import os import pandas as pd import numpy as np from ast import literal_eval from SPARQLWrapper import SPARQLWrapper, JSON from tqdm import tqdm from urllib.parse import urlparse import requests import re from ast import literal_eval from PIL import Image import math from tqdm import tqdm tqdm.pandas() from dotenv import load_dotenv load_dotenv() DATA_DIR = os.environ['DATA_DIR'] replacements = {"celebs":"the subject of this image", "brands":"the brand in this image", "landmarks":"the place in this image", "paintings":"the painting in this image", } def best_obj_type(obj_types): if type(obj_types) == str: obj_types = literal_eval(obj_types) prioritized_obj_types = ["city", "capital city", 'metropolis', 'country', 'occupation', 'language', 'type of sport', 'music genre'] # 'cinematic technique', 'team sport' for ot in prioritized_obj_types: if ot in obj_types: return ot for ot_ in obj_types: if "university" in ot_: return "university" if "city" in ot_: return "city" return obj_types[0] def replace_for_image(row): replace_with = replacements[row['type']] return row["template"].replace("[subj]", replace_with) class SPARQL: def __init__(self): self.agent = "'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'" self.sparql = SPARQLWrapper("https://query.wikidata.org/sparql", agent=self.agent) self.sparql.setReturnFormat(JSON) def parse_value(self, value): parsed_uri = urlparse(value) if all([parsed_uri.scheme, parsed_uri.netloc]): return parsed_uri.path.split('/')[-1] return value def execute(self, query): records = [] try: self.sparql.setQuery(query) responses = self.sparql.query().convert() for response in responses['results']['bindings']: record = {} for key in response: record[key] = self.parse_value(response[key]['value']) records.append(record) if records == 0: print("request failed") except Exception as e: print(e) return pd.DataFrame(records) def add_aliases(df): def _query(uris): return f''' SELECT ?s_uri ?alias WHERE {{ {{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }} ?s_uri skos:altLabel ?alias. FILTER(LANG(?alias) = "en") }} ''' sparql = SPARQL() uris = list(set(df["s_uri"].tolist())) uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)] aliases = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)]) aliases = aliases.groupby("s_uri")["alias"].agg(list).reset_index(name="aliases") res = pd.merge(df, aliases, how='left', on='s_uri') res['aliases'] = res['aliases'].fillna('[]') return res def get_aliases(df): def _query(uris): return f''' SELECT ?uri ?alias WHERE {{ {{VALUES ?uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }} ?uri skos:altLabel ?alias. FILTER(LANG(?alias) = "en") }} ''' sparql = SPARQL() uris = list(set(df["s_uri"].tolist()))# + df["a_uri"].tolist())) uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)] aliases = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)]) aliases = aliases.groupby("uri")["alias"].agg(list).reset_index(name="aliases") return aliases def add_images(df): def _query(uris): return f''' SELECT ?s_uri ?image WHERE {{ {{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }} ?s_uri wdt:P18 ?image . }} ''' sparql = SPARQL() uris = list(set(df["s_uri"].tolist())) uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)] images = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)]) images['image'] = 'http://commons.wikimedia.org/wiki/Special:FilePath/' + images['image'] res = pd.merge(df, images, how='inner', on='s_uri') return res def get_attribute(df, attribute_name, attribute_id): def _query(uris): return f''' SELECT ?s_uri ?attribute_name WHERE {{ {{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }} ?s_uri wdt:{attribute_id} ?