAgent = FraudDetectionAgent()
11
+
12
+
13
+ class TransactionModel:
14
+ def __init__(self, transaction_id: int, amount: float, timestamp: str, location_lat: float, location_long: float):
15
+ self.transaction_id = transaction_id
16
+ self.amount = amount
17
+ self.timestamp = timestamp
18
+ self.location_lat = location_lat
19
+ self.location_long = location_long
20
+
21
+ def to_dict(self):
22
+ return {
23
+ "transaction_id": self.transaction_id,
24
+ "amount": self.amount,
25
+ "timestamp": self.timestamp,
26
+ "location_lat": self.location_lat,
27
+ "location_long": self.location_long
28
+ }
29
+
30
+
31
+ class FraudResult:
32
+ def __init__(self, transaction_id: int, amount: float, timestamp: str, anomaly_score: int):
33
+ self.transaction_id = transaction_id
34
+ self.amount = amount
35
+ self.timestamp = timestamp
36
+ self.anomaly_score = anomaly_score
37
+
38
+ def to_dict(self):
39
+ return {
40
+ "transaction_id": self.transaction_id,
41
+ "amount": self.amount,
42
+ "timestamp": self.timestamp,
43
+ "anomaly_score": self.anomaly_score
44
+ }
45
+
46
+
47
+ class FraudDetectionAgent(FraudDetectionAgent):
48
+ def __init__(self, data_path: str):
49
+ super().__init__()
50
+ self.data_path = data_path
51
+ self.df = None
52
+ self.X = None
53
+ self.model = IsolationForest(contamination=0.01, random_state=42)
54
+
55
+ def load_data(self):
56
+ self.df = pd.read_csv(self.data_path)
57
+ print(f"Loaded {len(self.df)} transactions.")
58
+
59
+ def preprocess(self):
60
+ self.df['transaction_hour'] = pd.to_datetime(self.df['timestamp']).dt.hour
61
+ features = ['amount', 'transaction_hour', 'location_lat', 'location_long']
62
+ self.df = self.df.dropna(subset=features)
63
+ self.X = self.df[features]
64
+
65
+ def detect_fraud(self):
66
+ self.df['anomaly_score'] = self.model.fit_predict(self.X)
67
+ frauds = self.df[self.df['anomaly_score'] == -1]
68
+ print(f"Detected {len(frauds)} potential fraudulent transactions.")
69
+ return [
70
+ FraudResult(
71
+ row['transaction_id'],
72
+ row['amount'],
73
+ row['timestamp'],
74
+ row['anomaly_score']
75
+ ).to_dict()
76
+ for _, row in frauds.iterrows()
77
+ ]
78
+
79
+ def run(self):
80
+ self.load_data()
81
+ self.preprocess()
82
+ return self.detect_fraud()
83
+
84
+
85
+ if __name__ == "__main__":
86
+ agent = FraudDetectionAgent(data_path="transactions.csv")
87
+ agent.run()
88
+ print("\nFraud detection completed.")
89
+
flagged_transactions.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transaction_id,amount,timestamp,anomaly_score
2
+ 7,8900.0,2023-05-01 01:45:00,-1
index.html ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <title>Fraud Detection Chatbot</title>
6
+ <style>
7
+ body {
8
+ font-family: 'Segoe UI', sans-serif;
9
+ margin: 0;
10
+ padding: 0;
11
+ background: #f1f2f7;
12
+ display: flex;
13
+ flex-direction: column;
14
+ align-items: center;
15
+ height: 100vh;
16
+ }
17
+
18
+ h2 {
19
+ margin: 20px;
20
+ color: #333;
21
+ }
22
+
23
+ #chat-box {
24
+ width: 90%;
25
+ max-width: 600px;
26
+ background: white;
27
+ border-radius: 10px;
28
+ box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
29
+ display: flex;
30
+ flex-direction: column;
31
+ overflow: hidden;
32
+ flex-grow: 1;
33
+ }
34
+
35
+ #messages {
36
+ flex: 1;
37
+ overflow-y: auto;
38
+ padding: 20px;
39
+ }
40
+
41
+ .msg {
42
+ margin-bottom: 10px;
43
+ padding: 10px 14px;
44
+ border-radius: 20px;
45
+ max-width: 80%;
46
+ word-wrap: break-word;
47
+ line-height: 1.4;
48
+ }
49
+
50
+ .bot {
51
+ background-color: #e9ecef;
52
+ align-self: flex-start;
53
+ color: #333;
54
+ }
55
+
56
+ .user {
57
+ background-color: #0d6efd;
58
+ color: white;
59
+ align-self: flex-end;
60
+ }
61
+
62
+ #input-bar {
63
+ display: flex;
64
+ padding: 10px;
65
+ border-top: 1px solid #ddd;
66
