File size: 1,152 Bytes
0c62a9a
 
c9bf3de
 
0c62a9a
 
c9bf3de
0c62a9a
c9bf3de
0c62a9a
 
 
 
c9bf3de
0c62a9a
c9bf3de
 
 
0c62a9a
 
 
 
 
 
 
 
857e8f3
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
language:
- it
language_details: it-IT
license: cc-by-nc-sa-4.0
task_ids:
- sentiment-analysis
task_categories:
- text-classification
configs:
- config_name: default
  data_files:
  - split: train
    path: train.jsonl
  - split: test
    path: test.jsonl
size_categories:
- 1K<n<10K
---

SENTIPOLC 2016 dataset

The SENTIPOLC 2016 dataset contains 9410 tweets annotated for subjectivity, overall and literal polarity, and irony.
The dataset has been created and used in the context of the SENTIPOLC 2016 task (http://www.di.unito.it/~tutreeb/sentipolc-evalita16/index.html), organized as part of the EVALITA 2016 evaluation campaign.

Original files available here:
https://live.european-language-grid.eu/catalogue/corpus/7479/download/

If you find this dataset useful please cite:
```
@inproceedings{barbieri2016overview,
  title={Overview of the evalita 2016 sentiment polarity classification task},
  author={Barbieri, Francesco and Basile, Valerio and Croce, Danilo and Nissim, Malvina and Novielli, Nicole and Patti, Viviana and others},
  booktitle={CEUR Workshop Proceedings},
  volume={1749},
  year={2016},
  organization={CEUR-WS}
}
```