code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :list[list[int]] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(lowerCAmelCase__ ) != 0: __SCREAMING_SNAKE_CASE : Tuple = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise error __SCREAMING_SNAKE_CASE : Optional[Any] = rows else: __SCREAMING_SNAKE_CASE : Tuple = [] def __magic_name__( self :Dict ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __magic_name__( self :Any ) -> int: return len(self.rows ) @property def __magic_name__( self :List[Any] ) -> int: return len(self.rows[0] ) @property def __magic_name__( self :int ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def __magic_name__( self :List[Any] ) -> bool: return self.order[0] == self.order[1] def __magic_name__( self :Optional[Any] ) -> Matrix: __SCREAMING_SNAKE_CASE : Dict = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __magic_name__( self :List[Any] ) -> bool: return bool(self.determinant() ) def __magic_name__( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: __SCREAMING_SNAKE_CASE : Any = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Matrix: return Matrix( [ [self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __magic_name__( self :List[str] ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __magic_name__( self :str ) -> Matrix: __SCREAMING_SNAKE_CASE : List[str] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> Matrix: __SCREAMING_SNAKE_CASE : Dict = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self :Any ) -> str: return str(self.rows ) def __str__( self :List[Any] ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(lowerCAmelCase__ ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :int | None = None ) -> None: __SCREAMING_SNAKE_CASE : Optional[Any] = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = self.rows[0:position] + [row] + self.rows[position:] def __magic_name__( self :Tuple , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :int | None = None ) -> None: __SCREAMING_SNAKE_CASE : List[str] = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: __SCREAMING_SNAKE_CASE : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __SCREAMING_SNAKE_CASE : Optional[int] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self :Optional[Any] , lowerCAmelCase__ :object ) -> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self :Any , lowerCAmelCase__ :object ) -> bool: return not self == other def __neg__( self :Any ) -> Matrix: return self * -1 def __add__( self :List[Any] , lowerCAmelCase__ :Matrix ) -> Matrix: if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self :Dict , lowerCAmelCase__ :Matrix ) -> Matrix: if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self :Optional[int] , lowerCAmelCase__ :Matrix | int | float ) -> Matrix: if isinstance(lowerCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ , lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self :Union[str, Any] , lowerCAmelCase__ :int ) -> Matrix: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def __magic_name__( cls :Optional[int] , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :list[int] ) -> int: return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class A_ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *lowerCamelCase_ :Optional[int] , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( snake_case_ : List[str] ) ->str: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCAmelCase = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class A_ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Optional[int] =pipeline( 'document-question-answering' , model=lowerCamelCase_ , tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) lowerCamelCase__ : Tuple =INVOICE_URL lowerCamelCase__ : Optional[Any] =list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) lowerCamelCase__ : Optional[Any] ='What is the placebo?' lowerCamelCase__ : List[str] =[ { 'image': load_image(lowerCamelCase_ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple ): """simple docstring""" lowerCamelCase__ : List[str] =dqa_pipeline(lowerCamelCase_ , top_k=2 ) self.assertEqual( lowerCamelCase_ , [ [ {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ ), 'start': ANY(lowerCamelCase_ ), 'end': ANY(lowerCamelCase_ )}, {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ ), 'start': ANY(lowerCamelCase_ ), 'end': ANY(lowerCamelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCamelCase__ : Any =INVOICE_URL lowerCamelCase__ : Union[str, Any] ='How many cats are there?' lowerCamelCase__ : List[Any] =[ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowerCamelCase__ : Dict =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , lowerCamelCase_ ) lowerCamelCase__ : int =dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , lowerCamelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase__ : str ='./tests/fixtures/tests_samples/COCO/000000039769.png' lowerCamelCase__ : Union[str, Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(lowerCamelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase__ : str ='./tests/fixtures/tests_samples/COCO/000000039769.png' lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : Tuple =[] lowerCamelCase__ : Tuple =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , words=lowerCamelCase_ , boxes=lowerCamelCase_ , top_k=2 ) self.assertEqual(lowerCamelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : int =pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCamelCase__ : Dict =INVOICE_URL lowerCamelCase__ : int ='What is the invoice number?' lowerCamelCase__ : Union[str, Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : Optional[int] =dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : List[str] =dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : int =pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) lowerCamelCase__ : Tuple =INVOICE_URL lowerCamelCase__ : Any ='What is the invoice number?' lowerCamelCase__ : Union[str, Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : List[Any] =dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : List[Any] =dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : int =AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] =pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCamelCase_ , revision='3dc6de3' , ) lowerCamelCase__ : int =INVOICE_URL lowerCamelCase__ : Tuple ='What is the invoice number?' lowerCamelCase__ : Optional[Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCamelCase__ : Optional[int] =dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCamelCase__ : Optional[Any] =dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) lowerCamelCase__ : Tuple =list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) # This model should also work if `image` is set to None lowerCamelCase__ : Optional[int] =dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Any =pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCamelCase_ , revision='3dc6de3' , max_seq_len=50 , ) lowerCamelCase__ : Dict =INVOICE_URL lowerCamelCase__ : Optional[Any] ='What is the invoice number?' lowerCamelCase__ : Tuple =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCamelCase__ : Tuple =dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) lowerCamelCase__ : str =list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , '' ) ) ) # This model should also work if `image` is set to None lowerCamelCase__ : Union[str, Any] =dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[Any] =pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCamelCase__ : Union[str, Any] =INVOICE_URL lowerCamelCase__ : Union[str, Any] ='What is the invoice number?' lowerCamelCase__ : Union[str, Any] =dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def UpperCAmelCase__ ( self :str ): """simple docstring""" pass
126
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase_ = 256047 UpperCamelCase_ = 256145 @require_sentencepiece @require_tokenizers class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = NllbTokenizer A__ : Any = NllbTokenizerFast A__ : Optional[Any] = True A__ : Tuple = True A__ : List[Any] = {} def A__ ( self: Optional[int] ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : List[Any] = NllbTokenizer(lowerCamelCase_ ,keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self: str ) -> Any: UpperCAmelCase_ : Optional[Any] = NllbTokenizer(lowerCamelCase_ ,keep_accents=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) UpperCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def A__ ( self: str ) -> Tuple: UpperCAmelCase_ : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : int = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = tokenizer_r.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase_ : Tuple = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCamelCase_ ,lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCAmelCase_ : Optional[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ ,lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase_ : List[Any] = tempfile.mkdtemp() UpperCAmelCase_ : str = tokenizer_r.save_pretrained(lowerCamelCase_ ,legacy_format=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ ,lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCAmelCase_ : Optional[int] = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ ,lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase_ : int = tempfile.mkdtemp() UpperCAmelCase_ : int = tokenizer_r.save_pretrained(lowerCamelCase_ ,legacy_format=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase_ : Dict = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ ,lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch def A__ ( self: Dict ) -> Optional[int]: if not self.test_seqaseq: return UpperCAmelCase_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. UpperCAmelCase_ : int = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] UpperCAmelCase_ : Any = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: UpperCAmelCase_ : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase_ ,tgt_texts=lowerCamelCase_ ,max_length=3 ,max_target_length=10 ,return_tensors="""pt""" ,src_lang="""eng_Latn""" ,tgt_lang="""ron_Latn""" ,) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,10 ) # max_target_length will default to max_length if not specified UpperCAmelCase_ : List[Any] = tokenizer.prepare_seqaseq_batch( lowerCamelCase_ ,tgt_texts=lowerCamelCase_ ,max_length=3 ,return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,3 ) UpperCAmelCase_ : int = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase_ ,max_length=3 ,max_target_length=10 ,return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 ) self.assertNotIn("""decoder_input_ids""" ,lowerCamelCase_ ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def A__ ( self: Any ) -> Dict: pass def A__ ( self: Dict ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : Optional[int] = [AddedToken("""<special>""" ,lstrip=lowerCamelCase_ )] UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,additional_special_tokens=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.encode("""Hey this is a <special> token""" ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.encode("""<special>""" ,add_special_tokens=lowerCamelCase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,additional_special_tokens=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : Optional[int] = self.tokenizer_class.from_pretrained( lowerCamelCase_ ,additional_special_tokens=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer_p.encode("""Hey this is a <special> token""" ) UpperCAmelCase_ : Union[str, Any] = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : Tuple = "facebook/nllb-200-distilled-600M" A__ : Tuple = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] A__ : List[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] A__ : List[str] = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def A__ ( cls: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="""eng_Latn""" ,tgt_lang="""ron_Latn""" ) UpperCAmelCase_ : Dict = 1 return cls def A__ ( self: Dict ) -> Tuple: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] ,256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] ,256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] ,256057 ) def A__ ( self: str ) -> str: UpperCAmelCase_ : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Tuple: self.assertIn(lowerCamelCase_ ,self.tokenizer.all_special_ids ) # fmt: off UpperCAmelCase_ : Dict = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on UpperCAmelCase_ : Any = self.tokenizer.decode(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] ,lowerCamelCase_ ) UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Union[str, Any] = self.tokenizer(lowerCamelCase_ ,max_length=lowerCamelCase_ ,truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[-1] ,2 ) self.assertEqual(ids[0] ,lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) def A__ ( self: int ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) ,[256203, 3] ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = NllbTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowerCamelCase_ ) @require_torch def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : List[Any] = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) UpperCAmelCase_ : str = shift_tokens_right( batch["""labels"""] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) self.assertEqual((2, 15) ,batch.input_ids.shape ) self.assertEqual((2, 15) ,batch.attention_mask.shape ) UpperCAmelCase_ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ ,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def A__ ( self: Any ) -> int: UpperCAmelCase_ : Optional[Any] = self.tokenizer(self.src_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=3 ,return_tensors="""pt""" ) UpperCAmelCase_ : Optional[int] = self.tokenizer( text_target=self.tgt_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=10 ,return_tensors="""pt""" ) UpperCAmelCase_ : Any = targets["""input_ids"""] UpperCAmelCase_ : int = shift_tokens_right( lowerCamelCase_ ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def A__ ( self: str ) -> Tuple: UpperCAmelCase_ : Dict = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(lowerCamelCase_ ) ,{ # A, test, EOS, en_XX """input_ids""": [[256047, 70, 7356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 256057, } ,) @require_torch def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Any = self.tokenizer( """UN Chief says there is no military solution in Syria""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids ,[16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) UpperCAmelCase_ : int = False UpperCAmelCase_ : Optional[Any] = self.tokenizer( """UN Chief says there is no military solution in Syria""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids ,[256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
59
from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase_ = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' UpperCamelCase_ = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' UpperCamelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): '''simple docstring''' def A__ ( self: Any ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) ,reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] ,) def A__ ( self: List[str] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any]=None ) -> int: return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_ ,lowerCamelCase_ ,sample_weight=lowerCamelCase_ ) ), }
59
1
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _UpperCamelCase: Dict = logging.get_logger(__name__) _UpperCamelCase: str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase: List[Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } _UpperCamelCase: str = { 'allenai/led-base-16384': 1_6_3_8_4, } class a__ ( lowerCamelCase__ ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = LEDTokenizer _lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self : List[Any], lowerCAmelCase : Optional[Any]=None, lowerCAmelCase : List[str]=None, lowerCAmelCase : Tuple=None, lowerCAmelCase : Dict="replace", lowerCAmelCase : int="<s>", lowerCAmelCase : Any="</s>", lowerCAmelCase : Optional[Any]="</s>", lowerCAmelCase : Optional[Any]="<s>", lowerCAmelCase : Optional[Any]="<unk>", lowerCAmelCase : List[str]="<pad>", lowerCAmelCase : int="<mask>", lowerCAmelCase : int=False, lowerCAmelCase : str=True, **lowerCAmelCase : Tuple, ) -> Optional[Any]: super().__init__( __snake_case, __snake_case, tokenizer_file=__snake_case, errors=__snake_case, bos_token=__snake_case, eos_token=__snake_case, sep_token=__snake_case, cls_token=__snake_case, unk_token=__snake_case, pad_token=__snake_case, mask_token=__snake_case, add_prefix_space=__snake_case, trim_offsets=__snake_case, **__snake_case, ) lowercase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', __snake_case ) != add_prefix_space: lowercase : List[Any] = getattr(__snake_case, pre_tok_state.pop('type' ) ) lowercase : Optional[Any] = add_prefix_space lowercase : Optional[Any] = pre_tok_class(**__snake_case ) lowercase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase : Dict = 'post_processor' lowercase : int = getattr(self.backend_tokenizer, __snake_case, __snake_case ) if tokenizer_component_instance: lowercase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase : Any = tuple(state['sep'] ) if "cls" in state: lowercase : Any = tuple(state['cls'] ) lowercase : Optional[Any] = False if state.get('add_prefix_space', __snake_case ) != add_prefix_space: lowercase : Any = add_prefix_space lowercase : Optional[Any] = True if state.get('trim_offsets', __snake_case ) != trim_offsets: lowercase : List[Any] = trim_offsets lowercase : Union[str, Any] = True if changes_to_apply: lowercase : int = getattr(__snake_case, state.pop('type' ) ) lowercase : List[Any] = component_class(**__snake_case ) setattr(self.backend_tokenizer, __snake_case, __snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase ( self : Dict ) -> Dict: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self : Dict, lowerCAmelCase : List[str] ) -> Union[str, Any]: lowercase : Tuple = AddedToken(__snake_case, lstrip=__snake_case, rstrip=__snake_case ) if isinstance(__snake_case, __snake_case ) else value lowercase : Optional[int] = value def lowercase ( self : Optional[Any], *lowerCAmelCase : Any, **lowerCAmelCase : Union[str, Any] ) -> List[str]: lowercase : Dict = kwargs.get('is_split_into_words', __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__snake_case, **__snake_case ) def lowercase ( self : Union[str, Any], *lowerCAmelCase : Optional[int], **lowerCAmelCase : List[str] ) -> int: lowercase : Optional[int] = kwargs.get('is_split_into_words', __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__snake_case, **__snake_case ) def lowercase ( self : Dict, lowerCAmelCase : str, lowerCAmelCase : Optional[str] = None ) -> List[Any]: lowercase : Union[str, Any] = self._tokenizer.model.save(__snake_case, name=__snake_case ) return tuple(__snake_case ) def lowercase ( self : Union[str, Any], lowerCAmelCase : str, lowerCAmelCase : int=None ) -> str: lowercase : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase ( self : Optional[int], lowerCAmelCase : List[int], lowerCAmelCase : Optional[List[int]] = None ) -> Tuple: lowercase : int = [self.sep_token_id] lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : List[str], lowerCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding], lowerCAmelCase : Optional[int] = None, lowerCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[bool] = None, ) -> Tuple: lowercase : Optional[Any] = super()._pad( encoded_inputs=__snake_case, max_length=__snake_case, padding_strategy=__snake_case, pad_to_multiple_of=__snake_case, return_attention_mask=__snake_case, ) # Load from model defaults if return_attention_mask is None: lowercase : str = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : Union[str, Any] = len(encoded_inputs['global_attention_mask'] ) != len(__snake_case ) if needs_to_be_padded: lowercase : str = len(__snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : Dict = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": lowercase : Union[str, Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
255
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase: Union[str, Any] = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Any = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase: Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
297
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ ={"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
128
"""simple docstring""" UpperCamelCase_ =[ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
128
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a : int = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['LayoutLMv3FeatureExtractor'] a : Any = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
56
import numpy as np __snake_case = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> None: UpperCamelCase :Dict = np.array(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: UpperCamelCase , UpperCamelCase :Tuple = np.where(letter == self.SQUARE ) UpperCamelCase :List[Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :int = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :Any = message.lower() UpperCamelCase :int = message.replace(''' ''' , '''''' ) UpperCamelCase :Dict = message.replace('''j''' , '''i''' ) UpperCamelCase :str = np.empty((2, len(SCREAMING_SNAKE_CASE_ )) ) for letter_index in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :Dict = self.letter_to_numbers(message[letter_index] ) UpperCamelCase :Union[str, Any] = numbers[0] UpperCamelCase :Dict = numbers[1] UpperCamelCase :Any = first_step.reshape(2 * len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :Union[str, Any] = '''''' for numbers_index in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :Dict = int(second_step[numbers_index * 2] ) UpperCamelCase :List[str] = int(second_step[(numbers_index * 2) + 1] ) UpperCamelCase :Tuple = self.numbers_to_letter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = encoded_message + letter return encoded_message def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :Any = message.lower() message.replace(''' ''' , '''''' ) UpperCamelCase :Optional[int] = np.empty(2 * len(SCREAMING_SNAKE_CASE_ ) ) for letter_index in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :List[str] = self.letter_to_numbers(message[letter_index] ) UpperCamelCase :Dict = numbers[0] UpperCamelCase :List[str] = numbers[1] UpperCamelCase :int = first_step.reshape((2, len(SCREAMING_SNAKE_CASE_ )) ) UpperCamelCase :Any = '''''' for numbers_index in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :Any = int(second_step[0, numbers_index] ) UpperCamelCase :List[Any] = int(second_step[1, numbers_index] ) UpperCamelCase :Tuple = self.numbers_to_letter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = decoded_message + letter return decoded_message
259
0
"""simple docstring""" def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" def count_of_possible_combinations(SCREAMING_SNAKE_CASE_ : Tuple ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" def count_of_possible_combinations_with_dp_array( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] UpperCamelCase : Dict = sum( count_of_possible_combinations_with_dp_array(target - item , SCREAMING_SNAKE_CASE_ ) for item in array ) UpperCamelCase : Union[str, Any] = answer return answer UpperCamelCase : str = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : Tuple = [0] * (target + 1) UpperCamelCase : List[Any] = 1 for i in range(1 , target + 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Optional[int] = 5 __UpperCAmelCase : Any = [1, 2, 5] print(combination_sum_iv(n, array, target))
358
import math def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCamelCase : Union[str, Any] = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=1 , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Tuple = factor * value UpperCamelCase : Optional[int] = value while not is_prime(SCREAMING_SNAKE_CASE_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE_ ) return value
315
0
import math def A_ ( snake_case : int , snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(snake_case ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase__ : Optional[Any] = "Enter the base and the power separated by a comma: " lowercase__ , lowercase__ : int = map(int, input(prompt).split(",")) lowercase__ , lowercase__ : Tuple = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase__ : Union[str, Any] = res(xa, ya) lowercase__ : Any = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : str ={ """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase ( A_ ): A__ : Union[str, Any] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A__ : List[str] = "CIDAS/clipseg-rd64-refined" A__ : int = "image_segmenter" A__ : Any = CLIPSegForImageSegmentation A__ : List[str] = ["image", "text"] A__ : Dict = ["image"] def __init__(self : Tuple , *snake_case__ : List[str] , **snake_case__ : str ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : "Image" , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="pt" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Optional[Any] ) -> Any: '''simple docstring''' with torch.no_grad(): snake_case : Tuple = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = outputs.cpu().detach().numpy() snake_case : Dict = 0 snake_case : Tuple = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
59
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' snake_case : int = tempfile.mkdtemp() # fmt: off snake_case : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) snake_case : int = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } snake_case : Optional[Any] = os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , **snake_case__ : str ) -> Optional[int]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , **snake_case__ : List[str] ) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.get_tokenizer() snake_case : Optional[Any] = self.get_image_processor() snake_case : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) snake_case : Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : str = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case : Tuple = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) snake_case : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' snake_case : str = self.get_image_processor() snake_case : Optional[int] = self.get_tokenizer() snake_case : List[Any] = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = self.prepare_image_inputs() snake_case : str = image_processor(snake_case__ , return_tensors="np" ) snake_case : Any = processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = self.get_image_processor() snake_case : int = self.get_tokenizer() snake_case : Any = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Tuple = "lower newer" snake_case : Tuple = processor(text=snake_case__ ) snake_case : Union[str, Any] = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = self.get_image_processor() snake_case : Dict = self.get_tokenizer() snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : int = "lower newer" snake_case : Dict = self.prepare_image_inputs() snake_case : Union[str, Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(snake_case__ ): processor() def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.get_image_processor() snake_case : Optional[Any] = self.get_tokenizer() snake_case : Tuple = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : List[Any] = processor.batch_decode(snake_case__ ) snake_case : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : str = self.get_image_processor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : Any = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = "lower newer" snake_case : List[Any] = self.prepare_image_inputs() snake_case : Tuple = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
59
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__: Optional[Any] = logging.get_logger(__name__) a__: List[str] = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''nat''' __SCREAMING_SNAKE_CASE = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self,__lowerCamelCase=4,__lowerCamelCase=3,__lowerCamelCase=64,__lowerCamelCase=[3, 4, 6, 5],__lowerCamelCase=[2, 4, 8, 16],__lowerCamelCase=7,__lowerCamelCase=3.0,__lowerCamelCase=True,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=0.1,__lowerCamelCase="gelu",__lowerCamelCase=0.02,__lowerCamelCase=1E-5,__lowerCamelCase=0.0,__lowerCamelCase=None,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__(**__lowerCamelCase ) A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(__lowerCamelCase ) A__ = num_heads A__ = kernel_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = layer_norm_eps A__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) A__ = layer_scale_init_value A__ = ['''stem'''] + [f"stage{idx}" for idx in range(1,len(__lowerCamelCase ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=__lowerCamelCase,out_indices=__lowerCamelCase,stage_names=self.stage_names )
366
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a__: List[Any] = logging.get_logger(__name__) a__: Optional[Any] = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''unispeech''' def __init__( self,__lowerCamelCase=32,__lowerCamelCase=768,__lowerCamelCase=12,__lowerCamelCase=12,__lowerCamelCase=3072,__lowerCamelCase="gelu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=0.02,__lowerCamelCase=1E-5,__lowerCamelCase="group",__lowerCamelCase="gelu",__lowerCamelCase=(512, 512, 512, 512, 512, 512, 512),__lowerCamelCase=(5, 2, 2, 2, 2, 2, 2),__lowerCamelCase=(10, 3, 3, 3, 3, 2, 2),__lowerCamelCase=False,__lowerCamelCase=128,__lowerCamelCase=16,__lowerCamelCase=False,__lowerCamelCase=True,__lowerCamelCase=0.05,__lowerCamelCase=10,__lowerCamelCase=2,__lowerCamelCase=0.0,__lowerCamelCase=10,__lowerCamelCase=0,__lowerCamelCase=320,__lowerCamelCase=2,__lowerCamelCase=0.1,__lowerCamelCase=100,__lowerCamelCase=256,__lowerCamelCase=256,__lowerCamelCase=0.1,__lowerCamelCase="mean",__lowerCamelCase=False,__lowerCamelCase=False,__lowerCamelCase=256,__lowerCamelCase=80,__lowerCamelCase=0,__lowerCamelCase=1,__lowerCamelCase=2,__lowerCamelCase=0.5,**__lowerCamelCase,): super().__init__(**__lowerCamelCase,pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase ) A__ = hidden_size A__ = feat_extract_norm A__ = feat_extract_activation A__ = list(__lowerCamelCase ) A__ = list(__lowerCamelCase ) A__ = list(__lowerCamelCase ) A__ = conv_bias A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = num_ctc_classes A__ = vocab_size A__ = do_stable_layer_norm A__ = use_weighted_layer_sum A__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = apply_spec_augment A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length A__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A__ = num_codevectors_per_group A__ = num_codevector_groups A__ = contrastive_logits_temperature A__ = feat_quantizer_dropout A__ = num_negatives A__ = codevector_dim A__ = proj_codevector_dim A__ = diversity_loss_weight # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # pretraining loss A__ = replace_prob @property def UpperCamelCase ( self ): return functools.reduce(operator.mul,self.conv_stride,1 )
39
0
def _lowerCAmelCase (_lowerCAmelCase = 1_00_00_00): UpperCamelCase_ = 1 UpperCamelCase_ = 1 UpperCamelCase_ = {1: 1} for inputa in range(2 , _lowerCAmelCase): UpperCamelCase_ = 0 UpperCamelCase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: UpperCamelCase_ = (3 * number) + 1 counter += 1 if inputa not in counters: UpperCamelCase_ = counter if counter > pre_counter: UpperCamelCase_ = inputa UpperCamelCase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
128
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowercase (a_ ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("""num_inference_steps""", 50),) def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = {"num_train_timesteps": 1000} config.update(**snake_case__ ) return config def _lowerCamelCase ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config(**snake_case__ ) UpperCamelCase_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCamelCase_ = dummy_past_residuals[:] if time_step is None: UpperCamelCase_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCamelCase_ = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self ): '''simple docstring''' pass def _lowerCamelCase ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase_ = dummy_past_residuals[:] if time_step is None: UpperCamelCase_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCamelCase_ = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(**snake_case__ ) UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = 10 UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = model(snake_case__ , snake_case__ ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = model(snake_case__ , snake_case__ ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): UpperCamelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.timesteps[5] UpperCamelCase_ = scheduler.timesteps[6] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCamelCase ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ , time_step=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case__ , time_step=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.full_loop() UpperCamelCase_ = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
128
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( A_ ,unittest.TestCase ): '''simple docstring''' a__ =LayoutLMTokenizer a__ =LayoutLMTokenizerFast a__ =True a__ =True def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _UpperCAmelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , **A ) -> Dict: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , A ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' _UpperCAmelCase : Optional[Any] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Tuple = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : Tuple = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowerCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self ) -> Optional[Any]: pass
368
"""simple docstring""" from itertools import count def lowerCamelCase_ (UpperCamelCase__ : int = 50 ): _UpperCAmelCase : Tuple = [1] * min_block_length for n in count(UpperCamelCase__ ): fill_count_functions.append(1 ) for block_length in range(UpperCamelCase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(f"{solution() = }")
68
0
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def UpperCAmelCase_ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> str: '''simple docstring''' _UpperCAmelCase = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCAmelCase = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } _UpperCAmelCase = f'{src_lang}-{tgt_lang}' _UpperCAmelCase = f'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(__lowercase , exist_ok=__lowercase ) _UpperCAmelCase = os.path.join(__lowercase , "README.md" ) print(f'Generating {path}' ) with open(__lowercase , "w" , encoding="utf-8" ) as f: f.write(__lowercase ) # make sure we are under the root of the project __SCREAMING_SNAKE_CASE :Optional[Any] = Path(__file__).resolve().parent.parent.parent __SCREAMING_SNAKE_CASE :Any = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = model_name.split('''-''') __SCREAMING_SNAKE_CASE :List[str] = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( a ) -> Any: _A: List[Any] = torch.load(a , map_location='''cpu''' ) if "model" in sd.keys(): _A: str = torch.load(a , map_location='''cpu''' )['''model'''] # pop unnecessary weights _A: str = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(a ) _A: Dict = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _A: str = sd.pop(a ) _A: Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _A: str = sd[key] # We split QKV in separate Q,K,V _A: Any = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) _A: Union[str, Any] = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) _A: str = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) _A: int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _A: Dict = torch.split(a , depth // 3 , dim=0 ) _A: List[Any] = q _A: str = k _A: List[Any] = v del sd[key] return sd @torch.no_grad() def lowerCamelCase__ ( a , a , a=None ) -> Union[str, Any]: _A: int = load_checkpoint(a ) if config is not None: _A: Dict = OPTConfig.from_pretrained(a ) else: _A: Optional[Any] = OPTConfig() _A: List[str] = OPTModel(a ).half().eval() model.load_state_dict(a ) # Check results Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase__ : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: """simple docstring""" a_ : Any = len(__A ) for i in range(1 , __A ): a_ : Optional[Any] = collection[i] a_ : Tuple = 0 a_ : Optional[Any] = i - 1 while low <= high: a_ : str = (low + high) // 2 if val < collection[mid]: a_ : List[Any] = mid - 1 else: a_ : Optional[Any] = mid + 1 for j in range(__A , __A , -1 ): a_ : List[str] = collection[j - 1] a_ : int = val return collection if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Any = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
32
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> str: """simple docstring""" a_ : Tuple = [] for line in lines: a_ : Any = re.sub(R'#.*' , '' , __A ) # remove comments if line: filtered_lines.append(__A ) a_ : Tuple = '\n'.join(__A ) # Make a hash from all this code a_ : Tuple = full_str.encode('utf-8' ) return shaaaa(__A ).hexdigest() # get importable module names and hash for caching UpperCAmelCase_ : List[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase_ : Dict = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase_ : Optional[int] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCAmelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
32
