|
from typing import Dict |
|
|
|
import datasets as ds |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@inproceedings{, |
|
author = "小谷通隆 and 柴田知秀 and 中田貴之 and 黒橋禎夫", |
|
title = "日本語Textual Entailmentのデータ構築と自動獲得した類義表現に基づく推論関係の認識", |
|
booktitle = "言語処理学会第14回年次大会", |
|
year = "2008", |
|
url = "https://nlp.ist.i.kyoto-u.ac.jp/?Textual+Entailment+%E8%A9%95%E4%BE%A1%E3%83%87%E3%83%BC%E3%82%BF", |
|
pages = "1140-1143" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
|
|
""" |
|
|
|
_HOMEPAGE = "https://nlp.ist.i.kyoto-u.ac.jp/?Textual+Entailment+%E8%A9%95%E4%BE%A1%E3%83%87%E3%83%BC%E3%82%BF" |
|
|
|
_LICENSE = "unknown" |
|
|
|
_URL = "http://nlp.ist.i.kyoto-u.ac.jp/DLcounter/lime.cgi?down=http://nlp.ist.i.kyoto-u.ac.jp/nl-resource/rte/entail_evaluation_set.txt&name=entail_evaluation_set.txt" |
|
|
|
|
|
class KUTEDataset(ds.GeneratorBasedBuilder): |
|
VERSION = ds.Version("1.0.0") |
|
DEFAULT_CONFIG_NAME = "3way" |
|
|
|
BUILDER_CONFIGS = [ |
|
ds.BuilderConfig( |
|
name="original", |
|
version=VERSION, |
|
description="hoge", |
|
), |
|
ds.BuilderConfig( |
|
name="3way", |
|
version=VERSION, |
|
description="fuga", |
|
), |
|
ds.BuilderConfig( |
|
name="3way-strict", |
|
version=VERSION, |
|
description="fuga", |
|
), |
|
ds.BuilderConfig( |
|
name="2way", |
|
version=VERSION, |
|
description="fuga", |
|
), |
|
] |
|
|
|
def _info(self) -> ds.DatasetInfo: |
|
if self.config.name == "original": |
|
labels = ds.ClassLabel(names=["◎", "○", "△", "×"]) |
|
elif self.config.name in ["3way", "3way-strict"]: |
|
labels = ds.ClassLabel(names=["entailment", "neutral", "contradiction"]) |
|
elif self.config.name == "2way": |
|
labels = ds.ClassLabel(names=["entailment", "non-entailment"]) |
|
|
|
features = ds.Features( |
|
{ |
|
"id": ds.Value("int32"), |
|
"premise": ds.Value("string"), |
|
"hypothesis": ds.Value("string"), |
|
"label": labels, |
|
"category_subcategory": ds.Value("string"), |
|
} |
|
) |
|
return ds.DatasetInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager: ds.DownloadManager): |
|
data_path = dl_manager.download_and_extract(_URL) |
|
df: pd.DataFrame = pd.read_table(data_path, sep=" ", header=None) |
|
df.columns = ["id", "category_subcategory", "label", "premise", "hypothesis"] |
|
|
|
if self.config.name == "original": |
|
mapping = None |
|
elif self.config.name == "3way": |
|
mapping = { |
|
"◎": "entailment", |
|
"○": "entailment", |
|
"△": "neutral", |
|
"×": "contradiction", |
|
} |
|
elif self.config.name == "3way-strict": |
|
mapping = { |
|
"◎": "entailment", |
|
"○": None, |
|
"△": "neutral", |
|
"×": "contradiction", |
|
} |
|
elif self.config.name == "2way": |
|
mapping = { |
|
"◎": "entailment", |
|
"○": "entailment", |
|
"△": "non-entailment", |
|
"×": "non-entailment", |
|
} |
|
|
|
return [ |
|
ds.SplitGenerator( |
|
name=ds.Split.TEST, |
|
gen_kwargs={"df": df, "mapping": mapping}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, df: pd.DataFrame, mapping: Dict[str, str] = None): |
|
data = [] |
|
for row in df.to_dict("records"): |
|
if mapping is not None: |
|
row["label"] = mapping[row["label"]] |
|
if row["label"] is None: |
|
continue |
|
data.append(row) |
|
|
|
for i, row in enumerate(data): |
|
yield i, row |
|
|