Datasets:
Tasks:
Visual Question Answering
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
License:
from dotenv import load_dotenv | |
load_dotenv() | |
from dataset_utils import * | |
import argparse | |
''' | |
This is a script to build (or expand) the PopVQA dataset. | |
Before running this script, make sure your directory contains the following: | |
1. A CSV file with the base dataframe containing the columns 's_uri' (from wikidata) and 'type' (to match against the relation templates). | |
2. a dir named 'relation_templates' containing CSV files with the relation templates for each type. The templates are triplets 'uri' - 'relation' - 'template'. | |
See the existing files for reference. | |
Run the script with the following command: | |
python build_dataset.py --base-df <path_to_base_df> --start <start_step> --end <end_step> | |
''' | |
def main(args): | |
dir_name, file_name = os.path.split(args.base_df) | |
base_name, _ = os.path.splitext(file_name) | |
base_df = pd.read_csv(args.base_df).drop_duplicates('s_uri') | |
assert 'type' in base_df.columns, "The base dataframe must contain a 'type' column." | |
types = base_df['type'].unique() | |
for entity_type in base_df['type'].unique(): | |
template_path = os.path.join(dir_name, "relation_templates", f"relation_templates_{entity_type}.csv") | |
assert os.path.isfile(template_path), f"Missing relation template for type '{entity_type}' at: {template_path}" | |
all_question_dfs = [] | |
for entity_type in types: | |
type_df = base_df[base_df['type'] == entity_type].copy() | |
type_dir = os.path.join(dir_name, entity_type) | |
os.makedirs(type_dir, exist_ok=True) | |
template_path = os.path.join(dir_name, "relation_templates", f"relation_templates_{entity_type}.csv") | |
templates = pd.read_csv(template_path) | |
print(f"Processing type: {entity_type}") | |
if args.start <= 0: | |
subject_to_relation = get_all_properties(type_df) | |
subject_to_relation = subject_to_relation[subject_to_relation['r_uri'].isin(templates['uri'])] | |
subject_to_relation.to_csv(os.path.join(type_dir, f"{base_name}_subject_to_relation.csv"), index=False) | |
if args.start <= 1 and args.end >= 1: | |
if args.start == 1: | |
subject_to_relation = pd.read_csv(os.path.join(type_dir, f"{base_name}_subject_to_relation.csv")) | |
aliases = get_aliases(subject_to_relation) | |
aliases.to_csv(os.path.join(type_dir, f"{base_name}_all_aliases.csv"), index=False) | |
if args.start <= 2 and args.end >= 2: | |
if args.start == 2: | |
subject_to_relation = pd.read_csv(os.path.join(type_dir, f"{base_name}_subject_to_relation.csv")) | |
aliases = pd.read_csv(os.path.join(type_dir, f"{base_name}_all_aliases.csv")) | |
a_types = attribute_type(subject_to_relation) | |
a_types.to_csv(os.path.join(type_dir, f"{base_name}_complete_attribute_types.csv"), index=False) | |
if args.start <= 3 and args.end >= 3: | |
if args.start == 3: | |
subject_to_relation = pd.read_csv(os.path.join(type_dir, f"{base_name}_subject_to_relation.csv")) | |
aliases = pd.read_csv(os.path.join(type_dir, f"{base_name}_all_aliases.csv")) | |
a_types = pd.read_csv(os.path.join(type_dir, f"{base_name}_complete_attribute_types.csv")) | |
triplets = aggregate_triplets(type_df, aliases, subject_to_relation, a_types, add_unesco=False) | |
triplets.to_csv(os.path.join(type_dir, f"{base_name}_question_triplets.csv"), index=False) | |
if args.start <= 4 and args.end >= 4: | |
if args.start == 4: | |
triplets = pd.read_csv(os.path.join(type_dir, f"{base_name}_question_triplets.csv")) | |
triplets = build_prompts(type_df, triplets, templates) | |
triplets['type'] = entity_type | |
triplets.to_csv(os.path.join(type_dir, f"{base_name}_questions.csv"), index=False) | |
all_question_dfs.append(triplets) | |
# Combine all question files and write to the top-level directory | |
if all_question_dfs: | |
combined_df = pd.concat(all_question_dfs, ignore_index=True) | |
combined_df.to_csv(os.path.join(dir_name, f"{base_name}_all_questions.csv"), index=False) | |
print(f"Combined questions file saved to {os.path.join(dir_name, f'{base_name}_all_questions.csv')}") | |
def get_exp_parser(): | |
parser = argparse.ArgumentParser(add_help=False) | |
parser.add_argument('--base-df', type=str) | |
parser.add_argument('--start', type=int, default=0, help="Start step for building the dataset.") | |
parser.add_argument('--end', type=int, default=4, help="End step for building the dataset.") | |
return parser | |
if __name__ == "__main__": | |
parser = get_exp_parser() | |
args = parser.parse_args() | |
main(args) |