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A_ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : str , lowercase_ : int=13 , lowercase_ : Optional[Any]=7 , lowercase_ : List[Any]=True , lowercase_ : int=True , lowercase_ : str=False , lowercase_ : Optional[int]=True , lowercase_ : List[Any]=99 , lowercase_ : Optional[int]=32 , lowercase_ : str=5 , lowercase_ : Tuple=4 , lowercase_ : Optional[Any]=37 , lowercase_ : Tuple="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Dict=0.1 , lowercase_ : int=512 , lowercase_ : str=16 , lowercase_ : Optional[Any]=2 , lowercase_ : List[Any]=0.02 , lowercase_ : str=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : Tuple=None , ) -> Optional[Any]: UpperCAmelCase : Any = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Optional[Any] = use_input_mask UpperCAmelCase : Dict = use_token_type_ids UpperCAmelCase : Any = use_labels UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : Union[str, Any] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : Any = scope def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Optional[int] = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ) -> List[Any]: UpperCAmelCase : List[Any] = OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Dict = model(lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase : List[str] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) UpperCAmelCase : Tuple = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) UpperCAmelCase : Tuple = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : str , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : str , ) -> Optional[int]: UpperCAmelCase : Optional[Any] = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Any , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Union[str, Any] , ) -> Optional[Any]: UpperCAmelCase : int = True UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Dict = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass UpperCAmelCase : str = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) UpperCAmelCase : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Optional[int] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] UpperCAmelCase : Dict = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase_ : Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCAmelCase_ : Dict = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Any = False def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : int = OpenLlamaModelTester(self ) UpperCAmelCase : str = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Tuple ) -> str: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : Optional[int] = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = 3 UpperCAmelCase : List[Any] = input_dict['input_ids'] UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : List[str] = 'single_label_classification' UpperCAmelCase : Union[str, Any] = input_dict['input_ids'] UpperCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Tuple = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : int = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : List[Any] = 'multi_label_classification' UpperCAmelCase : Union[str, Any] = input_dict['input_ids'] UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : int = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : str = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCAmelCase_ ( self : List[str] ) -> str: pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Tuple = OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() UpperCAmelCase : int = original_model(lowercase_ ).last_hidden_state UpperCAmelCase : Optional[int] = original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Dict = {'type': scaling_type, 'factor': 10.0} UpperCAmelCase : Union[str, Any] = OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() UpperCAmelCase : List[Any] = scaled_model(lowercase_ ).last_hidden_state UpperCAmelCase : Optional[Any] = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) )
353
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if len(UpperCAmelCase_ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(UpperCAmelCase_ ) or left < -len(UpperCAmelCase_ ) or right >= len(UpperCAmelCase_ ) or right < -len(UpperCAmelCase_ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] UpperCAmelCase : Optional[int] = (left + right) >> 1 # the middle UpperCAmelCase : Any = find_max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # find max in range[left, mid] UpperCAmelCase : Union[str, Any] = find_max(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
280
0
from __future__ import annotations class UpperCamelCase__ : def __init__(self : Any , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): __a , __a : int = text, pattern __a , __a : Dict = len(snake_case_ ), len(snake_case_ ) def lowerCAmelCase (self : List[str] , snake_case_ : List[str] ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCAmelCase (self : Optional[Any] , snake_case_ : Tuple ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCAmelCase (self : int ): __a : Any = [] for i in range(self.textLen - self.patLen + 1 ): __a : Optional[Any] = self.mismatch_in_text(snake_case_ ) if mismatch_index == -1: positions.append(snake_case_ ) else: __a : Optional[int] = self.match_in_pattern(self.text[mismatch_index] ) __a : int = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowercase__ ='ABAABA' lowercase__ ='AB' lowercase__ =BoyerMooreSearch(text, pattern) lowercase__ =bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
216
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase=False )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False )-> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = '' else: _UpperCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __A ( __lowerCAmelCase )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = dct.pop(__lowerCAmelCase ) _UpperCAmelCase = val def __A ( )-> str: """simple docstring""" _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True )-> List[str]: """simple docstring""" _UpperCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCAmelCase = 8 # set labels if required if not base_model: _UpperCAmelCase = 1_000 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCAmelCase = 384 _UpperCAmelCase = 1_536 _UpperCAmelCase = 12 _UpperCAmelCase = 6 # load original model from torch hub _UpperCAmelCase = torch.hub.load('facebookresearch/dino:main' , __lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) _UpperCAmelCase = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if base_model: _UpperCAmelCase = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ).eval() else: _UpperCAmelCase = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCAmelCase = ViTImageProcessor() _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = model(__lowerCAmelCase ) if base_model: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _a = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
39
0
import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _A = open # noqa: we just need to have a builtin inside this module to test it properly
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class A ( __UpperCAmelCase ): __snake_case = 'gpt_neox' def __init__( self, UpperCamelCase__=5_0432, UpperCamelCase__=6144, UpperCamelCase__=44, UpperCamelCase__=64, UpperCamelCase__=2_4576, UpperCamelCase__="gelu", UpperCamelCase__=0.25, UpperCamelCase__=1_0000, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.1, UpperCamelCase__=2048, UpperCamelCase__=0.02, UpperCamelCase__=1E-5, UpperCamelCase__=True, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = rotary_pct lowerCAmelCase_ = rotary_emb_base lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = classifier_dropout lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = tie_word_embeddings lowerCAmelCase_ = use_parallel_residual lowerCAmelCase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling, UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) lowerCAmelCase_ = self.rope_scaling.get('''type''', UpperCamelCase__ ) lowerCAmelCase_ = self.rope_scaling.get('''factor''', UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__, UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
167
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict ) -> int: """simple docstring""" UpperCamelCase :str = len(__magic_name__ ) while cur > 1: # Find the maximum number in arr UpperCamelCase :Optional[int] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCamelCase :List[Any] = arr[mi::-1] + arr[mi + 1 : len(__magic_name__ )] # Reverse whole list UpperCamelCase :Dict = arr[cur - 1 :: -1] + arr[cur : len(__magic_name__ )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase_ : List[str] = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
38
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class a__ : """simple docstring""" __lowerCamelCase = BlenderbotSmallConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def UpperCamelCase ( self , lowercase , lowercase ) -> str: '''simple docstring''' A__ = TFBlenderbotSmallModel(config=lowercase ).get_decoder() A__ = inputs_dict["input_ids"] A__ = input_ids[:1, :] A__ = inputs_dict["attention_mask"][:1, :] A__ = inputs_dict["head_mask"] A__ = 1 # first forward pass A__ = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(lowercase , attention_mask=lowercase )[0] A__ = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1e-3 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Optional[Any]=None , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Dict=None , SCREAMING_SNAKE_CASE_: List[str]=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: A__ = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class a__ ( unittest.TestCase ): """simple docstring""" __lowerCamelCase = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __lowerCamelCase = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.tokenizer(self.src_text , return_tensors="tf" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
68
0
from __future__ import annotations _lowerCAmelCase : str = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __magic_name__ : def __init__( self , __snake_case , __snake_case ) -> None: '''simple docstring''' __a =graph # mapping node to its parent in resulting breadth first tree __a ={} __a =source_vertex def __magic_name__ ( self ) -> None: '''simple docstring''' __a ={self.source_vertex} __a =None __a =[self.source_vertex] # first in first out queue while queue: __a =queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) __a =vertex queue.append(__snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a =self.parent.get(__snake_case ) if target_vertex_parent is None: __a =( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + f'->{target_vertex}' if __name__ == "__main__": _lowerCAmelCase : List[Any] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
363
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def a_ ( _A , _A="shi-labs/oneformer_demo" ) -> Optional[Any]: """simple docstring""" with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: snake_case__ = json.load(_lowerCAmelCase ) snake_case__ = {} snake_case__ = [] snake_case__ = [] for key, info in class_info.items(): snake_case__ = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) snake_case__ = thing_ids snake_case__ = class_names return metadata class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: List[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any]=7 , UpperCamelCase: Tuple=3 , UpperCamelCase: Optional[int]=30 , UpperCamelCase: Union[str, Any]=4_00 , UpperCamelCase: Optional[Any]=None , UpperCamelCase: str=True , UpperCamelCase: int=True , UpperCamelCase: List[str]=[0.5, 0.5, 0.5] , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=False , UpperCamelCase: Tuple=2_55 , UpperCamelCase: Optional[Any]="shi-labs/oneformer_demo" , UpperCamelCase: Optional[int]="ade20k_panoptic.json" , UpperCamelCase: Optional[int]=10 , ) -> Union[str, Any]: snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = class_info_file snake_case__ = prepare_metadata(snake_case_ , snake_case_ ) snake_case__ = num_text snake_case__ = repo_path # for the post_process_functions snake_case__ = 2 snake_case__ = 10 snake_case__ = 10 snake_case__ = 3 snake_case__ = 4 snake_case__ = num_labels snake_case__ = do_reduce_labels snake_case__ = ignore_index def lowerCAmelCase_ ( self: List[Any] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: int=False ) -> Dict: if not batched: snake_case__ = image_inputs[0] if isinstance(snake_case_ , Image.Image ): snake_case__ , snake_case__ = image.size else: snake_case__ , snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size['shortest_edge'] * h / w ) snake_case__ = self.size['shortest_edge'] elif w > h: snake_case__ = self.size['shortest_edge'] snake_case__ = int(self.size['shortest_edge'] * w / h ) else: snake_case__ = self.size['shortest_edge'] snake_case__ = self.size['shortest_edge'] else: snake_case__ = [] for image in image_inputs: snake_case__ , snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(snake_case_ , key=lambda UpperCamelCase : item[0] )[0] snake_case__ = max(snake_case_ , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def lowerCAmelCase_ ( self: Tuple ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): _UpperCAmelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _UpperCAmelCase = image_processing_class def lowerCAmelCase_ ( self: List[Any] ) -> str: snake_case__ = OneFormerImageProcessorTester(self ) @property def lowerCAmelCase_ ( self: Dict ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case_ , 'image_std' ) ) self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size' ) ) self.assertTrue(hasattr(snake_case_ , 'ignore_index' ) ) self.assertTrue(hasattr(snake_case_ , 'class_info_file' ) ) self.assertTrue(hasattr(snake_case_ , 'num_text' ) ) self.assertTrue(hasattr(snake_case_ , 'repo_path' ) ) self.assertTrue(hasattr(snake_case_ , 'metadata' ) ) self.assertTrue(hasattr(snake_case_ , 'do_reduce_labels' ) ) def lowerCAmelCase_ ( self: Dict ) -> List[str]: pass def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: # Initialize image_processor snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input snake_case__ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) snake_case__ = image_processor( snake_case_ , ['semantic'] * len(snake_case_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: Optional[Any] ) -> List[str]: # Initialize image_processor snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input snake_case__ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) snake_case__ = image_processor( snake_case_ , ['semantic'] * len(snake_case_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: # Initialize image_processor snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input snake_case__ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) snake_case__ = image_processor( snake_case_ , ['semantic'] * len(snake_case_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: str=False , UpperCamelCase: int=False , UpperCamelCase: Union[str, Any]="np" ) -> Optional[Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target snake_case__ = self.image_processing_tester.num_labels snake_case__ = None snake_case__ = None snake_case__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: snake_case__ = num_labels if is_instance_map: snake_case__ = list(range(snake_case_ ) ) * 2 snake_case__ = dict(enumerate(snake_case_ ) ) snake_case__ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": snake_case__ = [Image.fromarray(snake_case_ ) for annotation in annotations] snake_case__ = image_processor( snake_case_ , ['semantic'] * len(snake_case_ ) , snake_case_ , return_tensors='pt' , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[str]: pass def lowerCAmelCase_ ( self: Tuple ) -> Optional[Any]: def common(UpperCamelCase: Dict=False , UpperCamelCase: Optional[Any]=None ): snake_case__ = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) snake_case__ = inputs['mask_labels'] snake_case__ = inputs['class_labels'] snake_case__ = inputs['pixel_values'] snake_case__ = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type='pil' ) common(is_instance_map=snake_case_ , segmentation_type='pil' ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[int]: snake_case__ = np.zeros((20, 50) ) snake_case__ = 1 snake_case__ = 1 snake_case__ = 1 snake_case__ = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[Any]: snake_case__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) snake_case__ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) snake_case__ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] snake_case__ = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCAmelCase_ ( self: int ) -> Union[str, Any]: snake_case__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) snake_case__ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , snake_case_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: snake_case__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) snake_case__ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , snake_case_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
307
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
import math _lowerCamelCase : int = 10 _lowerCamelCase : Dict = 7 _lowerCamelCase : int = BALLS_PER_COLOUR * NUM_COLOURS def __lowerCamelCase (UpperCAmelCase__ : int = 2_0 ): SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
366
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Dict = (UniPCMultistepScheduler,) lowercase__ : Optional[int] = (("""num_inference_steps""", 25),) def __snake_case( self : List[str] , **_UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**_UpperCamelCase ) return config def __snake_case( self : List[str] , _UpperCamelCase : Dict=0 , **_UpperCamelCase : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample for t in range(_UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : Any , _UpperCamelCase : Union[str, Any]=0 , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : List[str] , _UpperCamelCase : Tuple=None , **_UpperCamelCase : List[Any] ) -> str: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCamelCase ) elif num_inference_steps is not None and not hasattr(_UpperCamelCase , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.timesteps[5] SCREAMING_SNAKE_CASE = scheduler.timesteps[6] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=_UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Dict ) -> int: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = self.full_loop( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) assert not torch.isnan(_UpperCamelCase ).any(), "Samples have nan numbers" def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=_UpperCamelCase ) self.check_over_configs(lower_order_final=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_UpperCamelCase , time_step=0 ) def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def __snake_case( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=_UpperCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def __snake_case( self : List[str] , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
206
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
def _SCREAMING_SNAKE_CASE ( a ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) __A : Optional[int] = len(bin(a )[3:] ) __A : Dict = bin(abs(a ) - (1 << binary_number_length) )[3:] __A : int = ( ( '1' + '0' * (binary_number_length - len(a )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
280
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __a = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) __a = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : str = '''https://pypi.org/pypi/diffusers/json''' UpperCAmelCase_ : Any = json.loads(request.urlopen(_lowercase ).read() )['''releases'''].keys() return sorted(_lowercase , key=lambda _lowercase : version.Version(_lowercase ) ) def lowerCamelCase__ ( ): '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(_lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase_ : Optional[int] = Path(_lowercase ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' init_hf_modules() UpperCAmelCase_ : Optional[int] = Path(_lowercase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase_ : Optional[Any] = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' with open(_lowercase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : int = f.read() # Imports of the form `import .xxx` UpperCAmelCase_ : Union[str, Any] = re.findall('''^\s*import\s+\.(\S+)\s*$''' , _lowercase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , _lowercase , flags=re.MULTILINE ) # Unique-ify return list(set(_lowercase ) ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[Any] = [module_file] UpperCAmelCase_ : Union[str, Any] = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase_ : Any = [] for f in files_to_check: new_imports.extend(get_relative_imports(_lowercase ) ) UpperCAmelCase_ : str = Path(_lowercase ).parent UpperCAmelCase_ : Tuple = [str(module_path / m ) for m in new_imports] UpperCAmelCase_ : Tuple = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase_ : Dict = [f'''{f}.py''' for f in new_import_files] UpperCAmelCase_ : Optional[int] = len(_lowercase ) == 0 all_relative_imports.extend(_lowercase ) return all_relative_imports def lowerCamelCase__ ( _lowercase ): '''simple docstring''' with open(_lowercase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : int = f.read() # Imports of the form `import xxx` UpperCAmelCase_ : List[Any] = re.findall('''^\s*import\s+(\S+)\s*$''' , _lowercase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , _lowercase , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase_ : str = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all UpperCAmelCase_ : Optional[Any] = list(set(_lowercase ) ) UpperCAmelCase_ : Optional[Any] = [] for imp in imports: try: importlib.import_module(_lowercase ) except ImportError: missing_packages.append(_lowercase ) if len(_lowercase ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f'''{", ".join(_lowercase )}. Run `pip install {" ".join(_lowercase )}`''' ) return get_relative_imports(_lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = module_path.replace(os.path.sep , '''.''' ) UpperCAmelCase_ : int = importlib.import_module(_lowercase ) if class_name is None: return find_pipeline_class(_lowercase ) return getattr(_lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' from ..pipelines import DiffusionPipeline UpperCAmelCase_ : str = dict(inspect.getmembers(_lowercase , inspect.isclass ) ) UpperCAmelCase_ : Optional[int] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _lowercase ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' f''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' f''' {loaded_module}.''' ) UpperCAmelCase_ : Optional[int] = cls return pipeline_class def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(_lowercase ) UpperCAmelCase_ : Optional[int] = os.path.join(_lowercase , _lowercase ) if os.path.isfile(_lowercase ): UpperCAmelCase_ : Union[str, Any] = module_file_or_url UpperCAmelCase_ : Optional[int] = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: UpperCAmelCase_ : Any = get_diffusers_versions() # cut ".dev0" UpperCAmelCase_ : str = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase_ : Optional[Any] = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: UpperCAmelCase_ : Optional[int] = f'''v{revision}''' elif revision == "main": UpperCAmelCase_ : Optional[Any] = revision else: raise ValueError( f'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' f''' {", ".join(available_versions + ["main"] )}.''' ) # community pipeline on GitHub UpperCAmelCase_ : Optional[int] = COMMUNITY_PIPELINES_URL.format(revision=_lowercase , pipeline=_lowercase ) try: UpperCAmelCase_ : Union[str, Any] = cached_download( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , use_auth_token=_lowercase , ) UpperCAmelCase_ : List[Any] = '''git''' UpperCAmelCase_ : List[Any] = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase_ : Union[str, Any] = hf_hub_download( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , use_auth_token=_lowercase , ) UpperCAmelCase_ : Tuple = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment UpperCAmelCase_ : List[Any] = check_imports(_lowercase ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase_ : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_lowercase ) UpperCAmelCase_ : Union[str, Any] = Path(_lowercase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_lowercase , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase_ : Tuple = f'''{module_needed}.py''' shutil.copy(os.path.join(_lowercase , _lowercase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : str = use_auth_token elif use_auth_token is True: UpperCAmelCase_ : Optional[int] = HfFolder.get_token() else: UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = model_info(_lowercase , revision=_lowercase , token=_lowercase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase_ : int = submodule_path / commit_hash UpperCAmelCase_ : Any = full_submodule + os.path.sep + commit_hash create_dynamic_module(_lowercase ) if not (submodule_path / module_file).exists(): shutil.copy(_lowercase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _lowercase , f'''{module_needed}.py''' , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) return os.path.join(_lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = get_cached_module_file( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) return get_class_in_module(_lowercase , final_module.replace('''.py''' , '''''' ) )
235
from __future__ import annotations from fractions import Fraction def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Tuple = 11 UpperCAmelCase_ : int = int('''1''' + '''0''' * digit_len ) for num in range(_lowercase , _lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowercase , _lowercase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 UpperCAmelCase_ : Any = 10 return solutions def lowerCamelCase__ ( _lowercase = 2 ): '''simple docstring''' UpperCAmelCase_ : Tuple = 1.0 for fraction in fraction_list(_lowercase ): UpperCAmelCase_ : Optional[Any] = Fraction(_lowercase ) result *= frac.denominator / frac.numerator return int(_lowercase ) if __name__ == "__main__": print(solution())
235
1
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
63
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'vocab_file': 'spiece.model'} _lowerCamelCase : Optional[int] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _lowerCamelCase : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = 2 _lowerCamelCase : Dict = 3 _lowerCamelCase : Union[str, Any] = 4 class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = """left""" def __init__( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : str=False , _lowerCamelCase : Optional[Any]="<s>" , _lowerCamelCase : List[str]="</s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : List[Any]="<sep>" , _lowerCamelCase : str="<pad>" , _lowerCamelCase : Dict="<cls>" , _lowerCamelCase : str="<mask>" , _lowerCamelCase : Optional[int]=["<eop>", "<eod>"] , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : str = 3 A_ : Union[str, Any] = do_lower_case A_ : Tuple = remove_space A_ : int = keep_accents A_ : Optional[Any] = vocab_file A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def a_ ( self : int ): """simple docstring""" return len(self.sp_model ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" A_ : str = self.__dict__.copy() A_ : Tuple = None return state def __setstate__( self : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : List[Any] = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" if self.remove_space: A_ : str = ''' '''.join(inputs.strip().split() ) else: A_ : Any = inputs A_ : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A_ : Any = unicodedata.normalize('''NFKD''' , _lowerCamelCase ) A_ : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: A_ : str = outputs.lower() return outputs def a_ ( self : List[str] , _lowerCamelCase : str ): """simple docstring""" A_ : str = self.preprocess_text(_lowerCamelCase ) A_ : int = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) A_ : List[Any] = [] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A_ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Tuple = cur_pieces[1:] else: A_ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.PieceToId(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(_lowerCamelCase ) def a_ ( self : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Any = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : bool = True , **_lowerCamelCase : int , ): """simple docstring""" A_ : int = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) A_ : List[str] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : Any = [] A_ : List[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) A_ : int = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A_ : Optional[int] = ''''''.join(_lowerCamelCase ) A_ : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Dict = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : Optional[int] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a_ ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1] return ([0] * len(_lowerCamelCase )) + [1, 1] def a_ ( self : int , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a_ ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
167
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *_lowercase ): with open(_lowercase , '''r''' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __UpperCamelCase : Union[str, Any] = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) __UpperCamelCase : Any = torch.device('cuda', local_rank) __UpperCamelCase : Union[str, Any] = socket.gethostname() __UpperCamelCase : Tuple = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCamelCase : List[Any] = dist.get_rank() __UpperCamelCase : List[Any] = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
258
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase: Optional[Any] = logging.get_logger(__name__) _lowercase: Optional[int] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowercase ( _lowerCamelCase ): """simple docstring""" __A = '''yolos''' def __init__(self , lowerCamelCase_=768 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=3072 , lowerCamelCase_="gelu" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , lowerCamelCase_=1E-1_2 , lowerCamelCase_=[512, 864] , lowerCamelCase_=16 , lowerCamelCase_=3 , lowerCamelCase_=True , lowerCamelCase_=100 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=1 , lowerCamelCase_=5 , lowerCamelCase_=2 , lowerCamelCase_=5 , lowerCamelCase_=2 , lowerCamelCase_=0.1 , **lowerCamelCase_ , ): """simple docstring""" super().__init__(**_A ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class _lowercase ( _lowerCamelCase ): """simple docstring""" __A = version.parse("1.11" ) @property def UpperCamelCase_ (self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ (self ): """simple docstring""" return 1E-4 @property def UpperCamelCase_ (self ): """simple docstring""" return 12
227
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
import doctest from collections import deque import numpy as np class A__ : def __init__( self : int ): '''simple docstring''' lowerCAmelCase__ : int = [2, 1, 2, -1] lowerCAmelCase__ : Union[str, Any] = [1, 2, 3, 4] def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = len(self.first_signal ) lowerCAmelCase__ : Optional[Any] = len(self.second_signal ) lowerCAmelCase__ : str = max(a , a ) # create a zero matrix of max_length x max_length lowerCAmelCase__ : str = [[0] * max_length for i in range(a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(a ): lowerCAmelCase__ : int = deque(self.second_signal ) rotated_signal.rotate(a ) for j, item in enumerate(a ): matrix[i][j] += item # multiply the matrix with the first signal lowerCAmelCase__ : Union[str, Any] = np.matmul(np.transpose(a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowercase: Any = NewType("DataClass", Any) _lowercase: List[str] = NewType("DataClassType", Any) def a( A : Dict ) -> Any: """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def a( A : str ) -> int: """simple docstring""" a = {str(lowerCamelCase__ ): choice for choice in choices} return lambda A : str_to_choice.get(lowerCamelCase__ , lowerCamelCase__ ) def a( *, A : List[Any] = None , A : Union[str, Any] = None , A : Optional[int] = dataclasses.MISSING , A : Optional[Any] = dataclasses.MISSING , A : int = None , **A : List[str] , ) -> List[Any]: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls a = {} if aliases is not None: a = aliases if help is not None: a = help return dataclasses.field(metadata=lowerCamelCase__ , default=lowerCamelCase__ , default_factory=lowerCamelCase__ , **lowerCamelCase__ ) class _lowercase ( __UpperCAmelCase ): """simple docstring""" __A = 42 def __init__(self , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" if "formatter_class" not in kwargs: a = ArgumentDefaultsHelpFormatter super().__init__(**lowerCamelCase_ ) if dataclasses.is_dataclass(lowerCamelCase_ ): a = [dataclass_types] a = list(lowerCamelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCamelCase_ ) @staticmethod def UpperCamelCase_ (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = F'''--{field.name}''' a = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCamelCase_ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) a = kwargs.pop("aliases" , [] ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): a = [aliases] a = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(lowerCamelCase_ , "UnionType" ) and isinstance(lowerCamelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCamelCase_ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F''' Problem encountered in field \'{field.name}\'.''' ) if type(lowerCamelCase_ ) not in field.type.__args__: # filter `str` in Union a = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] a = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) a = ( field.type.__args__[0] if isinstance(lowerCamelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) a = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) a = {} if origin_type is Literal or (isinstance(field.type , lowerCamelCase_ ) and issubclass(field.type , lowerCamelCase_ )): if origin_type is Literal: a = field.type.__args__ else: a = [x.value for x in field.type] a = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: a = field.default else: a = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument a = copy(lowerCamelCase_ ) # Hack because type=bool in argparse does not behave as we want. a = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. a = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way a = default # This tells argparse we accept 0 or 1 value after --field_name a = """?""" # This is the value that will get picked if we do --field_name (without value) a = True elif isclass(lowerCamelCase_ ) and issubclass(lowerCamelCase_ , lowerCamelCase_ ): a = field.type.__args__[0] a = """+""" if field.default_factory is not dataclasses.MISSING: a = field.default_factory() elif field.default is dataclasses.MISSING: a = True else: a = field.type if field.default is not dataclasses.MISSING: a = field.default elif field.default_factory is not dataclasses.MISSING: a = field.default_factory() else: a = True parser.add_argument(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): a = False parser.add_argument(F'''--no_{field.name}''' , action="store_false" , dest=field.name , **lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" if hasattr(lowerCamelCase_ , "_argument_group_name" ): a = self.add_argument_group(dtype._argument_group_name ) else: a = self try: a = get_type_hints(lowerCamelCase_ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCamelCase_ ): a = """.""".join(map(lowerCamelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(lowerCamelCase_ ): if not field.init: continue a = type_hints[field.name] self._parse_dataclass_field(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): a = [] if args_filename: args_files.append(Path(lowerCamelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values a = ArgumentParser() args_file_parser.add_argument(lowerCamelCase_ , type=lowerCamelCase_ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) a = args_file_parser.parse_known_args(args=lowerCamelCase_ ) a = vars(lowerCamelCase_ ).get(args_file_flag.lstrip("-" ) , lowerCamelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCamelCase_ ) for p in cmd_args_file_paths] ) a = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last a = file_args + args if args is not None else file_args + sys.argv[1:] a = self.parse_known_args(args=lowerCamelCase_ ) a = [] for dtype in self.dataclass_types: a = {f.name for f in dataclasses.fields(lowerCamelCase_ ) if f.init} a = {k: v for k, v in vars(lowerCamelCase_ ).items() if k in keys} for k in keys: delattr(lowerCamelCase_ , lowerCamelCase_ ) a = dtype(**lowerCamelCase_ ) outputs.append(lowerCamelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCamelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = False ): """simple docstring""" a = set(args.keys() ) a = [] for dtype in self.dataclass_types: a = {f.name for f in dataclasses.fields(lowerCamelCase_ ) if f.init} a = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) a = dtype(**lowerCamelCase_ ) outputs.append(lowerCamelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(lowerCamelCase_ )}''' ) return tuple(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = False ): """simple docstring""" with open(Path(lowerCamelCase_ ) , encoding="utf-8" ) as open_json_file: a = json.loads(open_json_file.read() ) a = self.parse_dict(lowerCamelCase_ , allow_extra_keys=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = False ): """simple docstring""" a = self.parse_dict(yaml.safe_load(Path(lowerCamelCase_ ).read_text() ) , allow_extra_keys=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
227
