import pandas as pd import requests import os import argparse from tqdm import tqdm from dataset_utils import resize_square from PIL import Image import cairosvg from io import BytesIO from dotenv import load_dotenv import time import random load_dotenv() DATA_DIR = os.environ['DATA_DIR'] original_dir = os.path.join(DATA_DIR, 'original_path') resized_dir = os.path.join(DATA_DIR, 'resized_path') def fetch_image(url, max_retries=5): headers = { 'User-Agent': random.choice([ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', ]) } for attempt in range(max_retries): try: response = requests.get(url, headers=headers, stream=True) if response.status_code == 429: # Too Many Requests retry_after = int(response.headers.get("Retry-After", random.uniform(1, 5))) time.sleep(retry_after) continue response.raise_for_status() return response.content except requests.exceptions.RequestException as e: wait_time = 2 ** attempt + random.uniform(0, 1) # Exponential backoff print(f"Error fetching {url}: {e}, retrying in {wait_time:.2f}s") time.sleep(wait_time) print(f"Failed to fetch {url} after {max_retries} attempts.") return None def main(args): df = pd.read_csv(args.csv) df['original_path'] = '' df['resized_path'] = '' errors = 0 count = 0 for index, row in tqdm(df.iterrows(), total=len(df)): image_url = row['image'] subject = row['subject'].replace(' ', '_').replace('/', '_') type_original_dir = os.path.join(original_dir, row['type']) type_resized_dir = os.path.join(resized_dir, row['type']) os.makedirs(type_original_dir, exist_ok=True) os.makedirs(type_resized_dir, exist_ok=True) image_data = fetch_image(image_url) if image_data: try: if image_url.endswith('.svg'): png_bytes = cairosvg.svg2png(bytestring=image_data) image = Image.open(BytesIO(png_bytes)).convert("RGBA") else: image = Image.open(BytesIO(image_data)) if row['type'] == 'brands': image = image.convert("RGBA") white_bg = Image.new("RGB", image.size, (255, 255, 255)) white_bg.paste(image, mask=image.split()[3]) image = white_bg first_letter = subject[0].lower() os.makedirs(os.path.join(type_original_dir, first_letter), exist_ok=True) original_filepath = os.path.join(type_original_dir, first_letter, f'{subject}.jpg') image.save(original_filepath, "JPEG", quality=95) im = Image.open(original_filepath) im = resize_square(im) os.makedirs(os.path.join(type_resized_dir, first_letter), exist_ok=True) resized_filepath = os.path.join(type_resized_dir, first_letter, f'{subject}.jpg') im.save(resized_filepath, im.format) df.at[index, 'original_path'] = original_filepath if os.path.exists(original_filepath) else '' df.at[index, 'resized_path'] = resized_filepath if os.path.exists(resized_filepath) else '' except Exception as e: errors += 1 print(Exception(f"Failed to download image {subject}: {str(e)}")) continue else: errors += 1 continue count += 1 df = df[df['original_path'] != ''] df = df[df['resized_path'] != ''] df.to_csv(args.target_df, index=False) print(f'Finished downloading {count} images with {errors} errors') def get_exp_parser(): parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--base_df', type=str) parser.add_argument('--target_df', type=str) parser.add_argument('--width', type=int, default=336) return parser if __name__ == "__main__": parser = get_exp_parser() args = parser.parse_args() main(args)