tombagby commited on
Commit
7271056
·
1 Parent(s): ce7adc1

Add dataset script.

Browse files
Files changed (1) hide show
  1. svq.py +199 -0
svq.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SVQ data reading."""
2
+
3
+ import io
4
+ import os
5
+ from array_record.python import array_record_module as array_record
6
+ import datasets
7
+ import librosa
8
+ import numpy as np
9
+ import pandas as pd
10
+ from scipy.io import wavfile
11
+
12
+
13
+ def read_wav_bytes_to_normalized_float(
14
+ wav_bytes, resample_hz: float | None = None
15
+ ):
16
+ """Reads WAV bytes object and returns normalized float numpy array.
17
+
18
+ Args:
19
+ wav_bytes: WAV bytes object.
20
+ resample_hz: Optional resample rate.
21
+ Returns:
22
+ (waveform, original sample rate before any resample)
23
+ """
24
+ rate, data = wavfile.read(io.BytesIO(wav_bytes))
25
+
26
+ if data.ndim > 1 and data.shape[1] > 1:
27
+ raise ValueError("Only mono WAV files are supported.")
28
+
29
+ # Convert data to float and normalize
30
+ if data.dtype == np.int16:
31
+ x = data.astype(np.float32) / np.iinfo(np.int16).max
32
+ elif data.dtype == np.int32:
33
+ x = data.astype(np.float32) / np.iinfo(np.int32).max
34
+ elif data.dtype == np.float32:
35
+ x = data
36
+ else:
37
+ raise TypeError(f"Unsupported data type: {data.dtype}")
38
+ if resample_hz is not None and resample_hz != rate:
39
+ x = librosa.resample(x, orig_sr=rate, target_sr=resample_hz)
40
+ return x, rate
41
+
42
+
43
+ def read_utt_index(basepath):
44
+ """Read utt_index.jsonl file to a dict of {uttid: path:index}."""
45
+ df = pd.read_json(os.path.join(basepath, "utt_index.jsonl"), lines=True)
46
+ return dict(zip(df["utt_id"], df["index"]))
47
+
48
+
49
+ class UttLookup:
50
+ """Lookup utterances by utt_id with optional resampling.
51
+
52
+ Usage:
53
+ utt_lookup = UttLookup(basepath)
54
+ waveform = utt_lookup(utt_id)
55
+ """
56
+
57
+ def __init__(self, basepath, resample_hz: float | None = None):
58
+ self.basepath = basepath
59
+ self.resample_hz = resample_hz
60
+ self.utt_id_to_path_idx = read_utt_index(basepath)
61
+ self.readers = {}
62
+ self.orig_sample_rate_ = None
63
+
64
+ @property
65
+ def orig_sample_rate(self):
66
+ if self.orig_sample_rate_ is None:
67
+ utt_id = next(iter(self.utt_id_to_path_idx))
68
+ self(utt_id)
69
+ return self.orig_sample_rate_
70
+
71
+ def __call__(self, utt_id: str):
72
+ path, idx = self.utt_id_to_path_idx[utt_id].split(":")
73
+ if path not in self.readers:
74
+ array_record_path = os.path.join(self.basepath, f"{path}.array_record")
75
+ self.readers[path] = array_record.ArrayRecordReader(
76
+ array_record_path
77
+ )
78
+ b = self.readers[path].read([int(idx)])
79
+ waveform, sample_rate = read_wav_bytes_to_normalized_float(
80
+ b[0], resample_hz=self.resample_hz
81
+ )
82
+ if self.orig_sample_rate_ is None:
83
+ self.orig_sample_rate_ = sample_rate
84
+ if sample_rate != self.orig_sample_rate_:
85
+ raise ValueError(
86
+ f"Sample rate mismatch: {sample_rate} != {self.orig_sample_rate_}"
87
+ )
88
+ return waveform
89
+
90
+
91
+ def generate_examples(filepath, resample_hz: float | None = None):
92
+ """Generate examples from a jsonl task file."""