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a ( lowerCamelCase__=None ): '''simple docstring''' A_ : int = argparse.ArgumentParser(add_help=lowerCamelCase__ , allow_abbrev=lowerCamelCase__ ) # The main config parser A_ : int = config_command_parser(lowerCamelCase__ ) # The subparser to add commands to A_ : int = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(lowerCamelCase__ , parents=[parent_parser] ) update_command_parser(lowerCamelCase__ , parents=[parent_parser] ) return config_parser def a ( ): '''simple docstring''' A_ : Optional[int] = get_config_parser() A_ : List[str] = config_parser.parse_args() if not hasattr(lowerCamelCase__ , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
206
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE_ = ["image_processor"] SCREAMING_SNAKE_CASE_ = "SamImageProcessor" def __init__( self, lowerCAmelCase__) -> Tuple: super().__init__(__SCREAMING_SNAKE_CASE) snake_case_ = self.image_processor snake_case_ = -10 snake_case_ = self.image_processor.size['longest_edge'] def __call__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = self.image_processor( __SCREAMING_SNAKE_CASE, return_tensors=__SCREAMING_SNAKE_CASE, **__SCREAMING_SNAKE_CASE, ) # pop arguments that are not used in the foward but used nevertheless snake_case_ = encoding_image_processor['original_sizes'] if hasattr(__SCREAMING_SNAKE_CASE, 'numpy'): # Checks if Torch or TF tensor snake_case_ = original_sizes.numpy() snake_case_ , snake_case_ , snake_case_ = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE, input_labels=__SCREAMING_SNAKE_CASE, input_boxes=__SCREAMING_SNAKE_CASE, ) snake_case_ = self._normalize_and_convert( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, input_points=__SCREAMING_SNAKE_CASE, input_labels=__SCREAMING_SNAKE_CASE, input_boxes=__SCREAMING_SNAKE_CASE, return_tensors=__SCREAMING_SNAKE_CASE, ) return encoding_image_processor def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="pt", ) -> Union[str, Any]: if input_points is not None: if len(__SCREAMING_SNAKE_CASE) != len(__SCREAMING_SNAKE_CASE): snake_case_ = [ self._normalize_coordinates(self.target_size, __SCREAMING_SNAKE_CASE, original_sizes[0]) for point in input_points ] else: snake_case_ = [ self._normalize_coordinates(self.target_size, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) for point, original_size in zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: snake_case_ , snake_case_ = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) snake_case_ = np.array(__SCREAMING_SNAKE_CASE) if input_labels is not None: snake_case_ = np.array(__SCREAMING_SNAKE_CASE) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE) != len(__SCREAMING_SNAKE_CASE): snake_case_ = [ self._normalize_coordinates(self.target_size, __SCREAMING_SNAKE_CASE, original_sizes[0], is_bounding_box=__SCREAMING_SNAKE_CASE) for box in input_boxes ] else: snake_case_ = [ self._normalize_coordinates(self.target_size, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, is_bounding_box=__SCREAMING_SNAKE_CASE) for box, original_size in zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) ] snake_case_ = np.array(__SCREAMING_SNAKE_CASE) if input_boxes is not None: if return_tensors == "pt": snake_case_ = torch.from_numpy(__SCREAMING_SNAKE_CASE) # boxes batch size of 1 by default snake_case_ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": snake_case_ = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE) # boxes batch size of 1 by default snake_case_ = tf.expand_dims(__SCREAMING_SNAKE_CASE, 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes}) if input_points is not None: if return_tensors == "pt": snake_case_ = torch.from_numpy(__SCREAMING_SNAKE_CASE) # point batch size of 1 by default snake_case_ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": snake_case_ = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE) # point batch size of 1 by default snake_case_ = tf.expand_dims(__SCREAMING_SNAKE_CASE, 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({'input_points': input_points}) if input_labels is not None: if return_tensors == "pt": snake_case_ = torch.from_numpy(__SCREAMING_SNAKE_CASE) # point batch size of 1 by default snake_case_ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": snake_case_ = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE) # point batch size of 1 by default snake_case_ = tf.expand_dims(__SCREAMING_SNAKE_CASE, 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels}) return encoding_image_processor def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = max([point.shape[0] for point in input_points]) snake_case_ = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE): if point.shape[0] != expected_nb_points: snake_case_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value], axis=0) snake_case_ = np.append(input_labels[i], [self.point_pad_value]) processed_input_points.append(__SCREAMING_SNAKE_CASE) snake_case_ = processed_input_points return input_points, input_labels def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=False) -> Tuple: snake_case_ , snake_case_ = original_size snake_case_ , snake_case_ = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE, longest_edge=__SCREAMING_SNAKE_CASE) snake_case_ = deepcopy(__SCREAMING_SNAKE_CASE).astype(__SCREAMING_SNAKE_CASE) if is_bounding_box: snake_case_ = coords.reshape(-1, 2, 2) snake_case_ = coords[..., 0] * (new_w / old_w) snake_case_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: snake_case_ = coords.reshape(-1, 4) return coords def a_ ( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, ) -> Optional[int]: if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE, 'numpy'): # Checks for TF or Torch tensor snake_case_ = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) or not isinstance(input_points[0], __SCREAMING_SNAKE_CASE): raise ValueError('Input points must be a list of list of floating points.') snake_case_ = [np.array(__SCREAMING_SNAKE_CASE) for input_point in input_points] else: snake_case_ = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE, 'numpy'): snake_case_ = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) or not isinstance(input_labels[0], __SCREAMING_SNAKE_CASE): raise ValueError('Input labels must be a list of list integers.') snake_case_ = [np.array(__SCREAMING_SNAKE_CASE) for label in input_labels] else: snake_case_ = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE, 'numpy'): snake_case_ = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) or not isinstance(input_boxes[0], __SCREAMING_SNAKE_CASE) or not isinstance(input_boxes[0][0], __SCREAMING_SNAKE_CASE) ): raise ValueError('Input boxes must be a list of list of list of floating points.') snake_case_ = [np.array(__SCREAMING_SNAKE_CASE).astype(np.floataa) for box in input_boxes] else: snake_case_ = None return input_points, input_labels, input_boxes @property def a_ ( self) -> List[Any]: snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE)) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Any: return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE, **__SCREAMING_SNAKE_CASE)
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
a__ = '''Tobias Carryer''' from time import time class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a , _a=int(time() ) ) -> Any: # noqa: B008 _a : Tuple = multiplier _a : Any = increment _a : Union[str, Any] = modulo _a : Optional[Any] = seed def __lowercase ( self ) -> List[Any]: _a : Any = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a__ = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
235
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a__ = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' a__ = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' a__ = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowercase ( self , _a , _a , _a=4 , _a=False ) -> Optional[Any]: _a : List[Any] = compute_bleu( reference_corpus=_a , translation_corpus=_a , max_order=_a , smooth=_a ) ((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
235
1
import qiskit def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a__ , a__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator SCREAMING_SNAKE_CASE : Any = qiskit.execute(a__ , a__ , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a__ ) if __name__ == "__main__": print(F"Total count for various states are: {single_qubit_measure(1, 1)}")
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
'''simple docstring''' _lowerCamelCase : str = 256 # Modulus to hash a string _lowerCamelCase : Dict = 100_0003 def __a ( UpperCAmelCase , UpperCAmelCase ) ->bool: """simple docstring""" A = len(UpperCAmelCase ) A = len(UpperCAmelCase ) if p_len > t_len: return False A = 0 A = 0 A = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __a ( ) ->None: """simple docstring""" A = """abc1abc12""" A = """alskfjaldsabc1abc1abc12k23adsfabcabc""" A = """alskfjaldsk23adsfabcabc""" assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) A = """ABABX""" A = """ABABZABABYABABX""" assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) A = """AAAB""" A = """ABAAAAAB""" assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) A = """abcdabcy""" A = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) A = """Lü""" A = """Lüsai""" assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) A = """Lue""" assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
258
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(A__ ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Tuple , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str] ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A (self : Any , _lowerCAmelCase : str=None ): A = {} if top_k is not None: A = top_k return {}, {}, postprocess_params def __call__(self : str , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : int ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = load_image(_lowerCAmelCase ) A = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A (self : Union[str, Any] , _lowerCAmelCase : Optional[int] ): A = self.model(**_lowerCAmelCase ) return model_outputs def A (self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int=5 ): if top_k > self.model.config.num_labels: A = self.model.config.num_labels if self.framework == "pt": A = model_outputs.logits.softmax(-1 )[0] A , A = probs.topk(_lowerCAmelCase ) elif self.framework == "tf": A = stable_softmax(model_outputs.logits , axis=-1 )[0] A = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) A , A = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) A = scores.tolist() A = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCAmelCase , _lowerCAmelCase )]
258
1
_lowercase: Optional[int] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def a( A : float ) -> str: """simple docstring""" assert type(A ) in (int, float) and decimal == int(A ) a = int(A ) a = "" a = False if decimal < 0: a = True decimal *= -1 while decimal > 0: a , a = divmod(A , 16 ) a = values[remainder] + hexadecimal a = "0x" + hexadecimal if negative: a = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
71
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase: str = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = XLMProphetNetTokenizer __A = False __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = "[PAD]" a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase_ ) , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) a = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase_ (self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Hello World!" a = [35389, 6672, 49, 2] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
71
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __UpperCamelCase : Union[str, Any] = random.Random() def a_ ( _A , _A=1.0 , _A=None , _A=None ) -> Union[str, Any]: """simple docstring""" if rng is None: snake_case__ = global_rng snake_case__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: int , UpperCamelCase: int , UpperCamelCase: List[str]=7 , UpperCamelCase: List[str]=4_00 , UpperCamelCase: Any=20_00 , UpperCamelCase: Any=10 , UpperCamelCase: Union[str, Any]=1_60 , UpperCamelCase: Tuple=8 , UpperCamelCase: Tuple=0.0 , UpperCamelCase: str=40_00 , UpperCamelCase: Any=False , UpperCamelCase: Tuple=True , ) -> Optional[int]: snake_case__ = parent snake_case__ = batch_size snake_case__ = min_seq_length snake_case__ = max_seq_length snake_case__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ = padding_value snake_case__ = sampling_rate snake_case__ = return_attention_mask snake_case__ = do_normalize snake_case__ = feature_size snake_case__ = chunk_length snake_case__ = hop_length def lowerCAmelCase_ ( self: Tuple ) -> List[Any]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase_ ( self: str , UpperCamelCase: Union[str, Any]=False , UpperCamelCase: int=False ) -> Union[str, Any]: def _flatten(UpperCamelCase: Union[str, Any] ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: snake_case__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def lowerCAmelCase_ ( self: Any ) -> List[str]: snake_case__ = WhisperFeatureExtractionTester(self ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]: snake_case__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = feat_extract_first.save_pretrained(UpperCamelCase )[0] check_json_file_has_correct_format(UpperCamelCase ) snake_case__ = self.feature_extraction_class.from_pretrained(UpperCamelCase ) snake_case__ = feat_extract_first.to_dict() snake_case__ = feat_extract_second.to_dict() snake_case__ = feat_extract_first.mel_filters snake_case__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> List[str]: snake_case__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = os.path.join(UpperCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase ) snake_case__ = self.feature_extraction_class.from_json_file(UpperCamelCase ) snake_case__ = feat_extract_first.to_dict() snake_case__ = feat_extract_second.to_dict() snake_case__ = feat_extract_first.mel_filters snake_case__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: str ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case__ = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test feature size snake_case__ = feature_extractor(UpperCamelCase , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case__ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features snake_case__ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test batched snake_case__ = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features snake_case__ = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case__ = np.asarray(UpperCamelCase ) snake_case__ = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features snake_case__ = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test truncation required snake_case__ = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] snake_case__ = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] snake_case__ = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case__ = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs_truncated] snake_case__ = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features snake_case__ = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Any: import torch snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ = np.random.rand(1_00 , 32 ).astype(np.floataa ) snake_case__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case__ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: int ) -> Optional[int]: snake_case__ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case__ = ds.sort('id' ).select(range(UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self: Dict ) -> Optional[int]: # fmt: off snake_case__ = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on snake_case__ = self._load_datasamples(1 ) snake_case__ = WhisperFeatureExtractor() snake_case__ = feature_extractor(UpperCamelCase , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase , atol=1e-4 ) ) def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ = self._load_datasamples(1 )[0] snake_case__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue snake_case__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase )[0] self.assertTrue(np.all(np.mean(UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase ) - 1 ) < 1e-3 ) )
307
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "LayoutLMv2ImageProcessor" _UpperCAmelCase = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self: int , UpperCamelCase: Optional[int]=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Union[str, Any] ) -> int: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCamelCase: Union[List[List[int]], List[List[List[int]]]] = None , UpperCamelCase: Optional[Union[List[int], List[List[int]]]] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[bool, str, PaddingStrategy] = False , UpperCamelCase: Union[bool, str, TruncationStrategy] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: int = 0 , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[str, TensorType]] = None , **UpperCamelCase: Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor snake_case__ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features['words'] snake_case__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values snake_case__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(UpperCamelCase , encoded_inputs['overflow_to_sample_mapping'] ) snake_case__ = images return encoded_inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any ) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def lowerCAmelCase_ ( self: Dict , *UpperCamelCase: Dict , **UpperCamelCase: Optional[int] ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , *UpperCamelCase: Optional[Any] , **UpperCamelCase: int ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: str ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase_ ( self: Any ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
307
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Any = SamImageProcessor() UpperCamelCase__ : Union[str, Any] = SamProcessor(__magic_name__ ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self, **__magic_name__ ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__magic_name__ ).image_processor def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ : Tuple = [Image.fromarray(np.moveaxis(__magic_name__, 0, -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Optional[Any] = self.get_image_processor(do_normalize=__magic_name__, padding_value=1.0 ) UpperCamelCase__ : int = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=__magic_name__, padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __magic_name__ ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Any = SamProcessor(image_processor=__magic_name__ ) UpperCamelCase__ : List[str] = self.prepare_image_inputs() UpperCamelCase__ : Tuple = image_processor(__magic_name__, return_tensors='''np''' ) UpperCamelCase__ : Union[str, Any] = processor(images=__magic_name__, return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : Any = SamProcessor(image_processor=__magic_name__ ) UpperCamelCase__ : Optional[int] = [torch.ones((1, 3, 5, 5) )] UpperCamelCase__ : Optional[int] = [[1764, 2646]] UpperCamelCase__ : List[str] = [[683, 1024]] UpperCamelCase__ : List[str] = processor.post_process_masks(__magic_name__, __magic_name__, __magic_name__ ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ : Any = processor.post_process_masks( __magic_name__, torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) # should also work with np UpperCamelCase__ : Any = [np.ones((1, 3, 5, 5) )] UpperCamelCase__ : Tuple = processor.post_process_masks(__magic_name__, np.array(__magic_name__ ), np.array(__magic_name__ ) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ : Dict = [[1, 0], [0, 1]] with self.assertRaises(__magic_name__ ): UpperCamelCase__ : Any = processor.post_process_masks(__magic_name__, np.array(__magic_name__ ), np.array(__magic_name__ ) ) @require_vision @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[Any] = tempfile.mkdtemp() UpperCamelCase__ : Dict = SamImageProcessor() UpperCamelCase__ : Optional[Any] = SamProcessor(__magic_name__ ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self, **__magic_name__ ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__magic_name__ ).image_processor def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ : Union[str, Any] = [Image.fromarray(np.moveaxis(__magic_name__, 0, -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : str = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : List[Any] = self.get_image_processor(do_normalize=__magic_name__, padding_value=1.0 ) UpperCamelCase__ : int = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=__magic_name__, padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __magic_name__ ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Optional[int] = SamProcessor(image_processor=__magic_name__ ) UpperCamelCase__ : Optional[Any] = self.prepare_image_inputs() UpperCamelCase__ : List[Any] = image_processor(__magic_name__, return_tensors='''np''' ) UpperCamelCase__ : Optional[int] = processor(images=__magic_name__, return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) @require_tf def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = SamProcessor(image_processor=__magic_name__ ) UpperCamelCase__ : Optional[Any] = [tf.ones((1, 3, 5, 5) )] UpperCamelCase__ : Union[str, Any] = [[1764, 2646]] UpperCamelCase__ : Optional[int] = [[683, 1024]] UpperCamelCase__ : str = processor.post_process_masks(__magic_name__, __magic_name__, __magic_name__, return_tensors='''tf''' ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ : Tuple = processor.post_process_masks( __magic_name__, tf.convert_to_tensor(__magic_name__ ), tf.convert_to_tensor(__magic_name__ ), return_tensors='''tf''', ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) # should also work with np UpperCamelCase__ : List[str] = [np.ones((1, 3, 5, 5) )] UpperCamelCase__ : List[str] = processor.post_process_masks( __magic_name__, np.array(__magic_name__ ), np.array(__magic_name__ ), return_tensors='''tf''' ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ : str = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): UpperCamelCase__ : int = processor.post_process_masks( __magic_name__, np.array(__magic_name__ ), np.array(__magic_name__ ), return_tensors='''tf''' ) @require_vision @require_torchvision class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCamelCase__ : int = SamImageProcessor() UpperCamelCase__ : int = SamProcessor(__magic_name__ ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self, **__magic_name__ ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__magic_name__ ).image_processor def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(__magic_name__, 0, -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : List[Any] = self.get_image_processor() UpperCamelCase__ : List[str] = SamProcessor(image_processor=__magic_name__ ) UpperCamelCase__ : Any = np.random.randint(0, 2, size=(1, 3, 5, 5) ).astype(np.floataa ) UpperCamelCase__ : str = [tf.convert_to_tensor(__magic_name__ )] UpperCamelCase__ : int = [torch.tensor(__magic_name__ )] UpperCamelCase__ : List[str] = [[1764, 2646]] UpperCamelCase__ : str = [[683, 1024]] UpperCamelCase__ : Union[str, Any] = processor.post_process_masks( __magic_name__, __magic_name__, __magic_name__, return_tensors='''tf''' ) UpperCamelCase__ : Optional[int] = processor.post_process_masks( __magic_name__, __magic_name__, __magic_name__, return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : int = self.get_image_processor() UpperCamelCase__ : str = SamProcessor(image_processor=__magic_name__ ) UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : Optional[int] = image_processor(__magic_name__, return_tensors='''pt''' )['''pixel_values'''].numpy() UpperCamelCase__ : str = processor(images=__magic_name__, return_tensors='''pt''' )['''pixel_values'''].numpy() UpperCamelCase__ : Optional[Any] = image_processor(__magic_name__, return_tensors='''tf''' )['''pixel_values'''].numpy() UpperCamelCase__ : Optional[Any] = processor(images=__magic_name__, return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(__magic_name__, __magic_name__ ) ) self.assertTrue(np.allclose(__magic_name__, __magic_name__ ) ) self.assertTrue(np.allclose(__magic_name__, __magic_name__ ) )
353
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self, __magic_name__ = 16, __magic_name__ = 88, __magic_name__ = None, __magic_name__ = 1, __magic_name__ = 0.0, __magic_name__ = 32, __magic_name__ = None, __magic_name__ = False, __magic_name__ = None, __magic_name__ = None, __magic_name__ = "geglu", __magic_name__ = None, ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase__ : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__magic_name__, attention_head_dim=__magic_name__, in_channels=__magic_name__, num_layers=__magic_name__, dropout=__magic_name__, norm_num_groups=__magic_name__, cross_attention_dim=__magic_name__, attention_bias=__magic_name__, sample_size=__magic_name__, num_vector_embeds=__magic_name__, activation_fn=__magic_name__, num_embeds_ada_norm=__magic_name__, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCamelCase__ : Any = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCamelCase__ : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCamelCase__ : int = [1, 0] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__ = True, ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = hidden_states UpperCamelCase__ : Tuple = [] UpperCamelCase__ : int = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCamelCase__ : List[Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCamelCase__ : List[str] = self.transformer_index_for_condition[i] UpperCamelCase__ : List[str] = self.transformers[transformer_index]( __magic_name__, encoder_hidden_states=__magic_name__, timestep=__magic_name__, cross_attention_kwargs=__magic_name__, return_dict=__magic_name__, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCamelCase__ : List[str] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCamelCase__ : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__magic_name__ )
247
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __snake_case :Optional[int] = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __snake_case :List[str] = '''UperNetConfig''' class _A ( nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] , __SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int], str] = 0 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] = 1 , ): '''simple docstring''' super().__init__() __a = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) __a = nn.BatchNormad(__SCREAMING_SNAKE_CASE) __a = nn.ReLU() def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : torch.Tensor): '''simple docstring''' __a = self.conv(__SCREAMING_SNAKE_CASE) __a = self.batch_norm(__SCREAMING_SNAKE_CASE) __a = self.activation(__SCREAMING_SNAKE_CASE) return output class _A ( nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' super().__init__() __a = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : torch.Tensor): '''simple docstring''' __a = input for layer in self.layers: __a = layer(__SCREAMING_SNAKE_CASE) return hidden_state class _A ( nn.Module ): def __init__( self : int , __SCREAMING_SNAKE_CASE : Tuple[int, ...] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool): '''simple docstring''' super().__init__() __a = pool_scales __a = align_corners __a = in_channels __a = channels __a = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE): __a = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE) self.blocks.append(__SCREAMING_SNAKE_CASE) self.add_module(str(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : torch.Tensor): '''simple docstring''' __a = [] for ppm in self.blocks: __a = ppm(__SCREAMING_SNAKE_CASE) __a = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners) ppm_outs.append(__SCREAMING_SNAKE_CASE) return ppm_outs class _A ( nn.Module ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' super().__init__() __a = config __a = config.pool_scales # e.g. (1, 2, 3, 6) __a = in_channels __a = config.hidden_size __a = False __a = nn.Convad(self.channels , config.num_labels , kernel_size=1) # PSP Module __a = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __a = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __a = nn.ModuleList() __a = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __a = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1) __a = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1) self.lateral_convs.append(__SCREAMING_SNAKE_CASE) self.fpn_convs.append(__SCREAMING_SNAKE_CASE) __a = UperNetConvModule( len(self.in_channels) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowerCamelCase ( self : Tuple): '''simple docstring''' self.apply(self._init_weights) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = inputs[-1] __a = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE)) __a = torch.cat(__SCREAMING_SNAKE_CASE , dim=1) __a = self.bottleneck(__SCREAMING_SNAKE_CASE) return output def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : torch.Tensor): '''simple docstring''' __a = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE)) # build top-down path __a = len(__SCREAMING_SNAKE_CASE) for i in range(used_backbone_levels - 1 , 0 , -1): __a = laterals[i - 1].shape[2:] __a = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners) # build outputs __a = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1 , 0 , -1): __a = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners) __a = torch.cat(__SCREAMING_SNAKE_CASE , dim=1) __a = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE) __a = self.classifier(__SCREAMING_SNAKE_CASE) return output class _A ( nn.Module ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] = 1): '''simple docstring''' super().__init__() __a = config __a = config.auxiliary_in_channels __a = config.auxiliary_channels __a = config.auxiliary_num_convs __a = config.auxiliary_concat_input __a = in_index __a = (kernel_size // 2) * dilation __a = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE)) for i in range(self.num_convs - 1): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE)) if self.num_convs == 0: __a = nn.Identity() else: __a = nn.Sequential(*__SCREAMING_SNAKE_CASE) if self.concat_input: __a = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2) __a = nn.Convad(self.channels , config.num_labels , kernel_size=1) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' self.apply(self._init_weights) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : torch.Tensor): '''simple docstring''' __a = encoder_hidden_states[self.in_index] __a = self.convs(__SCREAMING_SNAKE_CASE) if self.concat_input: __a = self.conv_cat(torch.cat([hidden_states, output] , dim=1)) __a = self.classifier(__SCREAMING_SNAKE_CASE) return output class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[Any] = UperNetConfig UpperCamelCase__ : List[str] = '''pixel_values''' UpperCamelCase__ : int = True def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any]=False): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = value __snake_case :Any = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __snake_case :Tuple = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' ,__UpperCAmelCase ,) class _A ( __UpperCAmelCase ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE) __a = AutoBackbone.from_config(config.backbone_config) # Semantic segmentation head(s) __a = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels) __a = UperNetFCNHead(__SCREAMING_SNAKE_CASE) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''')) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC) def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , ): '''simple docstring''' __a = return_dict if return_dict is not None else self.config.use_return_dict __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = output_attentions if output_attentions is not None else self.config.output_attentions __a = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = outputs.feature_maps __a = self.decode_head(__SCREAMING_SNAKE_CASE) __a = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE) __a = None if self.auxiliary_head is not None: __a = self.auxiliary_head(__SCREAMING_SNAKE_CASE) __a = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE) __a = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''') else: # compute weighted loss __a = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index) __a = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __a = (logits,) + outputs[1:] else: __a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
49
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _UpperCAmelCase = getLogger(__name__) _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 8 , UpperCamelCase_ = DEFAULT_DEVICE , UpperCamelCase_=False , UpperCamelCase_="summarization" , UpperCamelCase_=None , **UpperCamelCase_ , ) -> Dict: UpperCamelCase_ = Path(UpperCamelCase_ ).open("w" , encoding="utf-8" ) UpperCamelCase_ = str(UpperCamelCase_ ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) if fpaa: UpperCamelCase_ = model.half() UpperCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. UpperCamelCase_ = time.time() # update config with task specific params use_task_specific_params(UpperCamelCase_ , UpperCamelCase_ ) if prefix is None: UpperCamelCase_ = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(UpperCamelCase_ , UpperCamelCase_ ) ) ): UpperCamelCase_ = [prefix + text for text in examples_chunk] UpperCamelCase_ = tokenizer(UpperCamelCase_ , return_tensors="pt" , truncation=UpperCamelCase_ , padding="longest" ).to(UpperCamelCase_ ) UpperCamelCase_ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **UpperCamelCase_ , ) UpperCamelCase_ = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() UpperCamelCase_ = int(time.time() - start_time ) # seconds UpperCamelCase_ = len(UpperCamelCase_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCAmelCase_ ( ) -> List[Any]: return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def lowerCAmelCase_ ( UpperCamelCase_=True ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("model_name" , type=UpperCamelCase_ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=UpperCamelCase_ , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=UpperCamelCase_ , help="where to save summaries" ) parser.add_argument("--reference_path" , type=UpperCamelCase_ , required=UpperCamelCase_ , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=UpperCamelCase_ , required=UpperCamelCase_ , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=UpperCamelCase_ , required=UpperCamelCase_ , default=UpperCamelCase_ , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=UpperCamelCase_ , required=UpperCamelCase_ , default=UpperCamelCase_ , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=UpperCamelCase_ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=UpperCamelCase_ , default=8 , required=UpperCamelCase_ , help="batch size" ) parser.add_argument( "--n_obs" , type=UpperCamelCase_ , default=-1 , required=UpperCamelCase_ , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=UpperCamelCase_ , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate UpperCamelCase_ , UpperCamelCase_ = parser.parse_known_args() UpperCamelCase_ = parse_numeric_n_bool_cl_kwargs(UpperCamelCase_ ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) UpperCamelCase_ = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: UpperCamelCase_ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=UpperCamelCase_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) UpperCamelCase_ = generate_summaries_or_translations( UpperCamelCase_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **UpperCamelCase_ , ) if args.reference_path is None: return {} # Compute scores UpperCamelCase_ = calculate_bleu if "translation" in args.task else calculate_rouge UpperCamelCase_ = [x.rstrip() for x in open(args.save_path ).readlines()] UpperCamelCase_ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(UpperCamelCase_ )] UpperCamelCase_ = score_fn(UpperCamelCase_ , UpperCamelCase_ ) scores.update(UpperCamelCase_ ) if args.dump_args: scores.update(UpperCamelCase_ ) if args.info: UpperCamelCase_ = args.info if verbose: print(UpperCamelCase_ ) if args.score_path is not None: json.dump(UpperCamelCase_ , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
1
"""simple docstring""" import math def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. A : Union[str, Any] = "Enter the base and the power separated by a comma: " A , A : str = map(int, input(prompt).split(",")) A , A : str = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. A : List[Any] = res(xa, ya) A : Tuple = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
57
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: raise NotImplementedError()
19
0
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __a: Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class UpperCAmelCase ( snake_case_ ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: super().__init__(*_A , **_A ) requires_backends(self , '''decord''' ) self.check_model_type(_A ) def _lowerCAmelCase( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Any: lowercase__ : Tuple = {} if frame_sampling_rate is not None: lowercase__ : Optional[Any] = frame_sampling_rate if num_frames is not None: lowercase__ : int = num_frames lowercase__ : int = {} if top_k is not None: lowercase__ : int = top_k return preprocess_params, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ) -> Dict: return super().__call__(_A , **_A ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=1 ) -> Dict: if num_frames is None: lowercase__ : int = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): lowercase__ : Tuple = BytesIO(requests.get(_A ).content ) lowercase__ : Optional[Any] = VideoReader(_A ) videoreader.seek(0 ) lowercase__ : int = 0 lowercase__ : Tuple = num_frames * frame_sampling_rate - 1 lowercase__ : Any = np.linspace(_A , _A , num=_A , dtype=np.intaa ) lowercase__ : str = videoreader.get_batch(_A ).asnumpy() lowercase__ : List[Any] = list(_A ) lowercase__ : Any = self.image_processor(_A , return_tensors=self.framework ) return model_inputs def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: lowercase__ : str = self.model(**_A ) return model_outputs def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=5 ) -> str: if top_k > self.model.config.num_labels: lowercase__ : Optional[int] = self.model.config.num_labels if self.framework == "pt": lowercase__ : str = model_outputs.logits.softmax(-1 )[0] lowercase__ : List[str] = probs.topk(_A ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowercase__ : List[str] = scores.tolist() lowercase__ : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_A , _A )]
