import pandas as pd from sklearn.ensemble import IsolationForest from smolagents import CodeAgent class FraudDetectionAgent: pass CodeAgent = FraudDetectionAgent() class TransactionModel: def __init__(self, transaction_id: int, amount: float, timestamp: str, location_lat: float, location_long: float): self.transaction_id = transaction_id self.amount = amount self.timestamp = timestamp self.location_lat = location_lat self.location_long = location_long def to_dict(self): return { "transaction_id": self.transaction_id, "amount": self.amount, "timestamp": self.timestamp, "location_lat": self.location_lat, "location_long": self.location_long } class FraudResult: def __init__(self, transaction_id: int, amount: float, timestamp: str, anomaly_score: int): self.transaction_id = transaction_id self.amount = amount self.timestamp = timestamp self.anomaly_score = anomaly_score def to_dict(self): return { "transaction_id": self.transaction_id, "amount": self.amount, "timestamp": self.timestamp, "anomaly_score": self.anomaly_score } class FraudDetectionAgent(FraudDetectionAgent): def __init__(self, data_path: str): super().__init__() self.data_path = data_path self.df = None self.X = None self.model = IsolationForest(contamination=0.01, random_state=42) def load_data(self): self.df = pd.read_csv(self.data_path) print(f"Loaded {len(self.df)} transactions.") def preprocess(self): self.df['transaction_hour'] = pd.to_datetime(self.df['timestamp']).dt.hour features = ['amount', 'transaction_hour', 'location_lat', 'location_long'] self.df = self.df.dropna(subset=features) self.X = self.df[features] def detect_fraud(self): self.df['anomaly_score'] = self.model.fit_predict(self.X) frauds = self.df[self.df['anomaly_score'] == -1] print(f"Detected {len(frauds)} potential fraudulent transactions.") return [ FraudResult( row['transaction_id'], row['amount'], row['timestamp'], row['anomaly_score'] ).to_dict() for _, row in frauds.iterrows() ] def run(self): self.load_data() self.preprocess() return self.detect_fraud() if __name__ == "__main__": agent = FraudDetectionAgent(data_path="transactions.csv") agent.run() print("\nFraud detection completed.")