+ background: #f9f9f9;
67
+ }
68
+
69
+ #input {
70
+ flex: 1;
71
+ padding: 10px;
72
+ border: 1px solid #ccc;
73
+ border-radius: 20px;
74
+ outline: none;
75
+ margin-right: 10px;
76
+ }
77
+
78
+ #send-btn, #upload-btn {
79
+ background-color: #0d6efd;
80
+ color: white;
81
+ border: none;
82
+ padding: 10px 14px;
83
+ border-radius: 20px;
84
+ cursor: pointer;
85
+ }
86
+
87
+ #fileInput {
88
+ margin: 10px 0;
89
+ }
90
+
91
+ @media (max-width: 600px) {
92
+ #chat-box {
93
+ width: 95%;
94
+ }
95
+ }
96
+ </style>
97
+ </head>
98
+ <body>
99
+ <h2>💬 Fraud Detection Chatbot</h2>
100
+
101
+ <div id="chat-box">
102
+ <div id="messages"></div>
103
+
104
+ <div style="padding: 10px; text-align: center;">
105
+ <input type="file" id="fileInput">
106
+ <button id="upload-btn" onclick="uploadFile()">Upload CSV</button>
107
+ </div>
108
+
109
+ <div id="input-bar">
110
+ <input id="input" type="text" placeholder="Type your message...">
111
+ <button id="send-btn" onclick="sendMessage()">Send</button>
112
+ </div>
113
+ </div>
114
+
115
+ <script>
116
+ const messages = document.getElementById("messages");
117
+
118
+ function addMessage(text, sender) {
119
+ const msg = document.createElement("div");
120
+ msg.className = `msg ${sender}`;
121
+ msg.textContent = text;
122
+ messages.appendChild(msg);
123
+ messages.scrollTop = messages.scrollHeight;
124
+ }
125
+
126
+ async function sendMessage() {
127
+ const input = document.getElementById("input");
128
+ const text = input.value.trim();
129
+ if (!text) return;
130
+
131
+ addMessage(text, "user");
132
+ input.value = "";
133
+
134
+ const res = await fetch("http://127.0.0.1:8000/chat/", {
135
+ method: "POST",
136
+ headers: { "Content-Type": "application/json" },
137
+ body: JSON.stringify({ message: text })
138
+ });
139
+
140
+ const data = await res.json();
141
+ addMessage(data.response, "bot");
142
+ }
143
+
144
+ async function uploadFile() {
145
+ const file = document.getElementById("fileInput").files[0];
146
+ if (!file) {
147
+ alert("Please select a CSV file first.");
148
+ return;
149
+ }
150
+
151
+ const formData = new FormData();
152
+ formData.append("file", file);
153
+
154
+ addMessage("🔄 Analyzing your file...", "bot");
155
+
156
+ const res = await fetch("http://127.0.0.1:8000/upload/", {
157
+ method: "POST",
158
+ body: formData
159
+ });
160
+
161
+ const data = await res.json();
162
+ addMessage(data.response, "bot");
163
+ }
164
+ async function uploadFile() {
165
+ const file = document.getElementById("fileInput").files[0];
166
+ if (!file) {
167
+ alert("Please select a CSV file first.");
168
+ return;
169
+ }
170
+
171
+ const formData = new FormData();
172
+ formData.append("file", file);
173
+
174
+ addMessage("🔄 Analyzing your file...", "bot");
175
+
176
+ try {
177
+ const res = await fetch("http://127.0.0.1:8000/upload/", {
178
+ method: "POST",
179
+ body: formData
180
+ });
181
+
182
+ if (!res.ok) {
183
+ throw new Error(`Server error: ${res.status}`);
184
+ }
185
+
186
+ const data = await res.json();
187
+ addMessage(data.response || "No response from server.", "bot");
188
+ } catch (err) {
189
+ addMessage(`❌ Error: ${err.message}`, "bot");
190
+ }
191
+ }
192
+ </script>
193
+ </body>
194
+ </html>
195
+
main.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from fastapi import FastAPI, UploadFile, File
4
+
5
+ from FraudDetectionAgent import CodeAgent
6
+
7
+ app = FastAPI()
8
+
9
+
10
+ @app.post("/detect-fraud/")
11
+ async def detect_fraud(file: UploadFile = File(...)):
12
+ contents = await file.read()
13
+ temp_path = "temp_transactions.csv"
14
+
15
+ with open(temp_path, "wb") as f:
16
+ f.write(contents)
17
+
18
+ agent = CodeAgent(data_path=temp_path)
19
+ frauds = agent.run()
20
+
21
+ os.remove(temp_path)
22
+ return {"flagged_transactions": frauds}