350
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=0.9_9_9 , UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : str = [] for i in range(UpperCAmelCase ): lowercase__ : int = i / num_diffusion_timesteps lowercase__ : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase ) / alpha_bar_fn(UpperCAmelCase ) , UpperCAmelCase ) ) return torch.tensor(UpperCAmelCase , dtype=torch.floataa ) class UpperCAmelCase ( a__ , a__ ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = "fixed_small_log" , __lowerCAmelCase = True , __lowerCAmelCase = 1.0 , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = "squaredcos_cap_v2" , ) -> Optional[int]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowercase__ : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) lowercase__ : List[Any] = 1.0 - self.betas lowercase__ : int = torch.cumprod(self.alphas , dim=0 ) lowercase__ : str = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowercase__ : Optional[Any] = 1.0 # setable values lowercase__ : Optional[Any] = None lowercase__ : List[Any] = torch.from_numpy(np.arange(0 , __lowerCAmelCase )[::-1].copy() ) lowercase__ : Tuple = variance_type def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> torch.FloatTensor: return sample def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Optional[int]: lowercase__ : List[str] = num_inference_steps lowercase__ : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase__ : List[str] = (np.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowercase__ : str = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Tuple: if prev_timestep is None: lowercase__ : Any = t - 1 lowercase__ : Any = self.alphas_cumprod[t] lowercase__ : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : str = 1 - alpha_prod_t lowercase__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : Tuple = self.betas[t] else: lowercase__ : Dict = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : Any = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase__ : int = torch.log(torch.clamp(__lowerCAmelCase , min=1E-20 ) ) lowercase__ : Dict = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase__ : Union[str, Any] = variance.log() lowercase__ : Optional[int] = beta.log() lowercase__ : Tuple = (predicted_variance + 1) / 2 lowercase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase=None , __lowerCAmelCase = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: lowercase__ : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase__ , lowercase__ : str = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowercase__ : Dict = None # 1. compute alphas, betas if prev_timestep is None: lowercase__ : int = t - 1 lowercase__ : Optional[int] = self.alphas_cumprod[t] lowercase__ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : Optional[int] = 1 - alpha_prod_t lowercase__ : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : Optional[int] = self.betas[t] lowercase__ : Optional[Any] = self.alphas[t] else: lowercase__ : Any = 1 - alpha_prod_t / alpha_prod_t_prev lowercase__ : Optional[int] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : Dict = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : List[Any] = torch.clamp( __lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase__ : Tuple = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : List[Any] = 0 if t > 0: lowercase__ : Dict = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase , device=model_output.device ) lowercase__ : Union[str, Any] = self._get_variance( __lowerCAmelCase , predicted_variance=__lowerCAmelCase , prev_timestep=__lowerCAmelCase , ) if self.variance_type == "fixed_small_log": lowercase__ : List[Any] = variance elif self.variance_type == "learned_range": lowercase__ : int = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ''' for the UnCLIPScheduler.''' ) lowercase__ : List[str] = variance * variance_noise lowercase__ : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowercase__ : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowercase__ : str = timesteps.to(original_samples.device ) lowercase__ : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 lowercase__ : List[str] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : List[str] = sqrt_alpha_prod.unsqueeze(-1 ) lowercase__ : int = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ : List[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowercase__ : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
214
0
from collections.abc import Callable import numpy as np def A ( a_ ,a_ ,a_ ,a_ ,a_ ) -> np.array: __UpperCamelCase : int =int(np.ceil((x_end - xa) / step_size ) ) __UpperCamelCase : Optional[int] =np.zeros((n + 1,) ) __UpperCamelCase : int =ya __UpperCamelCase : Optional[int] =xa for k in range(a_ ): __UpperCamelCase : Optional[Any] =y[k] + step_size * ode_func(a_ ,y[k] ) __UpperCamelCase : int =y[k] + ( (step_size / 2) * (ode_func(a_ ,y[k] ) + ode_func(x + step_size ,a_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
71
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : str =DDIMPipeline UpperCamelCase__ : List[Any] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ : Tuple =PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } UpperCamelCase__ : Tuple =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ : Any =False def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Optional[int] =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) __UpperCamelCase : int =DDIMScheduler() __UpperCamelCase : Optional[int] ={'unet': unet, 'scheduler': scheduler} return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : str =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Optional[int] =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Tuple ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any ='cpu' __UpperCamelCase : Optional[Any] =self.get_dummy_components() __UpperCamelCase : Tuple =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : int =pipe(**lowerCamelCase__ ).images __UpperCamelCase : Dict =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __UpperCamelCase : Tuple =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) __UpperCamelCase : Tuple =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) def __lowercase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str ='google/ddpm-cifar10-32' __UpperCamelCase : str =UNetaDModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =DDIMScheduler() __UpperCamelCase : List[Any] =DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddim.to(lowerCamelCase__ ) ddim.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =torch.manual_seed(0 ) __UpperCamelCase : List[str] =ddim(generator=lowerCamelCase__ , eta=0.0 , output_type='numpy' ).images __UpperCamelCase : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase : str =np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] ='google/ddpm-ema-bedroom-256' __UpperCamelCase : Any =UNetaDModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =DDIMScheduler.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Dict =DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddpm.to(lowerCamelCase__ ) ddpm.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Tuple =torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] =ddpm(generator=lowerCamelCase__ , output_type='numpy' ).images __UpperCamelCase : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCamelCase : Optional[Any] =np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
71
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowercase__ : Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : List[Any] , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
287
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase__ : List[str] = sys.version_info >= (3, 10) def a__ ( lowercase : Dict=None, lowercase : List[str]=None ) -> List[Any]: """simple docstring""" return field(default_factory=lambda: default, metadata=lowercase ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int _snake_case : float _snake_case : str _snake_case : bool @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int = 4_2 _snake_case : str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : bool = False _snake_case : bool = True _snake_case : Optional[bool] = None class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'titi' _snake_case : Union[str, Any] = 'toto' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'titi' _snake_case : Union[str, Any] = 'toto' _snake_case : Any = 4_2 @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : BasicEnum = "toto" def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = BasicEnum(self.foo ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : MixedTypeEnum = "toto" def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MixedTypeEnum(self.foo ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Optional[int] = None _snake_case : Optional[float] = field(default=__magic_name__ , metadata={'help': 'help message'} ) _snake_case : Optional[str] = None _snake_case : Optional[List[str]] = list_field(default=[] ) _snake_case : Optional[List[int]] = list_field(default=[] ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : List[int] = list_field(default=[] ) _snake_case : List[int] = list_field(default=[1, 2, 3] ) _snake_case : List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _snake_case : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : List[int] = field() _snake_case : str = field() _snake_case : BasicEnum = field() def snake_case__ ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase = BasicEnum(self.required_enum ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int _snake_case : "BasicEnum" = field() _snake_case : "Optional[bool]" = None _snake_case : "str" = field(default='toto' , metadata={'help': 'help message'} ) _snake_case : "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : bool = False _snake_case : bool = True _snake_case : bool | None = None @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int | None = None _snake_case : float | None = field(default=__magic_name__ , metadata={'help': 'help message'} ) _snake_case : str | None = None _snake_case : list[str] | None = list_field(default=[] ) _snake_case : list[int] | None = list_field(default=[] ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : argparse.ArgumentParser , lowerCAmelCase__ : argparse.ArgumentParser ) -> str: '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _UpperCamelCase = {k: v for k, v in vars(lowerCAmelCase__ ).items() if k != '''container'''} _UpperCamelCase = {k: v for k, v in vars(lowerCAmelCase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowerCAmelCase__ ) and yy.get('''choices''' , lowerCAmelCase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowerCAmelCase__ ) , yy['''type'''](lowerCAmelCase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument('''--bar''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument('''--baz''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument('''--flag''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , const=lowerCAmelCase__ , nargs='''?''' ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_UpperCamelCase) , ) = parser.parse_args_into_dataclasses(lowerCAmelCase__ , look_for_args_file=lowerCAmelCase__ ) self.assertFalse(example.flag ) def snake_case__ ( self : int ) -> Any: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowerCAmelCase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowerCAmelCase__ , help='''help message''' ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , const=lowerCAmelCase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , const=lowerCAmelCase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowerCAmelCase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) _UpperCamelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCAmelCase__ ) for dataclass_type in dataclass_types: _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) _UpperCamelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) _UpperCamelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) _UpperCamelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) _UpperCamelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , baz=lowerCAmelCase__ , opt=lowerCAmelCase__ ) ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCamelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _UpperCamelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCamelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _UpperCamelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) _UpperCamelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Literal["titi", "toto", 4_2] = "toto" _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCamelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCamelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowerCAmelCase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowerCAmelCase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowerCAmelCase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowerCAmelCase__ ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual( lowerCAmelCase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _UpperCamelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowerCAmelCase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ ) expected.add_argument('''--bar''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowerCAmelCase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowerCAmelCase__ ) _UpperCamelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCAmelCase__ ) for dataclass_type in dataclass_types: _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_args([] ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=lowerCAmelCase__ , bar=lowerCAmelCase__ , baz=lowerCAmelCase__ , ces=[] , des=[] ) ) _UpperCamelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowerCAmelCase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument('''--required_str''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowerCAmelCase__ , ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowerCAmelCase__ , ) expected.add_argument('''--opt''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowerCAmelCase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowerCAmelCase__ ) self.argparsersEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } _UpperCamelCase = parser.parse_dict(lowerCAmelCase__ )[0] _UpperCamelCase = BasicExample(**lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowerCAmelCase__ , parser.parse_dict , lowerCAmelCase__ , allow_extra_keys=lowerCAmelCase__ ) def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = os.path.join(lowerCAmelCase__ , '''temp_json''' ) os.mkdir(lowerCAmelCase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _UpperCamelCase = BasicExample(**lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = os.path.join(lowerCAmelCase__ , '''temp_yaml''' ) os.mkdir(lowerCAmelCase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _UpperCamelCase = BasicExample(**lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> str: '''simple docstring''' _UpperCamelCase = HfArgumentParser(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ )
287
1
'''simple docstring''' from functools import reduce lowerCAmelCase_ : Optional[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _lowerCamelCase ( lowercase : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase , lowercase : str(int(lowercase ) * int(lowercase ) ) , n[i : i + 13] ) ) for i in range(len(lowercase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
63
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(lowercase_ , exponent // 2 , lowercase_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase_ , exponent - 1 , lowercase_ )) % modulo_value def _SCREAMING_SNAKE_CASE ( lowercase_ = 17_77 , lowercase_ = 18_55 , lowercase_ = 8 ) -> int: A__ = base for _ in range(1 , lowercase_ ): A__ = _modexpt(lowercase_ , lowercase_ , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
247
0
from itertools import product def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> list[int]: """simple docstring""" lowercase__ = sides_number lowercase__ = max_face_number * dice_number lowercase__ = [0] * (max_total + 1) lowercase__ = 1 lowercase__ = range(__magic_name__ , max_face_number + 1 ) for dice_numbers in product(__magic_name__ , repeat=__magic_name__ ): lowercase__ = sum(__magic_name__ ) totals_frequencies[total] += 1 return totals_frequencies def UpperCamelCase ( ) -> float: """simple docstring""" lowercase__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase__ = 0 lowercase__ = 9 lowercase__ = 4 * 9 lowercase__ = 6 for peter_total in range(__magic_name__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase__ = (4**9) * (6**6) lowercase__ = peter_wins_count / total_games_number lowercase__ = round(__magic_name__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
371
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = OpenAIGPTTokenizer A__ = OpenAIGPTTokenizerFast A__ = True A__ = False def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" return "lower newer", "lower newer" def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase__ = """lower""" lowercase__ = ["""low""", """er</w>"""] lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokens + ["""<unk>"""] lowercase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any]=15 ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # Simple input lowercase__ = """This is a simple input""" lowercase__ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase__ = ("""This is a simple input""", """This is a pair""") lowercase__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class A ( UpperCAmelCase__ ): '''simple docstring''' pass
146
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A_ ( snake_case : int ) -> int: '''simple docstring''' __UpperCamelCase = filter(lambda snake_case : p.requires_grad , model.parameters() ) __UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase__ : Dict = logging.getLogger(__name__) def A_ ( snake_case : str , snake_case : Optional[Any] ) -> str: '''simple docstring''' if metric == "rouge2": __UpperCamelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __UpperCamelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __UpperCamelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ''' function.''' ) __UpperCamelCase = ModelCheckpoint( dirpath=snake_case , filename=snake_case , monitor=f"val_{metric}" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def A_ ( snake_case : List[str] , snake_case : str ) -> Dict: '''simple docstring''' return EarlyStopping( monitor=f"val_{metric}" , mode='''min''' if '''loss''' in metric else '''max''' , patience=snake_case , verbose=snake_case , ) class SCREAMING_SNAKE_CASE__ ( pl.Callback ): """simple docstring""" def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = {F"lr_group_{i}": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True )-> None: '''simple docstring''' logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) __UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase = od / '''test_results.txt''' __UpperCamelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase = od / F"{type_path}_results/{trainer.global_step:05d}.txt" __UpperCamelCase = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , '''a+''' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase = metrics[key] if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): __UpperCamelCase = val.item() __UpperCamelCase = F"{key}: {val:.6f}\n" writer.write(SCREAMING_SNAKE_CASE_ ) if not save_generations: return if "preds" in metrics: __UpperCamelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' try: __UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase = pl_module.model.num_parameters() __UpperCamelCase = count_trainable_parameters(SCREAMING_SNAKE_CASE_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''test''' ) @rank_zero_only def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MvpTokenizer __magic_name__ = MvpTokenizerFast __magic_name__ = True __magic_name__ = filter_roberta_detectors def a ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : int = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowerCAmelCase : Dict = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase : int = {'unk_token': '<unk>'} _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def a ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def a ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCAmelCase : Optional[Any] = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Tuple = tokenizer(snake_case__ , max_length=len(snake_case__ ) , padding=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowerCAmelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(snake_case__ , snake_case__ ) # Test that special tokens are reset @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : int = tokenizer(snake_case__ , padding=snake_case__ , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , snake_case__ ) self.assertIn('attention_mask' , snake_case__ ) self.assertNotIn('labels' , snake_case__ ) self.assertNotIn('decoder_attention_mask' , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Tuple = tokenizer(text_target=snake_case__ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def a ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Optional[Any] = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ['A long paragraph for summarization.'] _lowerCAmelCase : List[Any] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Optional[Any] = tokenizer(snake_case__ , text_target=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : int = inputs['input_ids'] _lowerCAmelCase : str = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[int] = 'A, <mask> AllenNLP sentence.' _lowerCAmelCase : Optional[int] = tokenizer_r.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) _lowerCAmelCase : Union[str, Any] = tokenizer_p.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
25
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
1
'''simple docstring''' def A__ ( UpperCAmelCase_ = 3 , UpperCAmelCase_ = 7 , UpperCAmelCase_ = 1_0_0_0_0_0_0 ): _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : Tuple = 1 for current_denominator in range(1 , limit + 1 ): _UpperCamelCase : int = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _UpperCamelCase : List[Any] = current_numerator _UpperCamelCase : List[Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
83
import unittest from transformers import DonutProcessor snake_case_ = '''naver-clova-ix/donut-base''' class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def snake_case_ ( self): lowercase__ : Dict = DonutProcessor.from_pretrained(a) def snake_case_ ( self): lowercase__ : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase__ : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase__ : str = self.processor.tokenajson(a) self.assertDictEqual(a , a)
214
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Union[str, Any]: a : Union[str, Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) a : Union[str, Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) sd_pipe.set_scheduler("sample_euler" ) a : Optional[Any] = "A painting of a squirrel eating a burger" a : List[str] = torch.manual_seed(0 ) a : Tuple = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) a : Optional[int] = output.images a : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a : Dict = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Optional[Any]: a : Any = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) a : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) sd_pipe.set_scheduler("sample_euler" ) a : Union[str, Any] = "A painting of a squirrel eating a burger" a : List[str] = torch.manual_seed(0 ) a : Any = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) a : str = output.images a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a : Tuple = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __a ( self ) -> Union[str, Any]: a : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) a : Dict = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) a : int = "A painting of a squirrel eating a burger" a : int = torch.manual_seed(0 ) a : Any = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=lowerCAmelCase__ , ) a : Optional[Any] = output.images a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a : Any = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
353
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a : Dict = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a : List[str] = 10 a : Optional[int] = 256 def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Optional[MinHash]: '''simple docstring''' if len(_lowercase ) < MIN_NUM_TOKENS: return None a : Any = MinHash(num_perm=_lowercase ) for token in set(_lowercase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_lowercase ) if len(t.strip() ) > 0} class __UpperCamelCase : def __init__( self , *, lowerCAmelCase__ = 0.85 , ) -> Any: a : Any = duplication_jaccard_threshold a : Dict = NUM_PERM a : Dict = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a : List[str] = defaultdict(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: a : Any = self._index.query(lowerCAmelCase__ ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase__ ) def __a ( self ) -> List[List[Dict]]: a : Any = [] for base, duplicates in self._duplicate_clusters.items(): a : Any = [base] + list(lowerCAmelCase__ ) # reformat the cluster to be a list of dict a : Optional[int] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase__ ) return duplicate_clusters def __a ( self , lowerCAmelCase__ ) -> None: a : Optional[int] = self.get_duplicate_clusters() with open(lowerCAmelCase__ , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Optional[Any]: '''simple docstring''' a, a : Optional[Any] = element a : Any = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] ) ->Optional[int]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowercase , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] , _lowercase : float ) ->Dict: '''simple docstring''' a : Optional[int] = DuplicationIndex(duplication_jaccard_threshold=_lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowercase ) ) , max_queue_size=100 ) ): di.add(_lowercase , _lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->float: '''simple docstring''' a : Any = get_tokens(_lowercase ) a : List[str] = get_tokens(_lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a : Dict = None def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : Dict ) ->Tuple: '''simple docstring''' a : Union[str, Any] = [] for elementa in cluster: a : List[Any] = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: a : Optional[int] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(_lowercase , _lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: a : Optional[Any] = 1 extremes.append(_lowercase ) return extremes def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : Any , _lowercase : Optional[Any] ) ->Any: '''simple docstring''' global _shared_dataset a : Tuple = dataset a : List[Any] = [] a : int = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowercase , _lowercase , ) , total=len(_lowercase ) , ): extremes_list.append(_lowercase ) return extremes_list def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] , _lowercase : float = 0.85 ) ->Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' a : str = make_duplicate_clusters(_lowercase , _lowercase ) a : List[Any] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} a : List[Any] = {} a : str = find_extremes(_lowercase , _lowercase , _lowercase ) for extremes in extremes_clusters: for element in extremes: a : Optional[Any] = element a : Union[str, Any] = duplicate_indices - set(extreme_dict.keys() ) a : Union[str, Any] = dataset.filter(lambda _lowercase , _lowercase : idx not in remove_indices , with_indices=_lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a : Union[str, Any] = element["base_index"] in extreme_dict if element["is_extreme"]: a : Optional[int] = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(_lowercase )}""" ) print(F"""Number of duplicate clusters: {len(_lowercase )}""" ) print(F"""Files in duplicate cluster: {len(_lowercase )}""" ) print(F"""Unique files in duplicate cluster: {len(_lowercase )}""" ) print(F"""Filtered dataset size: {len(_lowercase )}""" ) return ds_filter, duplicate_clusters
79
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _lowerCamelCase =logging.getLogger(__name__) def _a ( lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase=16, lowerCamelCase = 10, lowerCamelCase = 2 ): def get_dataset(lowerCamelCase ): lowerCamelCase : List[str] = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(lowerCamelCase, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) lowerCamelCase : Optional[int] = get_dataset(lowerCamelCase ) lowerCamelCase : str = get_dataset(lowerCamelCase ) lowerCamelCase : Dict = DataLoader(lowerCamelCase, shuffle=lowerCamelCase, batch_size=lowerCamelCase, num_workers=4 ) lowerCamelCase : Optional[int] = DataLoader(lowerCamelCase, shuffle=lowerCamelCase, batch_size=lowerCamelCase, num_workers=4 ) return (train_dataloader, valid_dataloader) def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None ): lowerCamelCase : Any = [] for epoch in range(lowerCamelCase ): # Train quickly model.train() for batch in dataloader: lowerCamelCase , lowerCamelCase : Dict = batch lowerCamelCase : Tuple = model(lowerCamelCase ) lowerCamelCase : int = torch.nn.functional.mse_loss(lowerCamelCase, lowerCamelCase ) accelerator.backward(lowerCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class A__ ( nn.Module): def __init__( self ): super().__init__() lowerCamelCase : Tuple = nn.Parameter(torch.randn(1 ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.randn(1 ) ) def UpperCamelCase__ ( self , __magic_name__ ): return x * self.a + self.b class A__ ( unittest.TestCase): def UpperCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowerCamelCase : Optional[int] = DummyModel() lowerCamelCase : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase : List[Any] = dummy_dataloaders() lowerCamelCase : int = ProjectConfiguration(total_limit=1 , project_dir=__magic_name__ , automatic_checkpoint_naming=__magic_name__ ) # Train baseline lowerCamelCase : int = Accelerator(project_config=__magic_name__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowerCamelCase : Optional[Any] = DummyModel() lowerCamelCase : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase : List[Any] = dummy_dataloaders() # Train baseline lowerCamelCase : Tuple = Accelerator() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[Any] = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save initial lowerCamelCase : int = os.path.join(__magic_name__ , """initial""" ) accelerator.save_state(__magic_name__ ) ((lowerCamelCase) , (lowerCamelCase)) : Union[str, Any] = model.a.item(), model.b.item() lowerCamelCase : Dict = optimizer.state_dict() lowerCamelCase : str = train(3 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) ((lowerCamelCase) , (lowerCamelCase)) : str = model.a.item(), model.b.item() lowerCamelCase : List[Any] = optimizer.state_dict() # Train partially set_seed(4_2 ) lowerCamelCase : Optional[Any] = DummyModel() lowerCamelCase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase : Any = dummy_dataloaders() lowerCamelCase : List[Any] = Accelerator() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[str] = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) accelerator.load_state(__magic_name__ ) ((lowerCamelCase) , (lowerCamelCase)) : Optional[int] = model.a.item(), model.b.item() lowerCamelCase : int = optimizer.state_dict() self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) lowerCamelCase : Tuple = train(2 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save everything lowerCamelCase : List[Any] = os.path.join(__magic_name__ , """checkpoint""" ) accelerator.save_state(__magic_name__ ) # Load everything back in and make sure all states work accelerator.load_state(__magic_name__ ) test_rands += train(1 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) ((lowerCamelCase) , (lowerCamelCase)) : Optional[int] = model.a.item(), model.b.item() lowerCamelCase : str = optimizer.state_dict() self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def UpperCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowerCamelCase : Tuple = DummyModel() lowerCamelCase : Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase : Optional[int] = dummy_dataloaders() lowerCamelCase : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=__magic_name__ ) # Train baseline lowerCamelCase : str = Accelerator(project_dir=__magic_name__ , project_config=__magic_name__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save initial accelerator.save_state() ((lowerCamelCase) , (lowerCamelCase)) : Dict = model.a.item(), model.b.item() lowerCamelCase : Optional[int] = optimizer.state_dict() lowerCamelCase : Tuple = train(3 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) ((lowerCamelCase) , (lowerCamelCase)) : Tuple = model.a.item(), model.b.item() lowerCamelCase : Dict = optimizer.state_dict() # Train partially set_seed(4_2 ) lowerCamelCase : Optional[Any] = DummyModel() lowerCamelCase : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase : List[Any] = dummy_dataloaders() lowerCamelCase : int = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__magic_name__ ) lowerCamelCase : str = Accelerator(project_dir=__magic_name__ , project_config=__magic_name__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[str] = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) accelerator.load_state(os.path.join(__magic_name__ , """checkpoints""" , """checkpoint_0""" ) ) ((lowerCamelCase) , (lowerCamelCase)) : Tuple = model.a.item(), model.b.item() lowerCamelCase : List[str] = optimizer.state_dict() self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) lowerCamelCase : Optional[Any] = train(2 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__magic_name__ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) ((lowerCamelCase) , (lowerCamelCase)) : List[Any] = model.a.item(), model.b.item() lowerCamelCase : Optional[int] = optimizer.state_dict() self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = torch.tensor([1, 2, 3] ) lowerCamelCase : Union[str, Any] = torch.tensor([2, 3, 4] ) lowerCamelCase : Union[str, Any] = DummyModel() lowerCamelCase : Optional[int] = torch.optim.Adam(net.parameters() ) lowerCamelCase : int = Accelerator() with self.assertRaises(__magic_name__ ) as ve: accelerator.register_for_checkpointing(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase : Dict = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def UpperCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowerCamelCase : Optional[Any] = DummyModel() lowerCamelCase : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase : Tuple = torch.optim.lr_scheduler.StepLR(__magic_name__ , step_size=1 , gamma=0.99 ) lowerCamelCase , lowerCamelCase : List[Any] = dummy_dataloaders() lowerCamelCase : Dict = ProjectConfiguration(automatic_checkpoint_naming=__magic_name__ ) # Train baseline lowerCamelCase : Optional[Any] = Accelerator(project_dir=__magic_name__ , project_config=__magic_name__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : int = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save initial accelerator.save_state() lowerCamelCase : Dict = scheduler.state_dict() train(3 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) self.assertNotEqual(__magic_name__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__magic_name__ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(__magic_name__ , scheduler.state_dict() ) def UpperCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowerCamelCase : List[Any] = DummyModel() lowerCamelCase : Tuple = ProjectConfiguration(automatic_checkpoint_naming=__magic_name__ , total_limit=2 ) # Train baseline lowerCamelCase : Optional[Any] = Accelerator(project_dir=__magic_name__ , project_config=__magic_name__ ) lowerCamelCase : Optional[int] = accelerator.prepare(__magic_name__ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__magic_name__ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def UpperCamelCase__ ( self ): lowerCamelCase : str = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__magic_name__ , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase ="""/tmp/accelerate/state_checkpointing""" _lowerCamelCase =DummyModel() _lowerCamelCase =torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCamelCase =torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _lowerCamelCase , _lowerCamelCase =dummy_dataloaders() _lowerCamelCase =ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _lowerCamelCase =Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _lowerCamelCase , _lowerCamelCase =accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _lowerCamelCase =group["""params"""][0].device break assert param_device.type == accelerator.device.type _lowerCamelCase =model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: _lowerCamelCase =group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: _lowerCamelCase =group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
287