93
+ basepath = os.path.dirname(filepath)
94
+ utt_lookup = UttLookup(basepath, resample_hz=resample_hz)
95
+ task = pd.read_json(filepath, lines=True)
96
+ for ex in task.to_dict(orient="records"):
97
+ utt = utt_lookup(ex["utt_id"])
98
+ ex["waveform"] = utt
99
+ yield ex
100
+
101
+
102
+ _CITATION = """\
103
+ @InProceedings{mseb,
104
+ title = {Massive Sound Embedding Benchmark (MSEB)},
105
+ author={Georg Heigold, Ehsan Variani, Tom Bagby, Ji Ma, Cyril Allauzen, Shankar Kumar, Michael Riley}
106
+ year={2025}
107
+ }
108
+ """
109
+
110
+ _NUM_SHARDS = 128 # Internal sharding for parallel data loading.
111
+
112
+
113
+ class SvqDataset(datasets.GeneratorBasedBuilder):
114
+ """SVQ dataset."""
115
+
116
+ VERSION = datasets.Version("1.1.0")
117
+
118
+ BUILDER_CONFIGS = [
119
+ datasets.BuilderConfig(name=name, description=desc)
120
+ for name, desc in [
121
+ ("span_reasoning_in_lang", "Span reasoning in language."),
122
+ ("span_retrieval_in_lang", "Span retrieval in language."),
123
+ ("span_reasoning_cross_lang", "Span reasoning cross language."),
124
+ ("span_retrieval_cross_lang", "Span retrieval cross language."),
125
+ ("passage_retrieval_in_lang", "Passage retrieval in language."),
126
+ ("passage_retrieval_cross_lang", "Passage retrieval cross language."),
127
+ ("document_retrieval_in_lang", "Document retrieval in language."),
128
+ (
129
+ "document_retrieval_cross_lang",
130
+ "Document retrieval cross language.",
131
+ ),
132
+ ]
133
+ ]
134
+
135
+ DEFAULT_WRITER_BATCH_SIZE = 64
136
+
137
+ def _info(self):
138
+ task = self.config.name
139
+ features = {
140
+ "utt_id": datasets.Value("string"),
141
+ "waveform": datasets.Sequence(datasets.Value("float32")),
142
+ "text": datasets.Value("string"),
143
+ "locale": datasets.Value("string"),
144
+ "environment": datasets.Value("string"),
145
+ "speaker_id": datasets.Value("string"),
146
+ "speaker_age": datasets.Value("int32"),
147
+ "speaker_gender": datasets.Value("string"),
148
+ "page_id": datasets.Value("string"),
149
+ "page_title": datasets.Value("string"),
150
+ "passage_id": datasets.Value("string"),
151
+ "passage_text": datasets.Value("string"),
152
+ }
153
+ if "span" in task:
154
+ features["span"] = datasets.Value("string")
155
+ return datasets.DatasetInfo(
156
+ description=(
157
+ "Simple Voice Queries (SVQ) dataset, Task: span reasoning in"
158
+ " language."
159
+ ),
160
+ features=datasets.Features(**features),
161
+ homepage="https://huggingface.co/datasets/google/svq",
162
+ license="Apache 2.0",
163
+ citation=_CITATION,
164
+ )
165
+
166
+ def _split_generators(self, dl_manager):
167
+ basepath = os.getcwd()
168
+ task = self.config.name
169
+ return [
170
+ datasets.SplitGenerator(
171
+ name="eval",
172
+ gen_kwargs={
173
+ "filepath": os.path.join(
174
+ basepath, f"{task}.jsonl"
175
+ ),
176
+ "shards": list(range(_NUM_SHARDS)),
177
+ "resample_hz": 16000,
178
+ "task_name": task,
179
+ },
180
+ ),
181
+ ]
182
+
183
+ def _generate_examples(
184
+ self, filepath=None, shards=None, resample_hz=None, task_name=None
185
+ ):
186
+ basepath = os.path.dirname(filepath)
187
+ utt_lookup = UttLookup(basepath, resample_hz=resample_hz)
188
+ task = pd.read_json(filepath, lines=True)
189
+ task = np.array_split(task, _NUM_SHARDS)
190
+ task_shards = [task[idx].to_dict(orient="records") for idx in shards]
191
+ del task
192
+ for shard in task_shards:
193
+ for ex in shard:
194
+ utt = utt_lookup(ex["utt_id"])
195
+ ex["waveform"] = utt
196
+ del ex["task"]
197
+ if "span" not in task_name:
198
+ del ex["span"]
199
+ yield "_".join([ex["utt_id"], ex["passage_id"]]), ex