23
+
24
+
25
+ from fastapi import FastAPI, UploadFile, File
26
+ from pydantic import BaseModel
27
+ from FraudDetectionAgent import FraudDetectionAgent
28
+ import pandas as pd
29
+ import os
30
+
31
+ app = FastAPI()
32
+
33
+
34
+ # Basic chat message schema
35
+ class ChatMessage(BaseModel):
36
+ message: str
37
+
38
+
39
+ @app.post("/chat/")
40
+ def chat_with_agent(msg: ChatMessage):
41
+ user_input = msg.message.lower()
42
+
43
+ if "fraud" in user_input:
44
+ return {"response": "You can upload a CSV file at /detect-fraud/ to check for fraudulent transactions."}
45
+ elif "hello" in user_input or "hi" in user_input:
46
+ return {"response": "Hello! I can help you detect transaction frauds. Ask me how."}
47
+ else:
48
+ return {"response": "I'm still learning! Try asking about fraud detection or uploading a CSV."}
49
+
50
+
51
+ @app.post("/detect-fraud/")
52
+ async def detect_fraud(file: UploadFile = File(...)):
53
+ contents = await file.read()
54
+ temp_path = "temp_transactions.csv"
55
+ with open(temp_path, "wb") as f:
56
+ f.write(contents)
57
+
58
+ agent = FraudDetectionAgent(data_path=temp_path)
59
+ frauds = agent.run()
60
+ os.remove(temp_path)
61
+ return {"flagged_transactions": [f.to_dict() for f in frauds]}
62
+
63
+
64
+ from fastapi import FastAPI, UploadFile, File
65
+ from fastapi.middleware.cors import CORSMiddleware
66
+ from pydantic import BaseModel
67
+ from FraudDetectionAgent import CodeAgent
68
+ import pandas as pd
69
+ import os
70
+
71
+ app = FastAPI()
72
+
73
+ # Enable CORS for browser frontend
74
+ app.add_middleware(
75
+ CORSMiddleware,
76
+ allow_origins=["*"],
77
+ allow_credentials=True,
78
+ allow_methods=["*"],
79
+ allow_headers=["*"],
80
+ )
81
+
82
+
83
+ class ChatMessage(BaseModel):
84
+ message: str
85
+
86
+
87
+ @app.post("/chat/")
88
+ def chat_with_agent(msg: ChatMessage):
89
+ text = msg.message.lower()
90
+ if "fraud" in text:
91
+ return {"response": "You can upload a CSV of transactions below and I'll tell you which ones look suspicious."}
92
+ elif "hello" in text:
93
+ return {"response": "Hi there! I'm your fraud detection assistant. Upload a CSV to get started."}
94
+ else:
95
+ return {
96
+ "response": "I'm here to help with transaction fraud detection. Try asking about fraud or upload your data."}
97
+
98
+
99
+ @app.post("/upload/")
100
+ async def upload_file(file: UploadFile = File(...)):
101
+ try:
102
+ temp_file = "temp_data.csv"
103
+ with open(temp_file, "wb") as f:
104
+ f.write(await file.read())
105
+
106
+ agent = FraudDetectionAgent(data_path=temp_file)
107
+ frauds = agent.run()
108
+ os.remove(temp_file)
109
+
110
+ if not frauds:
111
+ return {"response": "✅ No fraud detected!"}
112
+
113
+ summary = "\n".join([
114
+ f"- ID: {f.get('transaction_id')}, Amount: ${f.get('amount')}"
115
+ for f in frauds[:5]
116
+ ])
117
+ return {"response": f"⚠️ Detected {len(frauds)} suspicious transactions:\n{summary}"}
118
+
119
+ except Exception as e:
120
+ return {"response": f"❌ Error processing file: {str(e)}"}
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ pip~=25.1.1
2
+ pillow~=11.2.1
3
+ filelock~=3.18.0
4
+ pandas~=2.2.3
5
+ fastapi~=0.115.12
6
+ pydantic~=2.11.4
7
+ scikit-learn~=1.6.1
8
+ smolagents~=1.16.0
9
+ uvicorn
transactions.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ transaction_id,amount,timestamp,location_lat,location_long
2
+ 1,120.50,2023-05-01 08:45:00,37.7749,-122.4194
3
+ 2,9999.99,2023-05-01 02:13:00,40.7128,-74.0060
4
+ 3,10.00,2023-05-01 14:32:00,37.7749,-122.4194
5
+ 4,5000.00,2023-05-01 03:00:00,35.6895,139.6917
6
+ 5,75.20,2023-05-01 17:15:00,34.0522,-118.2437
7
+ 6,250.00,2023-05-01 13:22:00,37.7749,-122.4194
8
+ 7,8900.00,2023-05-01 01:45:00,55.7558,37.6173
9
+ 8,8.99,2023-05-01 11:15:00,37.7749,-122.4194