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = """conditional_detr""" _UpperCAmelCase : Optional[int] = ["""past_key_values"""] _UpperCAmelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __magic_name__=True , __magic_name__=None , __magic_name__=3 , __magic_name__=3_0_0 , __magic_name__=6 , __magic_name__=2_0_4_8 , __magic_name__=8 , __magic_name__=6 , __magic_name__=2_0_4_8 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=True , __magic_name__="relu" , __magic_name__=2_5_6 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1.0 , __magic_name__=False , __magic_name__="sine" , __magic_name__="resnet50" , __magic_name__=True , __magic_name__=False , __magic_name__=2 , __magic_name__=5 , __magic_name__=2 , __magic_name__=1 , __magic_name__=1 , __magic_name__=2 , __magic_name__=5 , __magic_name__=2 , __magic_name__=0.25 , **__magic_name__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase : Optional[int] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCamelCase : Dict = CONFIG_MAPPING[backbone_model_type] lowerCamelCase : str = config_class.from_dict(__magic_name__ ) lowerCamelCase : Dict = use_timm_backbone lowerCamelCase : str = backbone_config lowerCamelCase : Tuple = num_channels lowerCamelCase : Dict = num_queries lowerCamelCase : Any = d_model lowerCamelCase : Optional[Any] = encoder_ffn_dim lowerCamelCase : List[str] = encoder_layers lowerCamelCase : Union[str, Any] = encoder_attention_heads lowerCamelCase : Any = decoder_ffn_dim lowerCamelCase : Dict = decoder_layers lowerCamelCase : Union[str, Any] = decoder_attention_heads lowerCamelCase : Dict = dropout lowerCamelCase : List[str] = attention_dropout lowerCamelCase : Union[str, Any] = activation_dropout lowerCamelCase : Optional[int] = activation_function lowerCamelCase : int = init_std lowerCamelCase : str = init_xavier_std lowerCamelCase : Tuple = encoder_layerdrop lowerCamelCase : str = decoder_layerdrop lowerCamelCase : Tuple = encoder_layers lowerCamelCase : Optional[int] = auxiliary_loss lowerCamelCase : Optional[Any] = position_embedding_type lowerCamelCase : Optional[int] = backbone lowerCamelCase : Union[str, Any] = use_pretrained_backbone lowerCamelCase : str = dilation # Hungarian matcher lowerCamelCase : Optional[Any] = class_cost lowerCamelCase : Dict = bbox_cost lowerCamelCase : Tuple = giou_cost # Loss coefficients lowerCamelCase : Union[str, Any] = mask_loss_coefficient lowerCamelCase : Dict = dice_loss_coefficient lowerCamelCase : Optional[int] = cls_loss_coefficient lowerCamelCase : Optional[int] = bbox_loss_coefficient lowerCamelCase : Optional[int] = giou_loss_coefficient lowerCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def UpperCamelCase__ ( self ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): return self.d_model def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase : Optional[int] = self.backbone_config.to_dict() lowerCamelCase : Optional[Any] = self.__class__.model_type return output class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Any = version.parse("""1.11""") @property def UpperCamelCase__ ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCamelCase__ ( self ): return 1e-5 @property def UpperCamelCase__ ( self ): return 1_2
287
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Tuple = """huggingface/label-files""" __snake_case : List[str] = """imagenet-1k-id2label.json""" __snake_case : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : int = {v: k for k, v in idalabel.items()} __snake_case : Optional[int] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __snake_case : int = BitConfig( conv_layer=_lowerCamelCase , num_labels=1000 , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" if "stem.conv" in name: __snake_case : List[Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __snake_case : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __snake_case : Optional[Any] = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __snake_case : Dict = """bit.""" + name if "bit" not in name and "classifier" not in name: __snake_case : Optional[int] = """bit.encoder.""" + name return name def _a ( ) -> int: """simple docstring""" __snake_case : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Any: """simple docstring""" __snake_case : Any = get_config(_lowerCamelCase ) # load original model from timm __snake_case : List[Any] = create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model __snake_case : int = timm_model.state_dict() for key in state_dict.copy().keys(): __snake_case : Optional[Any] = state_dict.pop(_lowerCamelCase ) __snake_case : List[Any] = val.squeeze() if """head""" in key else val # load HuggingFace model __snake_case : Dict = BitForImageClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # create image processor __snake_case : Tuple = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) __snake_case : str = transform.transforms __snake_case : Any = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __snake_case : Any = BitImageProcessor( do_resize=_lowerCamelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __snake_case : Dict = prepare_img() __snake_case : int = transform(_lowerCamelCase ).unsqueeze(0 ) __snake_case : Optional[Any] = processor(_lowerCamelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): __snake_case : Any = model(_lowerCamelCase ) __snake_case : Optional[int] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __snake_case : Optional[Any] = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(F'''ybelkada/{model_name}''' ) processor.push_to_hub(F'''ybelkada/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __UpperCamelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( __lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__(self , UpperCAmelCase = 1 , UpperCAmelCase = 1_0_0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: _lowercase =self.unet.config.sample_size / self.unet.config.sample_rate _lowercase =audio_length_in_s * self.unet.config.sample_rate _lowercase =2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" f" {3 * down_scale_factor / self.unet.config.sample_rate}." ) _lowercase =int(lowerCamelCase__ ) if sample_size % down_scale_factor != 0: _lowercase =( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" ''' process.''' ) _lowercase =int(lowerCamelCase__ ) _lowercase =next(iter(self.unet.parameters() ) ).dtype _lowercase =(batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _lowercase =randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) # set step values self.scheduler.set_timesteps(lowerCamelCase__ , device=audio.device ) _lowercase =self.scheduler.timesteps.to(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowercase =self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. compute previous image: x_t -> t_t-1 _lowercase =self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample _lowercase =audio.clamp(-1 , 1 ).float().cpu().numpy() _lowercase =audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase__ )
5
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase) , "Tatoeba directory does not exist.") class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=lowerCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
146
0
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None ): if start is None: _UpperCamelCase : Optional[int] = 0 if end is None: _UpperCamelCase : List[Any] = len(UpperCAmelCase_ ) - 1 if start >= end: return _UpperCamelCase : Union[str, Any] = (start + end) // 2 slowsort(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) slowsort(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) if sequence[end] < sequence[mid]: _UpperCamelCase , _UpperCamelCase : Any = sequence[mid], sequence[end] slowsort(UpperCAmelCase_ , UpperCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
236
'''simple docstring''' from datetime import datetime import requests def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' _UpperCamelCase : Optional[int] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": snake_case_ : List[str] = input('Enter Video/IGTV url: ').strip() snake_case_ : str = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
236
1
"""simple docstring""" def lowercase_ ( _snake_case = 200 ): SCREAMING_SNAKE_CASE__ : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] SCREAMING_SNAKE_CASE__ : Any = [0] * (pence + 1) SCREAMING_SNAKE_CASE__ : Tuple = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_snake_case ,pence + 1 ,1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
25
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[int] = '''audio-spectrogram-transformer''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=1_28 , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : int = layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = frequency_stride SCREAMING_SNAKE_CASE__ : Any = time_stride SCREAMING_SNAKE_CASE__ : Optional[int] = max_length SCREAMING_SNAKE_CASE__ : Any = num_mel_bins
25
1
'''simple docstring''' from math import ceil, sqrt def _lowerCAmelCase ( lowercase = 100_0000 ) -> Optional[int]: __lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
356
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Dict =MvpTokenizer a : int =MvpTokenizerFast a : Any =True a : int =filter_roberta_detectors def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase = {"""unk_token""": """<unk>"""} __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file,"""w""",encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,max_length=len(__SCREAMING_SNAKE_CASE ),padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9),batch.input_ids.shape ) self.assertEqual((2, 9),batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Test that special tokens are reset @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""",__SCREAMING_SNAKE_CASE ) self.assertIn("""attention_mask""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""labels""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""decoder_attention_mask""",__SCREAMING_SNAKE_CASE ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(text_target=__SCREAMING_SNAKE_CASE,max_length=32,padding="""max_length""",return_tensors="""pt""" ) self.assertEqual(32,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""],padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape,(2, 10_24) ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization."""] __lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,text_target=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = inputs["""input_ids"""] __lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """A, <mask> AllenNLP sentence.""" __lowerCAmelCase = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ),sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ),sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ),) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
46
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCAmelCase__ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCAmelCase__ = 10 lowerCAmelCase__ = 256 def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__lowercase ) < MIN_NUM_TOKENS: return None UpperCamelCase = MinHash(num_perm=__lowercase ) for token in set(__lowercase ): min_hash.update(token.encode() ) return min_hash def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return {t for t in NON_ALPHA.split(__lowercase ) if len(t.strip() ) > 0} class _lowerCamelCase : def __init__(self , *, __a = 0.85 , ) -> List[str]: UpperCamelCase = duplication_jaccard_threshold UpperCamelCase = NUM_PERM UpperCamelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCamelCase = defaultdict(__UpperCAmelCase ) def snake_case_ (self , __a , __a ) -> Optional[Any]: UpperCamelCase = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def snake_case_ (self ) -> Dict: UpperCamelCase = [] for base, duplicates in self._duplicate_clusters.items(): UpperCamelCase = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict UpperCamelCase = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def snake_case_ (self , __a ) -> Any: UpperCamelCase = self.get_duplicate_clusters() with open(__UpperCAmelCase , "w" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase , UpperCamelCase = element UpperCamelCase = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowercase , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = DuplicationIndex(duplication_jaccard_threshold=__lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowercase ) ) , max_queue_size=100 ) ): di.add(__lowercase , __lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = get_tokens(__lowercase ) UpperCamelCase = get_tokens(__lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCAmelCase__ = None def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] for elementa in cluster: UpperCamelCase = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: UpperCamelCase = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(__lowercase , __lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCamelCase = 1 extremes.append(__lowercase ) return extremes def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" global _shared_dataset UpperCamelCase = dataset UpperCamelCase = [] UpperCamelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowercase , __lowercase , ) , total=len(__lowercase ) , ): extremes_list.append(__lowercase ) return extremes_list def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.85 ): """simple docstring""" UpperCamelCase = make_duplicate_clusters(__lowercase , __lowercase ) UpperCamelCase = {x["base_index"] for cluster in duplicate_clusters for x in cluster} UpperCamelCase = {} UpperCamelCase = find_extremes(__lowercase , __lowercase , __lowercase ) for extremes in extremes_clusters: for element in extremes: UpperCamelCase = element UpperCamelCase = duplicate_indices - set(extreme_dict.keys() ) UpperCamelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=__lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCamelCase = element["base_index"] in extreme_dict if element["is_extreme"]: UpperCamelCase = extreme_dict[element["base_index"]]["copies"] print(F"Original dataset size: {len(__lowercase )}" ) print(F"Number of duplicate clusters: {len(__lowercase )}" ) print(F"Files in duplicate cluster: {len(__lowercase )}" ) print(F"Unique files in duplicate cluster: {len(__lowercase )}" ) print(F"Filtered dataset size: {len(__lowercase )}" ) return ds_filter, duplicate_clusters
153
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = 0 snake_case = False snake_case = 3.0 class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=__UpperCAmelCase ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def lowerCAmelCase ( self : int ): '''simple docstring''' _A = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _A = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _A = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , __UpperCAmelCase ) @require_multi_gpu def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCamelCase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase_ = torch.nn.Linear(1_00, 2_00) lowerCamelCase_ = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase_ = '''''' lowerCamelCase_ = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
79
0
"""simple docstring""" import math def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = f"""Input value of [number={number}] must be an integer""" raise TypeError(__UpperCamelCase ) if number < 1: SCREAMING_SNAKE_CASE__ = f"""Input value of [number={number}] must be > 0""" raise ValueError(__UpperCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: SCREAMING_SNAKE_CASE__ = int(math.log(number // 3 , 2 ) ) + 2 SCREAMING_SNAKE_CASE__ = [3, 5] SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 for block in range(1 , __UpperCamelCase ): for _ in range(__UpperCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __lowerCamelCase : int = 0 try: __lowerCamelCase : Any = proth(number) except ValueError: print(F"""ValueError: there is no {number}th Proth number""") continue print(F"""The {number}th Proth number: {value}""")
361
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [0] * len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: SCREAMING_SNAKE_CASE__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCamelCase : int = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
204
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Any = logging.get_logger(__name__) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = "huggingface/label-files" SCREAMING_SNAKE_CASE_: Dict = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: Tuple = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[int] = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" SCREAMING_SNAKE_CASE_: Union[str, Any] = BitConfig( conv_layer=_UpperCAmelCase , num_labels=10_00 , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase , ) return config def A_ ( _UpperCAmelCase ): if "stem.conv" in name: SCREAMING_SNAKE_CASE_: Optional[Any] = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: Any = name.replace("blocks" , "layers" ) if "head.fc" in name: SCREAMING_SNAKE_CASE_: int = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): SCREAMING_SNAKE_CASE_: Any = "bit." + name if "bit" not in name and "classifier" not in name: SCREAMING_SNAKE_CASE_: int = "bit.encoder." + name return name def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: Dict = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: str = get_config(_UpperCAmelCase ) # load original model from timm SCREAMING_SNAKE_CASE_: Tuple = create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model SCREAMING_SNAKE_CASE_: List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[Any] = state_dict.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = val.squeeze() if "head" in key else val # load HuggingFace model SCREAMING_SNAKE_CASE_: Union[str, Any] = BitForImageClassification(_UpperCAmelCase ) model.eval() model.load_state_dict(_UpperCAmelCase ) # create image processor SCREAMING_SNAKE_CASE_: Union[str, Any] = create_transform(**resolve_data_config({} , model=_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple = transform.transforms SCREAMING_SNAKE_CASE_: Union[str, Any] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE_: Tuple = BitImageProcessor( do_resize=_UpperCAmelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_UpperCAmelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE_: Dict = prepare_img() SCREAMING_SNAKE_CASE_: int = transform(_UpperCAmelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_: str = processor(_UpperCAmelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) SCREAMING_SNAKE_CASE_: int = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(f"ybelkada/{model_name}" ) processor.push_to_hub(f"ybelkada/{model_name}" ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowerCAmelCase : int = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase = ["""bert-base-uncased""", """bert-base-cased"""] UpperCamelCase = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class _lowerCamelCase ( tf.keras.Model ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' super().__init__() A_ : Any = tokenizer A_ : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : int = TFAutoModel.from_config(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : Optional[int] = self.tokenizer(_SCREAMING_SNAKE_CASE ) A_ : Any = self.bert(**_SCREAMING_SNAKE_CASE ) return out["pooler_output"] @require_tf @require_tensorflow_text class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Union[str, Any]: '''simple docstring''' super().setUp() A_ : List[Any] = [ BertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false A_ : Dict = [TFBertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , use_fast_bert_tokenizer=_SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A_ : Any = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] A_ : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self )->List[str]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): A_ : Dict = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding='''longest''' ) A_ : Optional[Any] = tf_tokenizer(_SCREAMING_SNAKE_CASE ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _snake_case ( self )->Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A_ : Dict = tf_tokenizer(self.paired_sentences ) A_ : str = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _snake_case ( self )->Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A_ : Union[str, Any] = tf.function(_SCREAMING_SNAKE_CASE ) for test_inputs in (self.test_sentences, self.paired_sentences): A_ : Any = tf.constant(_SCREAMING_SNAKE_CASE ) A_ : int = compiled_tokenizer(_SCREAMING_SNAKE_CASE ) A_ : str = tf_tokenizer(_SCREAMING_SNAKE_CASE ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self )->List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A_ : Tuple = ModelToSave(tokenizer=_SCREAMING_SNAKE_CASE ) A_ : Any = tf.convert_to_tensor(self.test_sentences ) A_ : Tuple = model(_SCREAMING_SNAKE_CASE ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A_ : Optional[Any] = Path(_SCREAMING_SNAKE_CASE ) / '''saved.model''' model.save(_SCREAMING_SNAKE_CASE ) A_ : str = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) A_ : str = loaded_model(_SCREAMING_SNAKE_CASE ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
65
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) <= 1: return [tuple(SCREAMING_SNAKE_CASE )] A_ : Any = [] def generate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Dict = [0] * n res.append(tuple(SCREAMING_SNAKE_CASE ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : Optional[int] = arr[i], arr[0] else: A_ , A_ : Tuple = arr[i], arr[c[i]] res.append(tuple(SCREAMING_SNAKE_CASE ) ) c[i] += 1 A_ : Optional[int] = 0 else: A_ : str = 0 i += 1 generate(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": UpperCamelCase = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
65
1
# Lint as: python3 import itertools import os import re _UpperCAmelCase : Tuple = re.compile(r"([A-Z]+)([A-Z][a-z])") _UpperCAmelCase : Optional[Any] = re.compile(r"([a-z\d])([A-Z])") _UpperCAmelCase : Union[str, Any] = re.compile(r"(?<!_)_(?!_)") _UpperCAmelCase : List[str] = re.compile(r"(_{2,})") _UpperCAmelCase : List[Any] = r"^\w+(\.\w+)*$" _UpperCAmelCase : str = r"<>:/\|?*" def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Any = _uppercase_uppercase_re.sub(r"\1_\2", lowerCamelCase ) lowercase :Optional[int] = _lowercase_uppercase_re.sub(r"\1_\2", lowerCamelCase ) return name.lower() def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[Any] = _single_underscore_re.split(lowerCamelCase ) lowercase :Dict = [_multiple_underscores_re.split(lowerCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCamelCase ) if n != "" ) def UpperCAmelCase__ ( lowerCamelCase ): if os.path.basename(lowerCamelCase ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if os.path.basename(lowerCamelCase ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re, lowerCamelCase ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(lowerCamelCase )}-{split}" def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None ): lowercase :Union[str, Any] = filename_prefix_for_split(lowerCamelCase, lowerCamelCase ) if filetype_suffix: prefix += F".{filetype_suffix}" lowercase :int = os.path.join(lowerCamelCase, lowerCamelCase ) return F"{filepath}*" def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None ): lowercase :int = filename_prefix_for_split(lowerCamelCase, lowerCamelCase ) lowercase :str = os.path.join(lowerCamelCase, lowerCamelCase ) if shard_lengths: lowercase :Optional[Any] = len(lowerCamelCase ) lowercase :List[str] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(lowerCamelCase )] if filetype_suffix: lowercase :str = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: lowercase :Optional[Any] = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
236
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowercase :Tuple = 1024 lowercase :Tuple = 4096 lowercase :Union[str, Any] = 24 lowercase :Tuple = 16 lowercase :Optional[Any] = [5, 11, 17, 23] lowercase :Optional[Any] = [256, 512, 1024, 1024] lowercase :Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowercase :Any = 768 lowercase :Optional[int] = [1, 1, 1, 0.5] lowercase :int = [256, 512, 768, 768] lowercase :str = 150 lowercase :Tuple = 16 lowercase :List[str] = (1, 384, 384) lowercase :Any = False lowercase :Optional[int] = "project" if "ade" in checkpoint_url: lowercase :Dict = True lowercase :str = 768 lowercase :Tuple = [1, 1, 1, 0.5] lowercase :Dict = 150 lowercase :Any = 16 lowercase :List[Any] = "huggingface/label-files" lowercase :Union[str, Any] = "ade20k-id2label.json" lowercase :List[str] = json.load(open(cached_download(hf_hub_url(lowerCamelCase, lowerCamelCase, repo_type="dataset" ) ), "r" ) ) lowercase :Optional[Any] = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowercase :Union[str, Any] = idalabel lowercase :Optional[Any] = {v: k for k, v in idalabel.items()} lowercase :List[str] = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[str] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase :Any = name.replace("pretrained.model", "dpt.encoder" ) if "pretrained.model" in name: lowercase :int = name.replace("pretrained.model", "dpt.embeddings" ) if "patch_embed" in name: lowercase :Any = name.replace("patch_embed", "" ) if "pos_embed" in name: lowercase :Optional[Any] = name.replace("pos_embed", "position_embeddings" ) if "attn.proj" in name: lowercase :List[str] = name.replace("attn.proj", "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase :str = name.replace("proj", "projection" ) if "blocks" in name: lowercase :List[Any] = name.replace("blocks", "layer" ) if "mlp.fc1" in name: lowercase :str = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: lowercase :Any = name.replace("mlp.fc2", "output.dense" ) if "norm1" in name and "backbone" not in name: lowercase :Any = name.replace("norm1", "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowercase :Any = name.replace("norm2", "layernorm_after" ) if "scratch.output_conv" in name: lowercase :Optional[Any] = name.replace("scratch.output_conv", "head" ) if "scratch" in name: lowercase :Union[str, Any] = name.replace("scratch", "neck" ) if "layer1_rn" in name: lowercase :str = name.replace("layer1_rn", "convs.0" ) if "layer2_rn" in name: lowercase :Dict = name.replace("layer2_rn", "convs.1" ) if "layer3_rn" in name: lowercase :Tuple = name.replace("layer3_rn", "convs.2" ) if "layer4_rn" in name: lowercase :Optional[int] = name.replace("layer4_rn", "convs.3" ) if "refinenet" in name: lowercase :Any = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase :Any = name.replace(F"refinenet{layer_idx}", F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowercase :str = name.replace("out_conv", "projection" ) if "resConfUnit1" in name: lowercase :Optional[Any] = name.replace("resConfUnit1", "residual_layer1" ) if "resConfUnit2" in name: lowercase :int = name.replace("resConfUnit2", "residual_layer2" ) if "conv1" in name: lowercase :Optional[int] = name.replace("conv1", "convolution1" ) if "conv2" in name: lowercase :List[str] = name.replace("conv2", "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase :Tuple = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase :Dict = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase :Any = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase :Optional[Any] = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase :Dict = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase :str = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase :str = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase :Any = name.replace("pretrained", "dpt" ) if "bn" in name: lowercase :Optional[int] = name.replace("bn", "batch_norm" ) if "head" in name: lowercase :Union[str, Any] = name.replace("head", "head.head" ) if "encoder.norm" in name: lowercase :Optional[Any] = name.replace("encoder.norm", "layernorm" ) if "auxlayer" in name: lowercase :str = name.replace("auxlayer", "auxiliary_head.head" ) if "backbone" in name: lowercase :List[str] = name.replace("backbone", "backbone.bit.encoder" ) if ".." in name: lowercase :Optional[int] = name.replace("..", "." ) if "stem.conv" in name: lowercase :Union[str, Any] = name.replace("stem.conv", "bit.embedder.convolution" ) if "blocks" in name: lowercase :List[str] = name.replace("blocks", "layers" ) if "convolution" in name and "backbone" in name: lowercase :int = name.replace("convolution", "conv" ) if "layer" in name and "backbone" in name: lowercase :List[str] = name.replace("layer", "layers" ) if "backbone.bit.encoder.bit" in name: lowercase :Dict = name.replace("backbone.bit.encoder.bit", "backbone.bit" ) if "embedder.conv" in name: lowercase :Dict = name.replace("embedder.conv", "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowercase :str = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm" ) return name def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase :List[str] = in_proj_weight[: config.hidden_size, :] lowercase :int = in_proj_bias[: config.hidden_size] lowercase :Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Dict = in_proj_weight[ -config.hidden_size :, : ] lowercase :List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( ): lowercase :List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase :Any = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase , lowercase :Optional[int] = get_dpt_config(lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowercase :List[str] = torch.load(lowerCamelCase, map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): lowercase :int = state_dict.pop(lowerCamelCase ) lowercase :Dict = val # read in qkv matrices read_in_q_k_v(lowerCamelCase, lowerCamelCase ) # load HuggingFace model lowercase :int = DPTForSemanticSegmentation(lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # Check outputs on an image lowercase :Union[str, Any] = 480 if "ade" in checkpoint_url else 384 lowercase :Optional[int] = DPTImageProcessor(size=lowerCamelCase ) lowercase :Dict = prepare_img() lowercase :Optional[Any] = image_processor(lowerCamelCase, return_tensors="pt" ) # forward pass lowercase :Any = model(**lowerCamelCase ).logits if "ade" in checkpoint_url else model(**lowerCamelCase ).predicted_depth if show_prediction: lowercase :List[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=lowerCamelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _UpperCAmelCase : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'camembert' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ): super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
358
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
0
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'imagegpt' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowercase=512 + 1 , lowercase=32 * 32 , lowercase=512 , lowercase=24 , lowercase=8 , lowercase=None , lowercase="quick_gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , **lowercase , ) -> Any: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = scale_attn_by_inverse_layer_idx lowerCAmelCase = reorder_and_upcast_attn lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase , **lowercase ) class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _snake_case ( self , lowercase , lowercase = 1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 32 , lowercase = 32 , ) -> Mapping[str, Any]: lowerCAmelCase = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase ) lowerCAmelCase = dict(preprocessor(images=lowercase , return_tensors=lowercase ) ) return inputs
46
0
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
1
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( __lowercase ): def __init__(self : Any , snake_case_ : int , snake_case_ : Optional[int] ): super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__(self : Optional[Any] , snake_case_ : int = 1 , snake_case_ : Optional[torch.Generator] = None , snake_case_ : int = 5_0 , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , **snake_case_ : List[Any] , ): __a : List[str] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A_ , ) __a : int = image.to(self.device ) # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __a : int = self.unet(A_ , A_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __a : Optional[int] = self.scheduler.step(A_ , A_ , A_ ).prev_sample __a : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __a : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a : List[Any] = self.numpy_to_pil(A_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=A_ ), "This is a local test"
216
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , *A_ : str , **A_ : Optional[int] ) -> None: """simple docstring""" warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
204
0
import os from math import logaa def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "base_exp.txt" ) -> int: lowerCAmelCase__ : float = 0 lowerCAmelCase__ : Any = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) ): lowerCAmelCase__ , lowerCAmelCase__ : str = list(map(SCREAMING_SNAKE_CASE_ , line.split(',' ) ) ) if x * logaa(SCREAMING_SNAKE_CASE_ ) > largest: lowerCAmelCase__ : List[str] = x * logaa(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = i + 1 return result if __name__ == "__main__": print(solution())
307
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( __A, __A ) -> int: '''simple docstring''' UpperCAmelCase__ = checkpoint UpperCAmelCase__ = {} UpperCAmelCase__ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase__ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase__ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase__ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase__ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase__ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase__ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase__ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase__ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase__ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase__ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase__ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase__ = vae_state_dict["quant_conv.weight"] UpperCAmelCase__ = vae_state_dict["quant_conv.bias"] UpperCAmelCase__ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase__ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase__ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase__ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__A ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase__ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase__ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__A ) } for i in range(__A ): UpperCAmelCase__ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase__ = renew_vae_resnet_paths(__A ) UpperCAmelCase__ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) UpperCAmelCase__ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase__ = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase__ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase__ = renew_vae_resnet_paths(__A ) UpperCAmelCase__ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) UpperCAmelCase__ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase__ = renew_vae_attention_paths(__A ) UpperCAmelCase__ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) conv_attn_to_linear(__A ) for i in range(__A ): UpperCAmelCase__ = num_up_blocks - 1 - i UpperCAmelCase__ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase__ = renew_vae_resnet_paths(__A ) UpperCAmelCase__ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) UpperCAmelCase__ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase__ = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase__ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase__ = renew_vae_resnet_paths(__A ) UpperCAmelCase__ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) UpperCAmelCase__ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase__ = renew_vae_attention_paths(__A ) UpperCAmelCase__ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) conv_attn_to_linear(__A ) return new_checkpoint def lowerCAmelCase_ ( __A, __A, ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase__ = io.BytesIO(r.content ) UpperCAmelCase__ = OmegaConf.load(__A ) UpperCAmelCase__ = 512 UpperCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase__ = {} with safe_open(__A, framework="pt", device="cpu" ) as f: for key in f.keys(): UpperCAmelCase__ = f.get_tensor(__A ) else: UpperCAmelCase__ = torch.load(__A, map_location=__A )["state_dict"] # Convert the VAE model. UpperCAmelCase__ = create_vae_diffusers_config(__A, image_size=__A ) UpperCAmelCase__ = custom_convert_ldm_vae_checkpoint(__A, __A ) UpperCAmelCase__ = AutoencoderKL(**__A ) vae.load_state_dict(__A ) vae.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') UpperCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
65