{attribute_name} . }} ''' sparql = SPARQL() uris = list(set(df["s_uri"].tolist())) uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)] attributes = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)]) attributes = attributes.groupby("s_uri")[attribute_name].agg(list).reset_index(name=attribute_name) res = pd.merge(df, attributes, how='inner', on='s_uri') return res def extract_year(timestamp): parts = timestamp.split('-') neg = False if parts[0] == '': year = parts[1] neg = True else: year = parts[0] if year.isdigit(): return str(-int(year)) if neg else str(int(year)) return np.nan def get_all_properties(df): def _query(relation_ids): return f''' SELECT ?item ?itemLabel ?wd ?wdLabel ?ps_ ?ps_Label WHERE {{ VALUES ?item {{ {" ".join([f"wd:{id}" for id in relation_ids])} }} ?item ?p ?statement . ?statement ?ps ?ps_ . ?wd wikibase:claim ?p . ?wd wikibase:statementProperty ?ps . SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }} }} ''' sparql = SPARQL() # df = pd.read_csv(origin) subjects = df["s_uri"].to_list() subject_chunks = [subjects[i:i+20] for i in range(0, len(subjects), 20)] df = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(subject_chunks)]) df = df[~df["wdLabel"].str.contains(r"ID|category|template|username|instance of|gallery|article|handle|url|wiki|copyright|classification|website|described|tag|archive|reddit|profile|image|list|file", case=False, na=False)] tmp = df[(df['wd'] == 'P569') | (df['wd'] == 'P571')].copy() tmp['ps_Label'] = tmp['ps_Label'].apply(extract_year) tmp.dropna(subset=['ps_Label'], inplace=True) tmp['ps_'] = 'Q000' df = df[~((df['wd'] == 'P569') | (df['wd'] == 'P571'))] df = df[~df["ps_Label"].str.contains(r'\d', na=False)] df = df[df["ps_"].apply(lambda s: bool(re.fullmatch(r"Q\d+", s)))] df = pd.concat([df, tmp]) df = df[["item", "itemLabel", "wd", "wdLabel", "ps_", "ps_Label"]] df = df.rename( columns = { "item": "s_uri", "itemLabel": "subject", "wd": "r_uri", "wdLabel": "relation", "ps_": "a_uri", "ps_Label": "attribute", } ) return df def attribute_type(df): def _query(uris): return f''' SELECT ?uri ?typeLabel WHERE {{ {{VALUES ?uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }} ?uri wdt:P31 ?type. SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }} }} ''' sparql = SPARQL() uris = df["a_uri"].drop_duplicates().to_list() uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)] a_types = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)]) a_types = a_types.groupby("uri")["typeLabel"].agg(list).reset_index(name="a_type") a_types['a_type'] = a_types['a_type'].apply(lambda x: x if type(x) == list else []) a_types = pd.concat([a_types, pd.DataFrame([{'uri': 'Q000', 'a_type': str(['year'])}])]) return a_types def get_wikidata_id(name): url = "https://www.wikidata.org/w/api.php" params = { "action": "wbsearchentities", "format": "json", "language": "en", "search": name } response = requests.get(url, params=params).json() if 'search' in response and response['search']: return response['search'][0]['id'] return None def add_wikidata_ids(df, name_col="subject"): df["wikidata_id"] = df[name_col].apply(get_wikidata_id) return df def add_unesco_question(base_df): def _query(qids): return f""" SELECT ?item ?itemLabel ?startTime WHERE {{ VALUES ?item {{{' '.join(f'wd:{qid}' for qid in qids)}}} ?item p:P1435 ?heritageStatement. ?heritageStatement ps:P1435 wd:Q9259. OPTIONAL {{ ?heritageStatement pq:P580 ?startTime. }} SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }} }} """ sparql = SPARQL() df = base_df[base_df['type'] == 'landmarks'] subjects = df["s_uri"].to_list() subject_chunks = [subjects[i:i+20] for i in range(0, len(subjects), 20)] df = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(subject_chunks)]) df.dropna(subset=['startTime'], inplace=True) df['startTime'] = df['startTime'].apply(extract_year) df = df.rename( columns = { "item": "s_uri", "startTime": "attribute", "itemLabel": "subject", } ) df['possible_answers'] = df['attribute'].apply(lambda x: str([x])) df['r_uri'] = 'P580' df['relation'] = 'start time' df['a_uri'] = 