Datasets:

Modalities:
Tabular
Text
Formats:
csv
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
farrell236 commited on
Commit
c80335a
·
verified ·
1 Parent(s): 3149fff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -1
README.md CHANGED
@@ -1,5 +1,9 @@
1
  ---
2
- license: cc-by-3.0
 
 
 
 
3
  ---
4
 
5
  # The Cancer Genome Atlas Ovarian Cancer for Ascites Segmentation (TCGA-OV-AS)
@@ -25,3 +29,18 @@ Convert the DICOMs to NIFTI format using `dcm2niix` and `GNU parallel`.
25
 
26
  Patient clinical data can be downloaded from TCIA: [TCGA-OV Clinical Data.zip
27
  ](https://wiki.cancerimagingarchive.net/download/attachments/7569497/TCGA-OV%20Clinical%20Data%201516.zip?version=1&modificationDate=1452105785692&api=v2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: "TCGA-OV-AS Dataset"
3
+ license: cc-by-nc-sa-4.0
4
+ configs:
5
+ - config_name: metadata
6
+ data_files: "metadata.csv"
7
  ---
8
 
9
  # The Cancer Genome Atlas Ovarian Cancer for Ascites Segmentation (TCGA-OV-AS)
 
29
 
30
  Patient clinical data can be downloaded from TCIA: [TCGA-OV Clinical Data.zip
31
  ](https://wiki.cancerimagingarchive.net/download/attachments/7569497/TCGA-OV%20Clinical%20Data%201516.zip?version=1&modificationDate=1452105785692&api=v2)
32
+
33
+ ## Citation
34
+
35
+ If you find this repository helpful in your research, please consider citing [our paper](https://doi.org/10.1148/ryai.230601):
36
+
37
+ ```text
38
+ @article{hou2024deep,
39
+ title={Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification},
40
+ author={Hou, Benjamin and Lee, Sung-Won and Lee, Jung-Min and Koh, Christopher and Xiao, Jing and Pickhardt, Perry J. and Summers, Ronald M.}
41
+ journal={Radiology: Artificial Intelligence},
42
+ pages={e230601},
43
+ year={2024},
44
+ publisher={Radiological Society of North America}
45
+ }
46
+ ```