from __future__ import annotations class A : def __init__(self : Union[str, Any] , __UpperCAmelCase : list[list[int]] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(__UpperCAmelCase ) != 0: UpperCAmelCase__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__UpperCAmelCase ) != cols: raise error for value in row: if not isinstance(__UpperCAmelCase , (int, float) ): raise error UpperCAmelCase__ = rows else: UpperCAmelCase__ = [] def lowercase_ (self : Any ) -> list[list[int]]: """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase_ (self : Any ) -> int: """simple docstring""" return len(self.rows ) @property def lowercase_ (self : Union[str, Any] ) -> int: """simple docstring""" return len(self.rows[0] ) @property def lowercase_ (self : List[Any] ) -> tuple[int, int]: """simple docstring""" return (self.num_rows, self.num_columns) @property def lowercase_ (self : Tuple ) -> bool: """simple docstring""" return self.order[0] == self.order[1] def lowercase_ (self : Any ) -> Matrix: """simple docstring""" UpperCAmelCase__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__UpperCAmelCase ) def lowercase_ (self : int ) -> int: """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase_ (self : Tuple ) -> bool: """simple docstring""" return bool(self.determinant() ) def lowercase_ (self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" UpperCAmelCase__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__UpperCAmelCase ).determinant() def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) return -1 * self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> Matrix: """simple docstring""" return Matrix( [ [self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase_ (self : List[str] ) -> Matrix: """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase_ (self : Optional[Any] ) -> Matrix: """simple docstring""" UpperCAmelCase__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__UpperCAmelCase ) def lowercase_ (self : List[Any] ) -> Matrix: """simple docstring""" UpperCAmelCase__ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__(self : Dict ) -> str: """simple docstring""" return str(self.rows ) def __str__(self : Optional[Any] ) -> str: """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(__UpperCAmelCase ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int | None = None ) -> None: """simple docstring""" UpperCAmelCase__ = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise type_error for value in row: if not isinstance(__UpperCAmelCase , (int, float) ): raise type_error if len(__UpperCAmelCase ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(__UpperCAmelCase ) else: UpperCAmelCase__ = self.rows[0:position] + [row] + self.rows[position:] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int | None = None ) -> None: """simple docstring""" UpperCAmelCase__ = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise type_error for value in column: if not isinstance(__UpperCAmelCase , (int, float) ): raise type_error if len(__UpperCAmelCase ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: UpperCAmelCase__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCAmelCase__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__(self : Any , __UpperCAmelCase : object ) -> bool: """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return NotImplemented return self.rows == other.rows def __ne__(self : int , __UpperCAmelCase : object ) -> bool: """simple docstring""" return not self == other def __neg__(self : Dict ) -> Matrix: """simple docstring""" return self * -1 def __add__(self : Dict , __UpperCAmelCase : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__(self : Optional[Any] , __UpperCAmelCase : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__(self : Tuple , __UpperCAmelCase : Matrix | int | float ) -> Matrix: """simple docstring""" if isinstance(__UpperCAmelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(__UpperCAmelCase , __UpperCAmelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__(self : List[Any] , __UpperCAmelCase : int ) -> Matrix: """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) UpperCAmelCase__ = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase_ (cls : Dict , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] ) -> int: """simple docstring""" return sum(row[i] * column[i] for i in range(len(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
65
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' return x + 2 class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Optional[Any] ): snake_case_ : Union[str, Any] = """x = 3""" snake_case_ : str = {} snake_case_ : Optional[int] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3} ) snake_case_ : List[Any] = """x = y""" snake_case_ : Optional[Any] = {"""y""": 5} snake_case_ : Tuple = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 5, """y""": 5} ) def a__ ( self :Union[str, Any] ): snake_case_ : Union[str, Any] = """y = add_two(x)""" snake_case_ : Tuple = {"""x""": 3} snake_case_ : List[str] = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ : List[Any] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def a__ ( self :Optional[int] ): snake_case_ : Union[str, Any] = """x = 3""" snake_case_ : Optional[int] = {} snake_case_ : List[Any] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3} ) def a__ ( self :Optional[int] ): snake_case_ : Optional[Any] = """test_dict = {'x': x, 'y': add_two(x)}""" snake_case_ : Dict = {"""x""": 3} snake_case_ : Tuple = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def a__ ( self :Optional[Any] ): snake_case_ : Any = """x = 3\ny = 5""" snake_case_ : Tuple = {} snake_case_ : List[Any] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 5} ) def a__ ( self :Optional[Any] ): snake_case_ : Dict = """text = f'This is x: {x}.'""" snake_case_ : int = {"""x""": 3} snake_case_ : Dict = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """text""": """This is x: 3."""} ) def a__ ( self :List[Any] ): snake_case_ : Optional[int] = """if x <= 3:\n y = 2\nelse:\n y = 5""" snake_case_ : int = {"""x""": 3} snake_case_ : Optional[int] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 2} ) snake_case_ : Dict = {"""x""": 8} snake_case_ : Any = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 8, """y""": 5} ) def a__ ( self :Dict ): snake_case_ : Union[str, Any] = """test_list = [x, add_two(x)]""" snake_case_ : Tuple = {"""x""": 3} snake_case_ : Any = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,[3, 5] ) self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """test_list""": [3, 5]} ) def a__ ( self :Any ): snake_case_ : int = """y = x""" snake_case_ : int = {"""x""": 3} snake_case_ : Optional[int] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 3} ) def a__ ( self :Any ): snake_case_ : str = """test_list = [x, add_two(x)]\ntest_list[1]""" snake_case_ : Tuple = {"""x""": 3} snake_case_ : Union[str, Any] = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """test_list""": [3, 5]} ) snake_case_ : List[Any] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" snake_case_ : Tuple = {"""x""": 3} snake_case_ : str = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def a__ ( self :Dict ): snake_case_ : List[Any] = """x = 0\nfor i in range(3):\n x = i""" snake_case_ : Dict = {} snake_case_ : Dict = evaluate(_UpperCamelCase ,{"""range""": range} ,state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase ,{"""x""": 2, """i""": 2} )
353
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : str = ['input_values', 'padding_mask'] def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,): super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = chunk_length_s snake_case_ : str = overlap @property def a__ ( self :Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self :List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case_ : Tuple = True snake_case_ : str = bool( isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ): snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa ) elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ : Tuple = None snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio ) snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ : Any = max(array.shape[0] for array in raw_audio ) snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ : Union[str, Any] = """max_length""" else: snake_case_ : int = input_values # normal padding on batch if padded_inputs is None: snake_case_ : Optional[int] = self.pad( _UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,) if padding: snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" ) snake_case_ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case_ : Dict = example[..., None] input_values.append(example.T ) snake_case_ : List[Any] = input_values if return_tensors is not None: snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
0
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __SCREAMING_SNAKE_CASE : Any = """bert-base-cased""" __SCREAMING_SNAKE_CASE : Any = """fp16""" __SCREAMING_SNAKE_CASE : Optional[Any] = """bf16""" __SCREAMING_SNAKE_CASE : Dict = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : Union[str, Any] ): super().setUp() _UpperCAmelCase : Optional[int] = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def _A ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(A ): _UpperCAmelCase : Union[str, Any] = self.dist_env.copy() _UpperCAmelCase : Any = F"""{i + 1}""" _UpperCAmelCase : str = strategy with mockenv_context(**A ): _UpperCAmelCase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _A ( self : Any ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(A ): _UpperCAmelCase : Union[str, Any] = self.dist_env.copy() _UpperCAmelCase : Optional[Any] = prefetch_policy with mockenv_context(**A ): _UpperCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _A ( self : int ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(A ): _UpperCAmelCase : Optional[int] = self.dist_env.copy() _UpperCAmelCase : Tuple = state_dict_type with mockenv_context(**A ): _UpperCAmelCase : List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _A ( self : List[str] ): _UpperCAmelCase : List[str] = AutoModel.from_pretrained(A ) for policy in FSDP_AUTO_WRAP_POLICY: _UpperCAmelCase : Any = self.dist_env.copy() _UpperCAmelCase : Optional[int] = policy if policy == "TRANSFORMER_BASED_WRAP": _UpperCAmelCase : Optional[Any] = "BertLayer" elif policy == "SIZE_BASED_WRAP": _UpperCAmelCase : Any = "2000" with mockenv_context(**A ): _UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _UpperCAmelCase : Any = self.dist_env.copy() _UpperCAmelCase : Tuple = "TRANSFORMER_BASED_WRAP" _UpperCAmelCase : Tuple = "T5Layer" with mockenv_context(**A ): _UpperCAmelCase : Dict = FullyShardedDataParallelPlugin() with self.assertRaises(A ) as cm: fsdp_plugin.set_auto_wrap_policy(A ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : Optional[int] = "SIZE_BASED_WRAP" _UpperCAmelCase : List[str] = "0" with mockenv_context(**A ): _UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _A ( self : List[str] ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : str = mp_dtype with mockenv_context(**A ): _UpperCAmelCase : int = Accelerator() if mp_dtype == "fp16": _UpperCAmelCase : Union[str, Any] = torch.floataa elif mp_dtype == "bf16": _UpperCAmelCase : Union[str, Any] = torch.bfloataa _UpperCAmelCase : Optional[int] = MixedPrecision(param_dtype=A , reduce_dtype=A , buffer_dtype=A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(A ) def _A ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : Dict = str(A ).lower() with mockenv_context(**A ): _UpperCAmelCase : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=A ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : List[Any] ): super().setUp() _UpperCAmelCase : Optional[int] = 0.82 _UpperCAmelCase : int = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _UpperCAmelCase : Tuple = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _UpperCAmelCase : Tuple = 160 _UpperCAmelCase : Any = 160 _UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_performance.py" ) _UpperCAmelCase : Optional[int] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _UpperCAmelCase : Tuple = cmd.copy() for i, strategy in enumerate(A ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) def _A ( self : List[Any] ): _UpperCAmelCase : Dict = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) _UpperCAmelCase : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(A ): _UpperCAmelCase : Optional[Any] = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _UpperCAmelCase : Optional[Any] = len(A ) for state_dict_type in FSDP_STATE_DICT_TYPE: _UpperCAmelCase : Optional[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) _UpperCAmelCase : Optional[int] = cmd_config[:-1] _UpperCAmelCase : List[str] = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) def _A ( self : List[Any] ): _UpperCAmelCase : str = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) _UpperCAmelCase : Tuple = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _UpperCAmelCase : str = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(A ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() )
31
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) _A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = AutoConfig.from_pretrained("gpt2") _A : int = GenerationConfig.from_model_config(__lowerCamelCase) _A : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = GenerationConfig() _A : List[Any] = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _A : List[str] = copy.deepcopy(__lowerCamelCase) _A : int = generation_config.update(**__lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"}) def _lowerCamelCase ( self) -> Any: _A : int = GenerationConfig() _A : int = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__lowerCamelCase) _A : Any = GenerationConfig.from_pretrained(__lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") _A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase) assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config def _lowerCamelCase ( self) -> List[str]: _A : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCamelCase) self.assertEqual(default_config.num_beams , 1) _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase) _A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[int]: _A : Dict = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _lowerCamelCase ( self) -> Any: _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) _A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Union[str, Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) _A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
11
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict ): # Initialise PyTorch model A__ = MobileBertConfig.from_json_file(_lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) A__ = MobileBertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint A__ = load_tf_weights_in_mobilebert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : int =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
367
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowerCAmelCase : Tuple =trt.Logger(trt.Logger.WARNING) __lowerCAmelCase : Optional[Any] =absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowerCAmelCase : List[Any] =logging.getLogger(__name__) __lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __lowerCAmelCase : Tuple =parser.parse_args() if args.tokenizer_name: __lowerCAmelCase : int =AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __lowerCAmelCase : Union[str, Any] =args.per_device_eval_batch_size __lowerCAmelCase : List[Any] =(args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowerCAmelCase : Tuple =True __lowerCAmelCase : int ="temp_engine/bert-fp32.engine" if args.fpaa: __lowerCAmelCase : Tuple ="temp_engine/bert-fp16.engine" if args.inta: __lowerCAmelCase : Optional[int] ="temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __lowerCAmelCase : Tuple =1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowerCAmelCase : Optional[Any] =[network.get_input(i) for i in range(network.num_inputs)] __lowerCAmelCase : Any =[_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowerCAmelCase : Optional[Any] =1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowerCAmelCase : int =builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowerCAmelCase : Dict =builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): A__ = np.asarray(inputs["input_ids"] , dtype=np.intaa ) A__ = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) A__ = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _lowerCamelCase ) # start time A__ = time.time() # Run inference context.execute_async( bindings=[int(_lowerCamelCase ) for d_inp in d_inputs] + [int(_lowerCamelCase ), int(_lowerCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time A__ = time.time() A__ = end_time - start_time A__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowerCAmelCase : str =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase : List[Any] =load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowerCAmelCase : Optional[Any] =raw_datasets["validation"].column_names __lowerCAmelCase : Optional[Any] ="question" if "question" in column_names else column_names[0] __lowerCAmelCase : str ="context" if "context" in column_names else column_names[1] __lowerCAmelCase : Optional[Any] ="answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowerCAmelCase : Any =tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __lowerCAmelCase : Any =min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( _lowerCamelCase : Optional[int] ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=_lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A__ = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A__ = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A__ = tokenized_examples.sequence_ids(_lowerCamelCase ) A__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples __lowerCAmelCase : str =raw_datasets["validation"] # Validation Feature Creation __lowerCAmelCase : Union[str, Any] =eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __lowerCAmelCase : List[Any] =default_data_collator __lowerCAmelCase : List[Any] =eval_dataset.remove_columns(["example_id", "offset_mapping"]) __lowerCAmelCase : List[str] =DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. A__ = postprocess_qa_predictions( examples=_lowerCamelCase , features=_lowerCamelCase , predictions=_lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A__ = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: A__ = [{"id": k, "prediction_text": v} for k, v in predictions.items()] A__ = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_lowerCamelCase , label_ids=_lowerCamelCase ) __lowerCAmelCase : Tuple =load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return trt.volume(engine.get_binding_shape(_lowerCamelCase ) ) * engine.get_binding_dtype(_lowerCamelCase ).itemsize # Allocate device memory for inputs and outputs. __lowerCAmelCase : Any =[cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowerCAmelCase : List[Any] =cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowerCAmelCase : List[str] =cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowerCAmelCase : List[str] =cuda.mem_alloc(h_outputa.nbytes) __lowerCAmelCase : int =cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowerCAmelCase : Optional[Any] =cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __lowerCAmelCase : str =0.0 __lowerCAmelCase : Tuple =0 __lowerCAmelCase : List[str] =timeit.default_timer() __lowerCAmelCase : Union[str, Any] =None for step, batch in enumerate(eval_dataloader): __lowerCAmelCase , __lowerCAmelCase : Dict =model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowerCAmelCase , __lowerCAmelCase : List[Any] =outputs __lowerCAmelCase : Tuple =torch.tensor(start_logits) __lowerCAmelCase : Tuple =torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowerCAmelCase : Tuple =accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __lowerCAmelCase : int =(accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowerCAmelCase : List[Any] =logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __lowerCAmelCase : Dict =nested_truncate(all_preds, len(eval_dataset)) __lowerCAmelCase : Optional[int] =timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) __lowerCAmelCase : Optional[Any] =post_processing_function(eval_examples, eval_dataset, all_preds) __lowerCAmelCase : Optional[Any] =metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
123
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=1_3 , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=9_9 , SCREAMING_SNAKE_CASE__ : str=2_4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_7 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=1_0_0_0 , ) -> str: a_ : Optional[Any] = parent a_ : List[str] = batch_size a_ : List[str] = seq_length a_ : str = is_training a_ : str = use_input_mask a_ : int = use_token_type_ids a_ : List[str] = use_labels a_ : Optional[int] = vocab_size a_ : Any = hidden_size a_ : int = num_hidden_layers a_ : List[str] = num_attention_heads a_ : str = intermediate_size a_ : Union[str, Any] = hidden_act a_ : List[str] = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : int = max_position_embeddings a_ : Tuple = type_vocab_size a_ : Optional[Any] = type_sequence_label_size a_ : Tuple = initializer_range a_ : Dict = num_labels a_ : str = scope a_ : Optional[int] = range_bbox def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a_ : int = bbox[i, j, 3] a_ : str = bbox[i, j, 1] a_ : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ : Tuple = bbox[i, j, 2] a_ : List[str] = bbox[i, j, 0] a_ : Union[str, Any] = t a_ : List[Any] = None if self.use_input_mask: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) a_ : List[Any] = None if self.use_token_type_ids: a_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : int = None a_ : Tuple = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> str: a_ : Any = LiltModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Any = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> int: a_ : Any = self.num_labels a_ : str = LiltForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> str: a_ : Union[str, Any] = LiltForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : List[str] = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : int = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : List[Any] = config_and_inputs a_ : Optional[int] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : str = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : str = False def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: return True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : str = LiltModelTester(self ) a_ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ : List[str] = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = LiltModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : List[str] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(SCREAMING_SNAKE_CASE__ ) a_ : str = torch.tensor([[1, 2]] , device=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): a_ : str = model(input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = torch.Size([1, 2, 7_6_8] ) a_ : int = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
32
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[int] = '''convbert''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : Dict=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=1E-12 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=9 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Tuple = vocab_size a_ : List[str] = hidden_size a_ : List[str] = num_hidden_layers a_ : Dict = num_attention_heads a_ : Optional[int] = intermediate_size a_ : int = hidden_act a_ : Dict = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : str = max_position_embeddings a_ : List[str] = type_vocab_size a_ : List[str] = initializer_range a_ : Tuple = layer_norm_eps a_ : Optional[int] = embedding_size a_ : List[Any] = head_ratio a_ : List[Any] = conv_kernel_size a_ : Tuple = num_groups a_ : Tuple = classifier_dropout class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a_ : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
32
1
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class lowerCamelCase ( __lowerCAmelCase ): def _lowerCamelCase ( self, lowercase_=None, lowercase_=None, lowercase_=None, **lowercase_ ) -> List[str]: if tokenize_kwargs is None: snake_case = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case = truncation snake_case = tokenize_kwargs snake_case = {} if return_tensors is not None: snake_case = return_tensors return preprocess_params, {}, postprocess_params def _lowerCamelCase ( self, lowercase_, **lowercase_ ) -> Dict[str, GenericTensor]: snake_case = self.framework snake_case = self.tokenizer(lowercase_, return_tensors=lowercase_, **lowercase_ ) return model_inputs def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = self.model(**lowercase_ ) return model_outputs def _lowerCamelCase ( self, lowercase_, lowercase_=False ) -> Tuple: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *lowercase_, **lowercase_ ) -> List[Any]: return super().__call__(*lowercase_, **lowercase_ )
332
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Optional[Any] = """▁""" __UpperCamelCase : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = BigBirdTokenizer _UpperCAmelCase = BigBirdTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: super().setUp() snake_case__ = self.tokenizer_class(UpperCamelCase , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self: int ) -> Any: snake_case__ = '<s>' snake_case__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> Tuple: snake_case__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(UpperCamelCase ) , 10_04 ) def lowerCAmelCase_ ( self: Optional[Any] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: if not self.test_rust_tokenizer: return snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = 'I was born in 92000, and this is falsé.' snake_case__ = tokenizer.tokenize(UpperCamelCase ) snake_case__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) snake_case__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(UpperCamelCase ) snake_case__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] ) -> Any: snake_case__ = BigBirdTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) snake_case__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) snake_case__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case__ = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowerCAmelCase_ ( self: List[str] ) -> Any: return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = 'Hello World!' snake_case__ = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(UpperCamelCase , self.big_tokenizer.encode(UpperCamelCase ) ) @slow def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off snake_case__ = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(UpperCamelCase , self.big_tokenizer.encode(UpperCamelCase ) ) @require_torch @slow def lowerCAmelCase_ ( self: List[str] ) -> Dict: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence snake_case__ = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ = ' '.join(UpperCamelCase ) snake_case__ = self.big_tokenizer.encode_plus(UpperCamelCase , return_tensors='pt' , return_token_type_ids=UpperCamelCase ) snake_case__ = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCamelCase ) snake_case__ = BigBirdConfig(attention_type='original_full' ) snake_case__ = BigBirdModel(UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase ) model(**UpperCamelCase ) @slow def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: snake_case__ = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) snake_case__ = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Union[str, Any]: # fmt: off snake_case__ = {'input_ids': [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
307
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __UpperCamelCase = True except (ImportError, AttributeError): __UpperCamelCase = object def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Any: """simple docstring""" pass __UpperCamelCase = False __UpperCamelCase = logging.get_logger("transformers-cli/serving") def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCamelCase , args.host , args.port , args.workers ) class _A ( __lowercase ): lowercase__: dict class _A ( __lowercase ): lowercase__: List[str] lowercase__: Optional[List[int]] class _A ( __lowercase ): lowercase__: str class _A ( __lowercase ): lowercase__: Any class _A ( __lowercase ): @staticmethod def lowercase__ ( __magic_name__ : ArgumentParser ) -> Dict: """simple docstring""" __snake_case : int = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=__magic_name__ , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=__magic_name__ , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=__magic_name__ , default=88_88 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=__magic_name__ , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=__magic_name__ , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=__magic_name__ , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=__magic_name__ , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=__magic_name__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=__magic_name__ ) def __init__( self : Any , __magic_name__ : Pipeline , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = pipeline __snake_case : str = host __snake_case : List[Any] = port __snake_case : Any = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(f'''Serving model over {host}:{port}''' ) __snake_case : int = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=__magic_name__ , response_class=__magic_name__ , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=__magic_name__ , response_class=__magic_name__ , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=__magic_name__ , response_class=__magic_name__ , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=__magic_name__ , response_class=__magic_name__ , methods=["""POST"""] , ), ] , timeout=6_00 , ) def lowercase__ ( self : int ) -> Dict: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase__ ( self : Any , __magic_name__ : str = Body(__magic_name__ , embed=__magic_name__ ) , __magic_name__ : bool = Body(__magic_name__ , embed=__magic_name__ ) ) -> Any: """simple docstring""" try: __snake_case : Union[str, Any] = self._pipeline.tokenizer.tokenize(__magic_name__ ) if return_ids: __snake_case : Tuple = self._pipeline.tokenizer.convert_tokens_to_ids(__magic_name__ ) return ServeTokenizeResult(tokens=__magic_name__ , tokens_ids=__magic_name__ ) else: return ServeTokenizeResult(tokens=__magic_name__ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(__magic_name__ )} ) def lowercase__ ( self : Any , __magic_name__ : List[int] = Body(__magic_name__ , embed=__magic_name__ ) , __magic_name__ : bool = Body(__magic_name__ , embed=__magic_name__ ) , __magic_name__ : bool = Body(__magic_name__ , embed=__magic_name__ ) , ) -> List[Any]: """simple docstring""" try: __snake_case : Dict = self._pipeline.tokenizer.decode(__magic_name__ , __magic_name__ , __magic_name__ ) return ServeDeTokenizeResult(model="""""" , text=__magic_name__ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(__magic_name__ )} ) async def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any]=Body(__magic_name__ , embed=__magic_name__ ) ) -> Optional[int]: """simple docstring""" if len(__magic_name__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __snake_case : Union[str, Any] = self._pipeline(__magic_name__ ) return ServeForwardResult(output=__magic_name__ ) except Exception as e: raise HTTPException(5_00 , {"""error""": str(__magic_name__ )} )
13
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""Input value must be a \'int\' type""" ) return bin(SCREAMING_SNAKE_CASE__ ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
215
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
from math import factorial class __snake_case : def __init__( self , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : str =real if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Any =[1] * rank else: UpperCAmelCase : Optional[Any] =rank def __repr__( self ) -> Dict: '''simple docstring''' return ( f'''{self.real}+''' f'''{'+'.join(str(snake_case__ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Dict =self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , snake_case__ ) def __add__( self , snake_case__ ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): return Dual(self.real + other , self.duals ) UpperCAmelCase : Tuple =self.duals.copy() UpperCAmelCase : int =other.duals.copy() if len(snake_case__ ) > len(snake_case__ ): o_dual.extend([1] * (len(snake_case__ ) - len(snake_case__ )) ) elif len(snake_case__ ) < len(snake_case__ ): s_dual.extend([1] * (len(snake_case__ ) - len(snake_case__ )) ) UpperCAmelCase : List[Any] =[] for i in range(len(snake_case__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , snake_case__ ) __lowerCamelCase : Dict = __add__ def __sub__( self , snake_case__ ) -> Optional[int]: '''simple docstring''' return self + other * -1 def __mul__( self , snake_case__ ) -> Dict: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : List[Any] =[] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , snake_case__ ) UpperCAmelCase : str =[0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , snake_case__ ) __lowerCamelCase : Any = __mul__ def __truediv__( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =[] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , snake_case__ ) raise ValueError def __floordiv__( self , snake_case__ ) -> Any: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =[] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , snake_case__ ) raise ValueError def __pow__( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' if n < 0 or isinstance(snake_case__ , snake_case__ ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self UpperCAmelCase : Union[str, Any] =self for _ in range(n - 1 ): x *= self return x def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' if not callable(__lowerCAmelCase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(__lowerCAmelCase , (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''differentiate() requires an int as input for order''' ) UpperCAmelCase : Union[str, Any] =Dual(__lowerCAmelCase , 1 ) UpperCAmelCase : Optional[int] =func(__lowerCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
78
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __snake_case = threading.Lock() __snake_case = None __snake_case = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } __snake_case = logging.WARNING __snake_case = True def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =os.getenv('''TRANSFORMERS_VERBOSITY''' , __lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowerCAmelCase_ ( )-> str: '''simple docstring''' return __name__.split('''.''' )[0] def lowerCAmelCase_ ( )-> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase : Union[str, Any] =logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase : str =sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase : List[Any] =_get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase : Optional[int] =False def lowerCAmelCase_ ( )-> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return UpperCAmelCase : str =_get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase : Optional[Any] =None def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return log_levels def lowerCAmelCase_ ( __lowerCAmelCase = None )-> logging.Logger: '''simple docstring''' if name is None: UpperCAmelCase : int =_get_library_name() _configure_library_root_logger() return logging.getLogger(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Any: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() UpperCAmelCase : int =False def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() UpperCAmelCase : Tuple =True def lowerCAmelCase_ ( )-> None: '''simple docstring''' UpperCAmelCase : List[Any] =_get_library_root_logger().handlers for handler in handlers: UpperCAmelCase : str =logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' UpperCAmelCase : int =_get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__lowerCAmelCase ) def lowerCAmelCase_ ( self , *__lowerCAmelCase , **__lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , __lowerCAmelCase ) if no_advisory_warnings: return self.warning(*__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = warning_advice @functools.lru_cache(__lowerCAmelCase ) def lowerCAmelCase_ ( self , *__lowerCAmelCase , **__lowerCAmelCase )-> Optional[int]: '''simple docstring''' self.warning(*__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = warning_once class __snake_case : def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: # pylint: disable=unused-argument '''simple docstring''' UpperCAmelCase : Any =args[0] if args else None def __iter__( self ) -> List[Any]: '''simple docstring''' return iter(self._iterator ) def __getattr__( self , snake_case__ ) -> str: '''simple docstring''' def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> int: '''simple docstring''' return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' return class __snake_case : def __call__( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __snake_case = _tqdm_cls() def lowerCAmelCase_ ( )-> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' global _tqdm_active UpperCAmelCase : Dict =True hf_hub_utils.enable_progress_bars() def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' global _tqdm_active UpperCAmelCase : List[str] =False hf_hub_utils.disable_progress_bars()
78
1
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A ="src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A =direct_transformers_import(PATH_TO_TRANSFORMERS) __A =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A =re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') __A ={ "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : str = None # source code of `config_class` UpperCAmelCase__ : Dict = inspect.getsource(__lowerCamelCase ) UpperCAmelCase__ : str = _re_checkpoint.findall(__lowerCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): UpperCAmelCase__ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase__ : List[Any] = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: UpperCAmelCase__ : List[Any] = ckpt_name break return checkpoint def _UpperCamelCase ( ): UpperCAmelCase__ : str = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCAmelCase__ : Optional[int] = get_checkpoint_from_config_class(__lowerCamelCase ) UpperCAmelCase__ : str = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: UpperCAmelCase__ : int = "\n".join(sorted(__lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
163