'P580' df['a_type'] = str(['year']) return df def aggregate_triplets(base, aliases, relations, attributes, add_unesco=False): subjects = base[['s_uri']] relations = relations.merge(subjects, on="s_uri") aliases = pd.read_csv("data/all_aliases.csv", index_col=0) if type(aliases.iloc[0]['aliases']) == str: aliases["aliases"] = aliases["aliases"].apply(lambda x: literal_eval(x)) if type(attributes.iloc[0]['a_type']) == str: attributes["a_type"] = attributes["a_type"].apply(lambda x: literal_eval(x)) relations = relations.merge(aliases, left_on="a_uri", right_on="uri", how="left") relations = relations.drop(columns=["uri"]) relations["possible_answers"] = relations['aliases'].apply(lambda x: x if type(x) == list else []) relations["possible_answers"] = relations.progress_apply(lambda x: x["possible_answers"] + [x["attribute"]], axis=1) agg_funcs = {col: 'first' for col in relations.columns if col not in ['s_uri', 'r_uri', 'possible_answers']} agg_funcs['possible_answers'] = sum relations = relations.groupby(['s_uri', 'r_uri'], as_index=False).agg(agg_funcs) relations = relations.drop(columns=["aliases"]) relations = relations.merge(attributes, left_on="a_uri", right_on="uri", how="left") relations = relations.drop(columns=["uri"]) if add_unesco: unesco = add_unesco_question(base) relations = pd.concat([relations, unesco]) return relations def subj_substitute(row): if row['type'] == 'brands': return f"the brand {row['subject']}" if row['type'] == 'paintings': return f"the painting {row['subject']}" return row['subject'] def build_prompts(base_df, triplets, templates): subjects = base_df[["s_uri", "subject"]] base_df = base_df[["s_uri", "type"]] triplets = triplets.drop("subject", axis=1) triplets = triplets.merge(subjects, on=["s_uri"]) triplets = triplets.merge(base_df, on=["s_uri"], how='left') triplets = triplets.merge(templates[["uri", "template"]], left_on="r_uri", right_on="uri") triplets = triplets.drop(columns=["uri"]) triplets = triplets.dropna() query_counts = triplets.drop_duplicates(["s_uri", "r_uri"]).groupby(["s_uri"])["r_uri"].count().reset_index(name="count") triplets = triplets.merge(query_counts[query_counts["count"] > 1][["s_uri"]], on="s_uri") triplets["question_for_image"] = triplets.progress_apply(replace_for_image, axis=1) triplets["question_for_image"] = triplets.progress_apply(lambda row: row["question_for_image"].replace("[obj_type]", best_obj_type(row["a_type"])) if len(row["a_type"]) > 0 else row["question"], axis=1) triplets["question"] = triplets.progress_apply(lambda row: row["template"].replace("[subj]", subj_substitute(row)), axis=1) triplets["question"] = triplets.progress_apply(lambda row: row["question"].replace("[obj_type]", best_obj_type(row["a_type"])) if len(row["a_type"]) > 0 else row["question"], axis=1) triplets = triplets.drop(columns=["template"]) triplets = triplets[['type','subject','question_for_image','question','possible_answers', 'relation', 's_uri', 'r_uri','a_uri','attribute','a_type']] return triplets def resize_square(image, size=336, resample=Image.LANCZOS): """ Resize an image to a square of the given size, first adding a black background if needed. image: a Pillow image instance size: an integer, the desired output size (width and height will be the same) """ img_format = image.format image = image.copy() size = [size, size] img_size = image.size ratio = min(size[0] / img_size[0], size[1] / img_size[1]) new_size = [ int(math.ceil(img_size[0] * ratio)), int(math.ceil(img_size[1] * ratio)) ] image = image.resize((new_size[0], new_size[1]), resample) # Make the image square by adding black padding max_dim = max(image.size) new_img = Image.new("RGB", (max_dim, max_dim), (0, 0, 0)) new_img.paste(image, ((max_dim - image.size[0]) // 2, (max_dim - image.size[1]) // 2)) # Resize to target size # new_img = new_img.resize((size, size), resample) new_img.format = img_format return new_img