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _snake_case : str = logging.get_logger(__name__) # pylint: disable=invalid-name class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase : StableDiffusionSafetyChecker , lowerCamelCase : CLIPImageProcessor , ) -> Dict: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def __snake_case ( self : str ) -> List[str]: self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Dict , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , lowerCamelCase : Optional[torch.FloatTensor] = None , **lowerCamelCase : Any , ) -> Optional[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[int] = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Tuple = len(lowerCamelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowerCamelCase )}.' ) # get prompt text embeddings __snake_case : Tuple = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __snake_case : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __snake_case : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : int = text_embeddings.shape __snake_case : Any = text_embeddings.repeat(1 , lowerCamelCase , 1 ) __snake_case : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Any = [""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=' F' {type(lowerCamelCase )}.' ) elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : int = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: __snake_case : Tuple = negative_prompt __snake_case : str = text_input_ids.shape[-1] __snake_case : Dict = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="pt" , ) __snake_case : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Tuple = uncond_embeddings.shape[1] __snake_case : Any = uncond_embeddings.repeat(lowerCamelCase , lowerCamelCase , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __snake_case : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[Any] = torch.randn( lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to(self.device ) __snake_case : int = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: __snake_case : Union[str, Any] = torch.randn( lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) __snake_case : int = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __snake_case : Union[str, Any] = latents_reference.to(self.device ) __snake_case : List[str] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __snake_case : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 __snake_case : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 __snake_case : str = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __snake_case : List[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __snake_case : Tuple = 0 if dx < 0 else dx __snake_case : Union[str, Any] = 0 if dy < 0 else dy __snake_case : Any = max(-dx , 0 ) __snake_case : Optional[int] = max(-dy , 0 ) # import pdb # pdb.set_trace() __snake_case : List[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : List[str] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : Optional[Any] = {} if accepts_eta: __snake_case : List[Any] = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __snake_case : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : List[Any] = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __snake_case : str = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __snake_case : List[Any] = 1 / 0.1_82_15 * latents __snake_case : Dict = self.vae.decode(lowerCamelCase ).sample __snake_case : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __snake_case : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) , return_tensors="pt" ).to( self.device ) __snake_case , __snake_case : str = self.safety_checker( images=lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __snake_case : Dict = None if output_type == "pil": __snake_case : Any = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
123
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : str = logging.get_logger(__name__) UpperCamelCase_ : Optional[int] = {'''vocab_file''': '''spiece.model'''} UpperCamelCase_ : List[Any] = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } UpperCamelCase_ : List[Any] = {'''bert_for_seq_generation''': 512} class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : int = ["""input_ids""", """attention_mask"""] def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="<::::>" ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> None: _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,sp_model_kwargs=self.sp_model_kwargs ,**_SCREAMING_SNAKE_CASE ,) _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> List[str]: return self.sp_model.get_piece_size() def _lowercase ( self ) -> int: _snake_case = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self ,_SCREAMING_SNAKE_CASE ) -> str: _snake_case = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: return self.sp_model.encode(_SCREAMING_SNAKE_CASE ,out_type=_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Any: return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: _snake_case = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: _snake_case = [] _snake_case = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token _snake_case = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE ,"wb" ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
142
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __a ( _UpperCamelCase: Tuple ) -> Union[str, Any]: """simple docstring""" _snake_case = os.path.join(args.tf_model_dir , "parameters.json" ) _snake_case = json.loads(open(_UpperCamelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): _snake_case = args.output + ".pt" _snake_case = OrderedDict() with tf.device("/CPU:0" ): _snake_case = tf.train.load_checkpoint(args.tf_model_dir ) _snake_case = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _snake_case = reader.get_tensor(_UpperCamelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _snake_case = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _snake_case = 8 _snake_case = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/moe" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/softmlp/kernel" ): _snake_case = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _snake_case = key_name[-9:-7] for i in range(16 ): _snake_case = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _snake_case = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/mlp" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p1/bias" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/bias" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/ln" ): _snake_case = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _snake_case = "model.blocks.%d.feed_forward.norm.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): _snake_case = "model.blocks.%d.feed_forward.norm.weight" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/att" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _snake_case = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _snake_case = state[:, 0, :, :] _snake_case = state[:, 1, :, :] _snake_case = state[:, 2, :, :] _snake_case = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) _snake_case = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) _snake_case = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/o/kernel" ): _snake_case = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _snake_case = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/an" ): _snake_case = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _snake_case = "model.blocks.%d.self_attn.norm.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): _snake_case = "model.blocks.%d.self_attn.norm.weight" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _snake_case = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _snake_case = "model.%s.weight" % nlayer _snake_case = vnp.copy() # same in embedded _snake_case = torch.tensor(_UpperCamelCase ) if key_name.startswith("model/wte" ): _snake_case = "lm_head.weight" _snake_case = vnp.copy() # same in embedded _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/wob" ): _snake_case = "final_logits_bias" _snake_case = vnp.copy() # same in embedded _snake_case = state.reshape((1, -1) ) _snake_case = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense/kernel": _snake_case = "model.last_project.weight" _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense_1/bias": _snake_case = "model.last_project.bias" _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) torch.save(_UpperCamelCase , args.output ) if __name__ == "__main__": UpperCamelCase_ : Tuple = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') UpperCamelCase_ : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
142
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowercase : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = {} with open(snake_case_ , '''r''' ) as file: for line_number, line in enumerate(snake_case_ ): __UpperCAmelCase = line.strip() if line: __UpperCAmelCase = line.split() __UpperCAmelCase = line_number __UpperCAmelCase = words[0] __UpperCAmelCase = value return result def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :str , snake_case_ :Tuple ): for attribute in key.split('''.''' ): __UpperCAmelCase = getattr(snake_case_ , snake_case_ ) __UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case_ ): __UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] __UpperCAmelCase = '''param''' if weight_type is not None and weight_type != "param": __UpperCAmelCase = getattr(snake_case_ , snake_case_ ).shape elif weight_type is not None and weight_type == "param": __UpperCAmelCase = hf_pointer for attribute in hf_param_name.split('''.''' ): __UpperCAmelCase = getattr(snake_case_ , snake_case_ ) __UpperCAmelCase = shape_pointer.shape # let's reduce dimension __UpperCAmelCase = value[0] else: __UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase = value elif weight_type == "weight_g": __UpperCAmelCase = value elif weight_type == "weight_v": __UpperCAmelCase = value elif weight_type == "bias": __UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __UpperCAmelCase = getattr(snake_case_ , snake_case_ ) __UpperCAmelCase = value else: __UpperCAmelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase__ ( snake_case_ :Dict , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :int , snake_case_ :int ): __UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case_ ): __UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] __UpperCAmelCase = '''param''' if weight_type is not None and weight_type != "param": __UpperCAmelCase = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCAmelCase = '''.'''.join([key, hf_param_name] ) else: __UpperCAmelCase = key __UpperCAmelCase = value if '''lm_head''' in full_key else value[0] _lowercase : Any = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Tuple , snake_case_ :Optional[int]=None , snake_case_ :List[Any]=None ): __UpperCAmelCase = False for key, mapped_key in MAPPING.items(): __UpperCAmelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __UpperCAmelCase = True if "*" in mapped_key: __UpperCAmelCase = name.split(snake_case_ )[0].split('''.''' )[-2] __UpperCAmelCase = mapped_key.replace('''*''' , snake_case_ ) if "weight_g" in name: __UpperCAmelCase = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase = '''weight_v''' elif "bias" in name: __UpperCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase = '''weight''' else: __UpperCAmelCase = None if hf_dict is not None: rename_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return is_used return is_used def lowercase__ ( snake_case_ :int , snake_case_ :str , snake_case_ :List[Any] ): __UpperCAmelCase = [] __UpperCAmelCase = fairseq_model.state_dict() __UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase = True else: __UpperCAmelCase = load_wavaveca_layer(snake_case_ , snake_case_ , snake_case_ ) if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase = name.split('''.''' ) __UpperCAmelCase = int(items[0] ) __UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def lowercase__ ( snake_case_ :Dict , snake_case_ :str , snake_case_ :Optional[Any]=None , snake_case_ :List[Any]=None , snake_case_ :Tuple=True , snake_case_ :Optional[Any]=False ): if config_path is not None: __UpperCAmelCase = WavaVecaConfig.from_pretrained(snake_case_ ) else: __UpperCAmelCase = WavaVecaConfig() if is_seq_class: __UpperCAmelCase = read_txt_into_dict(snake_case_ ) __UpperCAmelCase = idalabel __UpperCAmelCase = WavaVecaForSequenceClassification(snake_case_ ) __UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) feature_extractor.save_pretrained(snake_case_ ) elif is_finetuned: if dict_path: __UpperCAmelCase = Dictionary.load(snake_case_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase = target_dict.pad_index __UpperCAmelCase = target_dict.bos_index __UpperCAmelCase = target_dict.eos_index __UpperCAmelCase = len(target_dict.symbols ) __UpperCAmelCase = os.path.join(snake_case_ , '''vocab.json''' ) if not os.path.isdir(snake_case_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case_ ) ) return os.makedirs(snake_case_ , exist_ok=snake_case_ ) __UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase = 0 __UpperCAmelCase = 1 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(snake_case_ , snake_case_ ) __UpperCAmelCase = WavaVecaCTCTokenizer( snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case_ , ) __UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False __UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) __UpperCAmelCase = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ ) processor.save_pretrained(snake_case_ ) __UpperCAmelCase = WavaVecaForCTC(snake_case_ ) else: __UpperCAmelCase = WavaVecaForPreTraining(snake_case_ ) if is_finetuned or is_seq_class: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCAmelCase = argparse.Namespace(task='''audio_pretraining''' ) __UpperCAmelCase = fairseq.tasks.setup_task(snake_case_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case_ ) __UpperCAmelCase = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ , not is_finetuned ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowercase : Dict = parser.parse_args() _lowercase : int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
332
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = dataset A : List[str] = process A : List[str] = params def __len__( self ): return len(self.dataset ) def __getitem__( self, lowerCamelCase__ ): A : Union[str, Any] = self.dataset[i] A : Dict = self.process(lowerCamelCase__, **self.params ) return processed class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A : str = loader A : int = infer A : int = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether A : Union[str, Any] = None A : Optional[Any] = loader_batch_size # Internal bookkeeping A : List[Any] = None A : Optional[int] = None def __len__( self ): return len(self.loader ) def __iter__( self ): A : Dict = iter(self.loader ) return self def _lowerCAmelCase ( self ): if isinstance(self._loader_batch_data, torch.Tensor ): # Batch data is simple tensor, just fetch the slice A : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) A : str = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase__, lowerCamelCase__ ): # Convert ModelOutput to tuple first A : List[str] = element.to_tuple() if isinstance(element[0], torch.Tensor ): A : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): A : str = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase__, lowerCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor ): A : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): A : List[str] = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around A : Tuple = None elif isinstance(element[self._loader_batch_index], torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A : List[str] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index], np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A : Optional[Any] = np.expand_dims(element[self._loader_batch_index], 0 ) else: # This is typically a list, so no need to `unsqueeze`. A : List[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 A : List[str] = self._loader_batch_data.__class__(lowerCamelCase__ ) self._loader_batch_index += 1 return result def _lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch A : List[Any] = next(self.iterator ) A : int = self.infer(lowerCamelCase__, **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase__, torch.Tensor ): A : Optional[Any] = processed else: A : Tuple = list(processed.keys() )[0] A : List[Any] = processed[key] if isinstance(lowerCamelCase__, lowerCamelCase__ ): A : Dict = len(lowerCamelCase__ ) else: A : str = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A : Tuple = observed_batch_size # Setting internal index to unwrap the batch A : Tuple = processed A : Optional[int] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): super().__init__(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def __iter__( self ): A : Optional[Any] = iter(self.loader ) A : Union[str, Any] = None return self def _lowerCAmelCase ( self ): if self.subiterator is None: A : Optional[int] = self.infer(next(self.iterator ), **self.params ) try: # Try to return next item A : int = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators A : str = self.infer(next(self.iterator ), **self.params ) A : int = next(self.subiterator ) return processed class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __iter__( self ): A : Tuple = iter(self.loader ) return self def _lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. A : Optional[int] = False A : int = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: A : int = self.loader_batch_item() A : Union[str, Any] = item.pop("""is_last""" ) accumulator.append(lowerCamelCase__ ) if is_last: return accumulator while not is_last: A : str = self.infer(next(self.iterator ), **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase__, torch.Tensor ): A : int = processed else: A : List[str] = list(processed.keys() )[0] A : int = processed[key] if isinstance(lowerCamelCase__, lowerCamelCase__ ): A : str = len(lowerCamelCase__ ) else: A : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A : Any = observed_batch_size A : Optional[Any] = processed A : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: A : Optional[Any] = self.loader_batch_item() A : List[Any] = item.pop("""is_last""" ) accumulator.append(lowerCamelCase__ ) if is_last: return accumulator else: A : Union[str, Any] = processed A : Any = item.pop("""is_last""" ) accumulator.append(lowerCamelCase__ ) return accumulator class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): A : str = dataset A : Optional[Any] = key def __len__( self ): return len(self.dataset ) def __getitem__( self, lowerCamelCase__ ): return self.dataset[i][self.key] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Optional[Any] = dataset A : Optional[Any] = keya A : Optional[Any] = keya def __len__( self ): return len(self.dataset ) def __getitem__( self, lowerCamelCase__ ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
115
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_:Any = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:List[Any] = ["""MobileNetV2FeatureExtractor"""] SCREAMING_SNAKE_CASE_:Tuple = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys SCREAMING_SNAKE_CASE_:Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
115
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowerCAmelCase : Any = True except (ImportError, AttributeError): lowerCAmelCase : Any = object def A_ ( *_UpperCAmelCase , **_UpperCAmelCase ): pass lowerCAmelCase : Tuple = False lowerCAmelCase : List[Any] = logging.get_logger("""transformers-cli/serving""") def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_UpperCAmelCase , args.host , args.port , args.workers ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : dict class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] _UpperCAmelCase : Optional[List[int]] class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any class __lowercase ( UpperCAmelCase_ ): """simple docstring""" @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : ArgumentParser): SCREAMING_SNAKE_CASE_: Optional[Any] = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints.") serve_parser.add_argument( "--task" , type=lowerCAmelCase__ , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=lowerCAmelCase__ , default="localhost" , help="Interface the server will listen on.") serve_parser.add_argument("--port" , type=lowerCAmelCase__ , default=8888 , help="Port the serving will listen to.") serve_parser.add_argument("--workers" , type=lowerCAmelCase__ , default=1 , help="Number of http workers") serve_parser.add_argument("--model" , type=lowerCAmelCase__ , help="Model's name or path to stored model.") serve_parser.add_argument("--config" , type=lowerCAmelCase__ , help="Model's config name or path to stored model.") serve_parser.add_argument("--tokenizer" , type=lowerCAmelCase__ , help="Tokenizer name to use.") serve_parser.add_argument( "--device" , type=lowerCAmelCase__ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=lowerCAmelCase__) def __init__( self : Optional[int] , lowerCAmelCase__ : Pipeline , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: int = pipeline SCREAMING_SNAKE_CASE_: Dict = host SCREAMING_SNAKE_CASE_: str = port SCREAMING_SNAKE_CASE_: List[Any] = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately.") else: logger.info(F"Serving model over {host}:{port}") SCREAMING_SNAKE_CASE_: Tuple = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["POST"] , ), ] , timeout=600 , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): run(self._app , host=self.host , port=self.port , workers=self.workers) def _SCREAMING_SNAKE_CASE ( self : List[str]): return ServeModelInfoResult(infos=vars(self._pipeline.model.config)) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str = Body(lowerCAmelCase__ , embed=lowerCAmelCase__) , lowerCAmelCase__ : bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__)): try: SCREAMING_SNAKE_CASE_: Optional[Any] = self._pipeline.tokenizer.tokenize(lowerCAmelCase__) if return_ids: SCREAMING_SNAKE_CASE_: int = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase__) return ServeTokenizeResult(tokens=lowerCAmelCase__ , tokens_ids=lowerCAmelCase__) else: return ServeTokenizeResult(tokens=lowerCAmelCase__) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(lowerCAmelCase__)}) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[int] = Body(lowerCAmelCase__ , embed=lowerCAmelCase__) , lowerCAmelCase__ : bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__) , lowerCAmelCase__ : bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__) , ): try: SCREAMING_SNAKE_CASE_: Optional[Any] = self._pipeline.tokenizer.decode(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) return ServeDeTokenizeResult(model="" , text=lowerCAmelCase__) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(lowerCAmelCase__)}) async def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[int]=Body(lowerCAmelCase__ , embed=lowerCAmelCase__)): # Check we don't have empty string if len(lowerCAmelCase__) == 0: return ServeForwardResult(output=[] , attention=[]) try: # Forward through the model SCREAMING_SNAKE_CASE_: Optional[int] = self._pipeline(lowerCAmelCase__) return ServeForwardResult(output=lowerCAmelCase__) except Exception as e: raise HTTPException(500 , {"error": str(lowerCAmelCase__)})
13
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
1
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = (boundary[1] - boundary[0]) / steps SCREAMING_SNAKE_CASE__ = boundary[0] SCREAMING_SNAKE_CASE__ = boundary[1] SCREAMING_SNAKE_CASE__ = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = a + h while x < (b - h): yield x SCREAMING_SNAKE_CASE__ = x + h def _lowercase ( UpperCamelCase_ ) -> int: # enter your function here '''simple docstring''' SCREAMING_SNAKE_CASE__ = (x - 0) * (x - 0) return y def _lowercase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0.0 # Lower bound of integration SCREAMING_SNAKE_CASE__ = 1.0 # Upper bound of integration SCREAMING_SNAKE_CASE__ = 10.0 # define number of steps or resolution SCREAMING_SNAKE_CASE__ = [a, b] # define boundary of integration SCREAMING_SNAKE_CASE__ = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(F'y = {y}' ) if __name__ == "__main__": main()
367
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Tuple =FlaxAutoencoderKL @property def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = (32, 32) SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.uniform(UpperCAmelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE__ = self.dummy_input return init_dict, inputs_dict
169
0
"""simple docstring""" import string def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = '' for i in sequence: UpperCAmelCase = ord(lowercase_ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = string.ascii_letters UpperCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase_ )] if c in letters else c for c in sequence ) def _lowerCAmelCase ( ): from timeit import timeit print('Running performance benchmarks...' ) UpperCAmelCase = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F"""> atbash_slow(): {timeit('atbash_slow(printable)' , setup=lowercase_ )} seconds""" ) print(F"""> atbash(): {timeit('atbash(printable)' , setup=lowercase_ )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
78
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) snake_case_ = logging.getLogger(__name__) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = git.Repo(search_parent_directories=lowercase_ ) UpperCAmelCase = { 'repo_id': str(lowercase_ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(lowercase_ , 'git_log.json' ) , 'w' ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def _lowerCAmelCase ( lowercase_ ): if params.n_gpu <= 0: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = True UpperCAmelCase = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase = int(os.environ['WORLD_SIZE'] ) UpperCAmelCase = int(os.environ['N_GPU_NODE'] ) UpperCAmelCase = int(os.environ['RANK'] ) # number of nodes / node ID UpperCAmelCase = params.world_size // params.n_gpu_per_node UpperCAmelCase = params.global_rank // params.n_gpu_per_node UpperCAmelCase = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase = 1 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase = params.node_id == 0 and params.local_rank == 0 UpperCAmelCase = params.n_nodes > 1 # summary UpperCAmelCase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _lowerCAmelCase ( lowercase_ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
78
1
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" _snake_case : Any = {} _snake_case : int = job["""started_at"""] _snake_case : Optional[int] = job["""completed_at"""] _snake_case : List[str] = date_parser.parse(snake_case__ ) _snake_case : Any = date_parser.parse(snake_case__ ) _snake_case : List[Any] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _snake_case : List[Any] = start _snake_case : Tuple = end _snake_case : List[str] = duration_in_min return job_info def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[int]=None ): """simple docstring""" _snake_case : Union[str, Any] = None if token is not None: _snake_case : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _snake_case : Optional[int] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _snake_case : Optional[Any] = requests.get(snake_case__ , headers=snake_case__ ).json() _snake_case : Optional[Any] = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} ) _snake_case : Dict = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(snake_case__ ): _snake_case : str = requests.get(url + F"&page={i + 2}" , headers=snake_case__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') A_ = parser.parse_args() A_ = get_job_time(args.workflow_run_id) A_ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
132
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A_ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) A_ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = """https://pypi.org/pypi/diffusers/json""" _snake_case : Optional[int] = json.loads(request.urlopen(snake_case__ ).read() )["""releases"""].keys() return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : str = Path(snake_case__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _snake_case : List[Any] = Path(snake_case__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : List[Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : Union[str, Any] = f.read() # Imports of the form `import .xxx` _snake_case : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" _snake_case : Tuple = False _snake_case : Any = [module_file] _snake_case : str = [] # Let's recurse through all relative imports while not no_change: _snake_case : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case__ ) ) _snake_case : Dict = Path(snake_case__ ).parent _snake_case : Dict = [str(module_path / m ) for m in new_imports] _snake_case : Tuple = [f for f in new_import_files if f not in all_relative_imports] _snake_case : str = [F"{f}.py" for f in new_import_files] _snake_case : Dict = len(snake_case__ ) == 0 all_relative_imports.extend(snake_case__ ) return all_relative_imports def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : int = f.read() # Imports of the form `import xxx` _snake_case : Tuple = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Only keep the top-level module _snake_case : Tuple = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all _snake_case : Any = list(set(snake_case__ ) ) _snake_case : int = [] for imp in imports: try: importlib.import_module(snake_case__ ) except ImportError: missing_packages.append(snake_case__ ) if len(snake_case__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`" ) return get_relative_imports(snake_case__ ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = module_path.replace(os.path.sep , """.""" ) _snake_case : int = importlib.import_module(snake_case__ ) if class_name is None: return find_pipeline_class(snake_case__ ) return getattr(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" from ..pipelines import DiffusionPipeline _snake_case : Tuple = dict(inspect.getmembers(snake_case__ , inspect.isclass ) ) _snake_case : Dict = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) _snake_case : List[str] = cls return pipeline_class def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ): """simple docstring""" _snake_case : List[str] = str(snake_case__ ) _snake_case : Optional[Any] = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ): _snake_case : List[str] = module_file_or_url _snake_case : Optional[Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: _snake_case : Tuple = get_diffusers_versions() # cut ".dev0" _snake_case : Union[str, Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: _snake_case : int = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: _snake_case : Optional[Any] = F"v{revision}" elif revision == "main": _snake_case : int = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub _snake_case : List[str] = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ ) try: _snake_case : Dict = cached_download( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Union[str, Any] = """git""" _snake_case : str = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached _snake_case : str = hf_hub_download( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Optional[Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment _snake_case : int = check_imports(snake_case__ ) # Now we move the module inside our cached dynamic modules. _snake_case : Optional[int] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case__ ) _snake_case : Any = Path(snake_case__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case__ , submodule_path / module_file ) for module_needed in modules_needed: _snake_case : Any = F"{module_needed}.py" shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case__ , snake_case__ ): _snake_case : Any = use_auth_token elif use_auth_token is True: _snake_case : int = HfFolder.get_token() else: _snake_case : Optional[int] = None _snake_case : int = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _snake_case : int = submodule_path / commit_hash _snake_case : Optional[int] = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case__ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case__ , F"{module_needed}.py" , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return os.path.join(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : Tuple , ): """simple docstring""" _snake_case : Union[str, Any] = get_cached_module_file( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return get_class_in_module(snake_case__ , final_module.replace(""".py""" , """""" ) )
132
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _A : str = logging.get_logger(__name__) _A : int = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _A : Union[str, Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Any = {} with open(UpperCAmelCase , '''r''' ) as file: for line_number, line in enumerate(UpperCAmelCase ): lowerCamelCase__ : int = line.strip() if line: lowerCamelCase__ : Optional[Any] = line.split() lowerCamelCase__ : Optional[Any] = line_number lowerCamelCase__ : int = words[0] lowerCamelCase__ : Tuple = value return result def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): lowerCamelCase__ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase ): lowerCamelCase__ : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] lowerCamelCase__ : Optional[int] = '''param''' if weight_type is not None and weight_type != "param": lowerCamelCase__ : Optional[Any] = getattr(UpperCAmelCase , UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": lowerCamelCase__ : List[str] = hf_pointer for attribute in hf_param_name.split('''.''' ): lowerCamelCase__ : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : List[Any] = shape_pointer.shape # let's reduce dimension lowerCamelCase__ : str = value[0] else: lowerCamelCase__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCamelCase__ : List[Any] = value elif weight_type == "weight_g": lowerCamelCase__ : Any = value elif weight_type == "weight_v": lowerCamelCase__ : Tuple = value elif weight_type == "bias": lowerCamelCase__ : List[str] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): lowerCamelCase__ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : List[Any] = value else: lowerCamelCase__ : Optional[int] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase ): lowerCamelCase__ : Tuple = PARAM_MAPPING[full_name.split('''.''' )[-1]] lowerCamelCase__ : str = '''param''' if weight_type is not None and weight_type != "param": lowerCamelCase__ : Any = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCamelCase__ : Dict = '''.'''.join([key, hf_param_name] ) else: lowerCamelCase__ : int = key lowerCamelCase__ : Tuple = value if '''lm_head''' in full_key else value[0] _A : List[Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Tuple = False for key, mapped_key in MAPPING.items(): lowerCamelCase__ : Dict = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ : Union[str, Any] = True if "*" in mapped_key: lowerCamelCase__ : Optional[int] = name.split(UpperCAmelCase )[0].split('''.''' )[-2] lowerCamelCase__ : Optional[int] = mapped_key.replace('''*''' , UpperCAmelCase ) if "weight_g" in name: lowerCamelCase__ : Optional[Any] = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ : str = '''weight_v''' elif "bias" in name: lowerCamelCase__ : Optional[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ : str = '''weight''' else: lowerCamelCase__ : List[str] = None if hf_dict is not None: rename_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return is_used return is_used def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : Dict = [] lowerCamelCase__ : int = fairseq_model.state_dict() lowerCamelCase__ : int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowerCamelCase__ : Dict = True else: lowerCamelCase__ : List[str] = load_wavaveca_layer(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ : Optional[Any] = name.split('''.''' ) lowerCamelCase__ : Optional[Any] = int(items[0] ) lowerCamelCase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) lowerCamelCase__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) lowerCamelCase__ : Dict = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) lowerCamelCase__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) lowerCamelCase__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=False ) -> Any: """simple docstring""" if config_path is not None: lowerCamelCase__ : Any = WavaVecaConfig.from_pretrained(UpperCAmelCase ) else: lowerCamelCase__ : Dict = WavaVecaConfig() if is_seq_class: lowerCamelCase__ : Tuple = read_txt_into_dict(UpperCAmelCase ) lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : Union[str, Any] = WavaVecaForSequenceClassification(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) feature_extractor.save_pretrained(UpperCAmelCase ) elif is_finetuned: if dict_path: lowerCamelCase__ : Tuple = Dictionary.load(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__ : List[str] = target_dict.pad_index lowerCamelCase__ : Any = target_dict.bos_index lowerCamelCase__ : Optional[int] = target_dict.eos_index lowerCamelCase__ : Dict = len(target_dict.symbols ) lowerCamelCase__ : Optional[Any] = os.path.join(UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowerCamelCase__ : int = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__ : int = 0 lowerCamelCase__ : Union[str, Any] = 1 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = WavaVecaCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=UpperCAmelCase , ) lowerCamelCase__ : Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False lowerCamelCase__ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) lowerCamelCase__ : List[Any] = WavaVecaForCTC(UpperCAmelCase ) else: lowerCamelCase__ : Dict = WavaVecaForPreTraining(UpperCAmelCase ) if is_finetuned or is_seq_class: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowerCamelCase__ : str = argparse.Namespace(task='''audio_pretraining''' ) lowerCamelCase__ : int = fairseq.tasks.setup_task(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _A : List[str] = parser.parse_args() _A : Union[str, Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
142
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = emb.weight.shape lowerCamelCase__ : str = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = emb.weight.data return lin_layer def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = torch.load(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : List[Any] = mam_aaa['''args'''] lowerCamelCase__ : Dict = mam_aaa['''model'''] lowerCamelCase__ : Optional[Any] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) lowerCamelCase__ : Tuple = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowerCamelCase__ : Tuple = args.share_decoder_input_output_embed lowerCamelCase__ : Dict = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] lowerCamelCase__ : str = SpeechaTextConfig( vocab_size=UpperCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCAmelCase , num_beams=5 , max_length=200 , use_cache=UpperCAmelCase , decoder_start_token_id=2 , early_stopping=UpperCAmelCase , ) lowerCamelCase__ : Optional[int] = SpeechaTextForConditionalGeneration(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : Tuple = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _A : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
142
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Tuple =logging.get_logger(__name__) lowerCamelCase : List[Any] ={ '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __a ( A__ ): _lowerCAmelCase : Dict = '''data2vec-vision''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : str=7_68 , SCREAMING_SNAKE_CASE : List[Any]=12 , SCREAMING_SNAKE_CASE : Union[str, Any]=12 , SCREAMING_SNAKE_CASE : Any=30_72 , SCREAMING_SNAKE_CASE : List[str]="gelu" , SCREAMING_SNAKE_CASE : Any=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE : Any=1e-1_2 , SCREAMING_SNAKE_CASE : str=2_24 , SCREAMING_SNAKE_CASE : List[Any]=16 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=[3, 5, 7, 11] , SCREAMING_SNAKE_CASE : List[Any]=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : str=0.4 , SCREAMING_SNAKE_CASE : Optional[int]=2_56 , SCREAMING_SNAKE_CASE : Any=1 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Optional[Any]=2_55 , **SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : List[str] = num_hidden_layers UpperCamelCase__ : Any = num_attention_heads UpperCamelCase__ : Optional[int] = intermediate_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : List[str] = hidden_dropout_prob UpperCamelCase__ : Any = attention_probs_dropout_prob UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Any = layer_norm_eps UpperCamelCase__ : List[str] = image_size UpperCamelCase__ : Any = patch_size UpperCamelCase__ : Tuple = num_channels UpperCamelCase__ : Union[str, Any] = use_mask_token UpperCamelCase__ : int = use_absolute_position_embeddings UpperCamelCase__ : List[str] = use_relative_position_bias UpperCamelCase__ : Any = use_shared_relative_position_bias UpperCamelCase__ : List[str] = layer_scale_init_value UpperCamelCase__ : Dict = drop_path_rate UpperCamelCase__ : Any = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase__ : List[Any] = out_indices UpperCamelCase__ : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase__ : Union[str, Any] = use_auxiliary_head UpperCamelCase__ : Optional[Any] = auxiliary_loss_weight UpperCamelCase__ : Tuple = auxiliary_channels UpperCamelCase__ : Optional[int] = auxiliary_num_convs UpperCamelCase__ : int = auxiliary_concat_input UpperCamelCase__ : Any = semantic_loss_ignore_index class __a ( A__ ): _lowerCAmelCase : List[Any] = version.parse('''1.11''' ) @property def __lowercase ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __lowercase ( self : int ): '''simple docstring''' return 1e-4
355
from ..utils import DummyObject, requires_backends class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[str] = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> int: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Dict: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: requires_backends(__lowerCAmelCase , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[str] = ['''torch'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : int = ['''torch'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[str] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[str] = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] )
196
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : int ) -> list[int]: '''simple docstring''' __UpperCAmelCase : int = 2 __UpperCAmelCase : Tuple = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCamelCase ) if n > 1: factors.append(_UpperCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
115
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Tuple = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } UpperCAmelCase : str = '▁' class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = BarthezTokenizer def __init__( self : Optional[int] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Union[str, Any]="<s>" , UpperCamelCase : Any="</s>" , UpperCamelCase : Tuple="</s>" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : int="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : int="<mask>" , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Tuple = False if not self.vocab_file else True def lowerCamelCase__ ( self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
115
1
import flax.linen as nn import jax import jax.numpy as jnp class _a ( nn.Module ): _lowercase : int _lowercase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , UpperCamelCase_: int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = hidden_states.shape lowercase__ = jax.image.resize( UpperCamelCase_ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) lowercase__ = self.conv(UpperCamelCase_ ) return hidden_states class _a ( nn.Module ): _lowercase : int _lowercase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , UpperCamelCase_: Any ) -> Any: """simple docstring""" lowercase__ = self.conv(UpperCamelCase_ ) return hidden_states class _a ( nn.Module ): _lowercase : int _lowercase : int = None _lowercase : float = 0.0 _lowercase : bool = None _lowercase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.in_channels if self.out_channels is None else self.out_channels lowercase__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase__ = nn.Conv( UpperCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase__ = nn.Dense(UpperCamelCase_ , dtype=self.dtype ) lowercase__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase__ = nn.Dropout(self.dropout_prob ) lowercase__ = nn.Conv( UpperCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase__ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase__ = None if use_nin_shortcut: lowercase__ = nn.Conv( UpperCamelCase_ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any]=True ) -> Optional[Any]: """simple docstring""" lowercase__ = hidden_states lowercase__ = self.norma(UpperCamelCase_ ) lowercase__ = nn.swish(UpperCamelCase_ ) lowercase__ = self.conva(UpperCamelCase_ ) lowercase__ = self.time_emb_proj(nn.swish(UpperCamelCase_ ) ) lowercase__ = jnp.expand_dims(jnp.expand_dims(UpperCamelCase_ , 1 ) , 1 ) lowercase__ = hidden_states + temb lowercase__ = self.norma(UpperCamelCase_ ) lowercase__ = nn.swish(UpperCamelCase_ ) lowercase__ = self.dropout(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.conva(UpperCamelCase_ ) if self.conv_shortcut is not None: lowercase__ = self.conv_shortcut(UpperCamelCase_ ) return hidden_states + residual
93
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return base * power(SCREAMING_SNAKE_CASE , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') lowerCAmelCase = int(input('Enter the base: ').strip()) lowerCAmelCase = int(input('Enter the exponent: ').strip()) lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCAmelCase = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
93
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCamelCase ( self : Optional[Any] ): return self._get_superresolution_dummy_components() def lowerCamelCase ( self : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[int]=0 ): if str(snake_case_ ).startswith("""mps""" ): snake_case__ : int = torch.manual_seed(snake_case_ ) else: snake_case__ : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : Tuple = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase ( self : Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase ( self : str ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase ( self : Any ): self._test_save_load_local() def lowerCamelCase ( self : str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
35
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """realm""" def __init__( self :str , lowerCamelCase :List[Any]=3_0522 , lowerCamelCase :Optional[int]=768 , lowerCamelCase :Any=128 , lowerCamelCase :Tuple=12 , lowerCamelCase :str=12 , lowerCamelCase :List[str]=8 , lowerCamelCase :List[str]=3072 , lowerCamelCase :List[str]="gelu_new" , lowerCamelCase :int=0.1 , lowerCamelCase :Optional[Any]=0.1 , lowerCamelCase :int=512 , lowerCamelCase :Union[str, Any]=2 , lowerCamelCase :str=0.02 , lowerCamelCase :Tuple=1e-12 , lowerCamelCase :Dict=256 , lowerCamelCase :int=10 , lowerCamelCase :List[str]=1e-3 , lowerCamelCase :str=5 , lowerCamelCase :Optional[int]=320 , lowerCamelCase :Union[str, Any]=1335_3718 , lowerCamelCase :str=5000 , lowerCamelCase :str=1 , lowerCamelCase :List[Any]=0 , lowerCamelCase :Tuple=2 , **lowerCamelCase :Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) # Common config UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = hidden_size UpperCAmelCase__ = retriever_proj_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = num_candidates UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = layer_norm_eps # Reader config UpperCAmelCase__ = span_hidden_size UpperCAmelCase__ = max_span_width UpperCAmelCase__ = reader_layer_norm_eps UpperCAmelCase__ = reader_beam_size UpperCAmelCase__ = reader_seq_len # Retrieval config UpperCAmelCase__ = num_block_records UpperCAmelCase__ = searcher_beam_size
169
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a ( snake_case__ ): def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> Union[str, Any]: super().__init__() _a = value_function _a = unet _a = scheduler _a = env _a = env.get_dataset() _a = {} for key in self.data.keys(): try: _a = self.data[key].mean() except: # noqa: E722 pass _a = {} for key in self.data.keys(): try: _a = self.data[key].std() except: # noqa: E722 pass _a = env.observation_space.shape[0] _a = env.action_space.shape[0] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Any: return (x_in - self.means[key]) / self.stds[key] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Dict: return x_in * self.stds[key] + self.means[key] def __UpperCAmelCase ( self , __magic_name__ ) -> int: if type(UpperCAmelCase_ ) is dict: return {k: self.to_torch(UpperCAmelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCAmelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCAmelCase_ , device=self.unet.device ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: for key, val in cond.items(): _a = val.clone() return x_in def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: _a = x.shape[0] _a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _a = torch.full((batch_size,) , UpperCAmelCase_ , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCAmelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _a = self.value_function(x.permute(0 , 2 , 1 ) , UpperCAmelCase_ ).sample _a = torch.autograd.grad([y.sum()] , [x] )[0] _a = self.scheduler._get_variance(UpperCAmelCase_ ) _a = torch.exp(0.5 * posterior_variance ) _a = model_std * grad _a = 0 _a = x.detach() _a = x + scale * grad _a = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim ) _a = self.unet(x.permute(0 , 2 , 1 ) , UpperCAmelCase_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _a = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , predict_epsilon=UpperCAmelCase_ )["prev_sample"] # apply conditions to the trajectory (set the initial state) _a = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim ) _a = self.to_torch(UpperCAmelCase_ ) return x, y def __call__( self , __magic_name__ , __magic_name__=64 , __magic_name__=32 , __magic_name__=2 , __magic_name__=0.1 ) -> int: _a = self.normalize(UpperCAmelCase_ , 'observations' ) _a = obs[None].repeat(UpperCAmelCase_ , axis=0 ) _a = {0: self.to_torch(UpperCAmelCase_ )} _a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _a = randn_tensor(UpperCAmelCase_ , device=self.unet.device ) _a = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim ) _a = self.to_torch(UpperCAmelCase_ ) # run the diffusion process _a = self.run_diffusion(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # sort output trajectories by value _a = y.argsort(0 , descending=UpperCAmelCase_ ).squeeze() _a = x[sorted_idx] _a = sorted_values[:, :, : self.action_dim] _a = actions.detach().cpu().numpy() _a = self.de_normalize(UpperCAmelCase_ , key='actions' ) # select the action with the highest value if y is not None: _a = 0 else: # if we didn't run value guiding, select a random action _a = np.random.randint(0 , UpperCAmelCase_ ) _a = denorm_actions[selected_index, 0] return denorm_actions
365
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A () -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _A () -> Any: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _A () -> Dict: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase__ ): http_head('https://huggingface.co' )
104
0
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Tuple = [1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = 0, 0, 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE__ : List[str] = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ugly_nums[ia] * 5 for _ in range(1 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ugly_nums.append(__lowerCAmelCase ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : Tuple = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'{ugly_numbers(200) = }')
132
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a :List[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _lowercase ( __lowerCAmelCase ) -> List[str]: for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ : Union[str, Any] = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: SCREAMING_SNAKE_CASE__ : str = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = PegasusConfig(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = PegasusForConditionalGeneration(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch_model.model.state_dict() SCREAMING_SNAKE_CASE__ : Any = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE__ : Tuple = v.T SCREAMING_SNAKE_CASE__ : Any = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE__ : Optional[int] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : Any = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : int = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _lowercase ( __lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: SCREAMING_SNAKE_CASE__ : List[Any] = tf.train.list_variables(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Any = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): SCREAMING_SNAKE_CASE__ : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE__ : str = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = array return tf_weights def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: # save tokenizer first SCREAMING_SNAKE_CASE__ : Any = Path(__lowerCAmelCase ).parent.name SCREAMING_SNAKE_CASE__ : Dict = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] SCREAMING_SNAKE_CASE__ : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tf_weights_as_numpy(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": SCREAMING_SNAKE_CASE__ : Tuple = task_specific_params SCREAMING_SNAKE_CASE__ : str = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": a :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") a :Optional[Any] = parser.parse_args() if args.save_dir is None: a :List[Any] = Path(args.tf_ckpt_path).parent.name a :Optional[Any] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
132
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _A : def __init__( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int]=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Tuple=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[Any]=99 , __magic_name__ : Any=32 , __magic_name__ : Dict=2 , __magic_name__ : List[str]=4 , __magic_name__ : str=37 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : int=0.02 , __magic_name__ : Any=3 , __magic_name__ : Any=4 , __magic_name__ : Dict=None , ) -> List[Any]: """simple docstring""" __snake_case : Tuple = parent __snake_case : Optional[int] = 13 __snake_case : Optional[int] = 7 __snake_case : str = True __snake_case : Dict = True __snake_case : int = True __snake_case : Dict = True __snake_case : List[str] = 99 __snake_case : Optional[Any] = 32 __snake_case : str = 2 __snake_case : Optional[Any] = 4 __snake_case : Union[str, Any] = 37 __snake_case : Optional[Any] = """gelu""" __snake_case : Any = 0.1 __snake_case : List[str] = 0.1 __snake_case : List[Any] = 5_12 __snake_case : Union[str, Any] = 16 __snake_case : Any = 2 __snake_case : Dict = 0.02 __snake_case : Union[str, Any] = 3 __snake_case : Any = 4 __snake_case : List[Any] = None def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = None if self.use_token_type_ids: __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[Any] = None __snake_case : Any = None __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Any = TFRoFormerModel(config=lowercase_ ) __snake_case : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Any = [input_ids, input_mask] __snake_case : List[str] = model(lowercase_ ) __snake_case : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] ) -> str: """simple docstring""" __snake_case : List[Any] = True __snake_case : int = TFRoFormerForCausalLM(config=lowercase_ ) __snake_case : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : int = model(lowercase_ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> str: """simple docstring""" __snake_case : str = TFRoFormerForMaskedLM(config=lowercase_ ) __snake_case : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[Any] = TFRoFormerForSequenceClassification(config=lowercase_ ) __snake_case : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = self.num_choices __snake_case : int = TFRoFormerForMultipleChoice(config=lowercase_ ) __snake_case : Tuple = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) __snake_case : List[str] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) __snake_case : Any = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) __snake_case : List[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __snake_case : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Any ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = self.num_labels __snake_case : Optional[int] = TFRoFormerForTokenClassification(config=lowercase_ ) __snake_case : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : int ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = TFRoFormerForQuestionAnswering(config=lowercase_ ) __snake_case : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Any = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Any = config_and_inputs __snake_case : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowercase__: List[Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowercase__: Union[str, Any] = False lowercase__: str = False def lowercase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] ) -> str: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Dict = TFRoFormerModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : str = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(lowercase_ ) @require_tf class _A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : List[Any] = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __snake_case : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __snake_case : str = model(lowercase_ )[0] # TODO Replace vocab size __snake_case : Dict = 5_00_00 __snake_case : Any = [1, 6, vocab_size] self.assertEqual(output.shape , lowercase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __snake_case : str = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1E-4 ) @require_tf class _A ( unittest.TestCase ): lowercase__: List[str] = 1e-4 def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : str = tf.constant([[4, 10]] ) __snake_case : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __snake_case : Tuple = emba(input_ids.shape ) __snake_case : List[str] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : Tuple = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __snake_case : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) __snake_case : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) @require_tf class _A ( unittest.TestCase ): lowercase__: int = 1e-4 def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __snake_case : str = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __snake_case : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __snake_case : Optional[Any] = embed_positions([2, 16, 7_68] )[None, None, :, :] __snake_case , __snake_case : str = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase_ , lowercase_ , lowercase_ ) __snake_case : List[str] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __snake_case : Optional[int] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance )
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _A = logging.get_logger(__name__) _A = {'''vocab_file''': '''spiece.model'''} _A = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } _A = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) _A = 0 _A = 1 _A = 2 _A = 3 _A = 4 class A ( __UpperCamelCase ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = 'left' def __init__( self, UpperCamelCase__, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=False, UpperCamelCase__="<s>", UpperCamelCase__="</s>", UpperCamelCase__="<unk>", UpperCamelCase__="<sep>", UpperCamelCase__="<pad>", UpperCamelCase__="<cls>", UpperCamelCase__="<mask>", UpperCamelCase__=["<eop>", "<eod>"], UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__, lowerCAmelCase__ ) else mask_token lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__, remove_space=lowerCAmelCase__, keep_accents=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, additional_special_tokens=lowerCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, **lowerCAmelCase__, ) lowerCAmelCase_ = 3 lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = remove_space lowerCAmelCase_ = keep_accents lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if self.remove_space: lowerCAmelCase_ = ' '.join(inputs.strip().split() ) else: lowerCAmelCase_ = inputs lowerCAmelCase_ = outputs.replace('''``''', '''"''' ).replace('''\'\'''', '''"''' ) if not self.keep_accents: lowerCAmelCase_ = unicodedata.normalize('''NFKD''', lowerCAmelCase__ ) lowerCAmelCase_ = ''.join([c for c in outputs if not unicodedata.combining(lowerCAmelCase__ )] ) if self.do_lower_case: lowerCAmelCase_ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.preprocess_text(lowerCAmelCase__ ) lowerCAmelCase_ = self.sp_model.encode(lowerCAmelCase__, out_type=lowerCAmelCase__ ) lowerCAmelCase_ = [] for piece in pieces: if len(lowerCAmelCase__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowerCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase__, '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase_ = cur_pieces[1:] else: lowerCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase__ ) else: new_pieces.append(lowerCAmelCase__ ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.PieceToId(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.IdToPiece(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = ''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__, ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = False, UpperCamelCase__ = None, UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = kwargs.pop('''use_source_tokenizer''', lowerCAmelCase__ ) lowerCAmelCase_ = self.convert_ids_to_tokens(lowerCAmelCase__, skip_special_tokens=lowerCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase_ = [] lowerCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) lowerCAmelCase_ = [] sub_texts.append(lowerCAmelCase__ ) else: current_sub_text.append(lowerCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCAmelCase_ = ''.join(lowerCAmelCase__ ) lowerCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase_ = self.clean_up_tokenization(lowerCAmelCase__ ) return clean_text else: return text def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__, token_ids_a=lowerCAmelCase__, already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] return ([0] * len(lowerCAmelCase__ )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( lowerCAmelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__, '''wb''' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
278
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = PegasusTokenizer __lowercase : Any = PegasusTokenizerFast __lowercase : Optional[int] = True __lowercase : Tuple = True def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[str] = PegasusTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = '</s>' lowercase__: Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(lowerCAmelCase__ ) , 1_103 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowercase__: Dict = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] lowercase__: Tuple = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__: Any = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowercase__: Union[str, Any] = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] lowercase__: int = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 lowercase__: int = 'To ensure a smooth flow of bank resolutions.' lowercase__: Any = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] lowercase__: str = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Any = ['This is going to be way too long.' * 150, 'short example'] lowercase__: Tuple = ['not super long but more than 5 tokens', 'tiny'] lowercase__: Dict = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) lowercase__: Any = self._large_tokenizer( text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask. @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # fmt: off lowercase__: List[str] = {'input_ids': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = PegasusTokenizer __lowercase : Any = PegasusTokenizerFast __lowercase : Any = True __lowercase : Dict = True def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__: Union[str, Any] = PegasusTokenizer(lowerCAmelCase__ , offset=0 , mask_token_sent=lowerCAmelCase__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: str = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: Tuple = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowercase__: List[Any] = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] lowercase__: Any = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: List[Any] = ['This is going to be way too long.' * 1_000, 'short example'] lowercase__: str = ['not super long but more than 5 tokens', 'tiny'] lowercase__: Tuple = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) lowercase__: Dict = self._large_tokenizer( text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask. def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: str = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowercase__: Optional[int] = self._large_tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual( lowerCAmelCase__ , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
196
0
"""simple docstring""" __lowerCAmelCase : Union[str, Any] ={ "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = set() # keep track of all the paths to be checked lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase = queue.pop(0 ) # get the last node from the path lowercase = path[-1] if node not in explored: lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any ) -> List[Any]: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase = [start] lowercase = set(A__ ) # Keep tab on distances from `start` node. lowercase = {start: 0, target: -1} while queue: lowercase = queue.pop(0 ) if node == target: lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _lowercase : int = object() # For specifying empty leaf dict `{}` _lowercase : List[Any] = object() def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : List[Any] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__SCREAMING_SNAKE_CASE ) - len(__SCREAMING_SNAKE_CASE ) + 1 ): lowercase_ : Dict = [x.match(__SCREAMING_SNAKE_CASE ) for x, y in zip(__SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(__SCREAMING_SNAKE_CASE ): return True return False def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" def replace(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] ): for rule, replacement in rules: if _match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return replacement return val return replace def snake_case_ ( ): """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P('''mp''' , __SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__SCREAMING_SNAKE_CASE , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__SCREAMING_SNAKE_CASE , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : Optional[Any] = _get_partition_rules() lowercase_ : List[Any] = _replacement_rules(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = {k: _unmatched for k in flatten_dict(__SCREAMING_SNAKE_CASE )} lowercase_ : Optional[Any] = {k: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__SCREAMING_SNAKE_CASE ) )
93
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase : List[str] = ["text", "image", "audio"] def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): inputs.append(create_inputs(__SCREAMING_SNAKE_CASE ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def snake_case_ ( __SCREAMING_SNAKE_CASE : List ): """simple docstring""" lowercase_ : Optional[Any] = [] for output in outputs: if isinstance(__SCREAMING_SNAKE_CASE , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(__SCREAMING_SNAKE_CASE , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(__SCREAMING_SNAKE_CASE , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCAmelCase__ : def _snake_case ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , __SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = create_inputs(self.tool.inputs ) lowercase_ : Tuple = self.tool(*__SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Any = [outputs] self.assertListEqual(output_types(__SCREAMING_SNAKE_CASE ) , self.tool.outputs ) def _snake_case ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = create_inputs(self.tool.inputs ) lowercase_ : int = self.tool(*__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = [outputs] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) ) for output, output_type in zip(__SCREAMING_SNAKE_CASE , self.tool.outputs ): lowercase_ : Optional[int] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : int = [] for _input, input_type in zip(__SCREAMING_SNAKE_CASE , self.tool.inputs ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Optional[Any] = self.tool(*__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = [outputs] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) )
93
1
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __a = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __a = logging.getLogger() def __snake_case( ) -> int: snake_case__ : Dict = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case__ : List[Any] = parser.parse_args() return args.f def __snake_case( _lowerCAmelCase , _lowerCAmelCase="eval" ) -> List[str]: snake_case__ : Dict = os.path.join(_lowerCAmelCase , f"{split}_results.json" ) if os.path.exists(_lowerCAmelCase ): with open(_lowerCAmelCase , """r""" ) as f: return json.load(_lowerCAmelCase ) raise ValueError(f"can't find {path}" ) __a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : int ): snake_case__ : str = self.get_auto_remove_tmp_dir() snake_case__ : str = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(snake_case_ , """argv""" , snake_case_ ): run_flax_glue.main() snake_case__ : Optional[int] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def lowerCamelCase ( self : str ): snake_case__ : Any = self.get_auto_remove_tmp_dir() snake_case__ : Optional[Any] = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(snake_case_ , """argv""" , snake_case_ ): run_clm_flax.main() snake_case__ : Optional[Any] = get_results(snake_case_ ) self.assertLess(result["""eval_perplexity"""] , 100 ) @slow def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case__ : Dict = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(snake_case_ , """argv""" , snake_case_ ): run_summarization_flax.main() snake_case__ : Any = get_results(snake_case_ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def lowerCamelCase ( self : Optional[Any] ): snake_case__ : List[Any] = self.get_auto_remove_tmp_dir() snake_case__ : Any = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(snake_case_ , """argv""" , snake_case_ ): run_mlm_flax.main() snake_case__ : str = get_results(snake_case_ ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[int] = self.get_auto_remove_tmp_dir() snake_case__ : str = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(snake_case_ , """argv""" , snake_case_ ): run_ta_mlm_flax.main() snake_case__ : int = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def lowerCamelCase ( self : Dict ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case__ : Tuple = 7 if get_gpu_count() > 1 else 2 snake_case__ : Dict = self.get_auto_remove_tmp_dir() snake_case__ : List[Any] = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(snake_case_ , """argv""" , snake_case_ ): run_flax_ner.main() snake_case__ : Optional[int] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def lowerCamelCase ( self : Optional[Any] ): snake_case__ : List[str] = self.get_auto_remove_tmp_dir() snake_case__ : str = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(snake_case_ , """argv""" , snake_case_ ): run_qa.main() snake_case__ : Optional[Any] = get_results(snake_case_ ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
43
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __a = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __a = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __a = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __a = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class UpperCAmelCase_ : """simple docstring""" def __call__( self : str , snake_case_ : Optional[Any] , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = None , snake_case_ : Union[bool, str] = False , snake_case_ : Union[bool, str] = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[bool] = None , **snake_case_ : Union[str, Any] , ): if titles is None and texts is None: return super().__call__( snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) elif titles is None or texts is None: snake_case__ : int = titles if texts is None else texts return super().__call__( snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) snake_case__ : List[str] = titles if not isinstance(snake_case_ , snake_case_ ) else [titles] snake_case__ : Union[str, Any] = texts if not isinstance(snake_case_ , snake_case_ ) else [texts] snake_case__ : Dict = len(snake_case_ ) snake_case__ : Union[str, Any] = questions if not isinstance(snake_case_ , snake_case_ ) else [questions] * n_passages if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f"There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts." ) snake_case__ : int = super().__call__(snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Any = super().__call__(snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Dict = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case_ , snake_case_ ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : BatchEncoding , snake_case_ : DPRReaderOutput , snake_case_ : int = 16 , snake_case_ : int = 64 , snake_case_ : int = 4 , ): snake_case__ : Optional[int] = reader_input["""input_ids"""] snake_case__ , snake_case__ , snake_case__ : List[str] = reader_output[:3] snake_case__ : Union[str, Any] = len(snake_case_ ) snake_case__ : Tuple = sorted(range(snake_case_ ) , reverse=snake_case_ , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : int = sequence_ids.index(self.pad_token_id ) else: snake_case__ : int = len(snake_case_ ) snake_case__ : Optional[int] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case_ , top_spans=snake_case_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case_ , start_index=snake_case_ , end_index=snake_case_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : List[int] , snake_case_ : int , snake_case_ : int , ): snake_case__ : List[str] = [] for start_index, start_score in enumerate(snake_case_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : Any = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) snake_case__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) snake_case__ : Union[str, Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class UpperCAmelCase_ ( _a , _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = READER_PRETRAINED_VOCAB_FILES_MAP lowercase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = READER_PRETRAINED_INIT_CONFIGURATION lowercase = ["input_ids", "attention_mask"]
43
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : def __init__( self : Dict , lowercase : Optional[Any] , lowercase : Tuple=13 , lowercase : Optional[Any]=7 , lowercase : Any=True , lowercase : Union[str, Any]=True , lowercase : Optional[Any]=True , lowercase : str=True , lowercase : Optional[Any]=99 , lowercase : Dict=32 , lowercase : Tuple=2 , lowercase : Optional[int]=4 , lowercase : Optional[Any]=37 , lowercase : Optional[int]="gelu" , lowercase : Tuple=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : List[Any]=512 , lowercase : Any=16 , lowercase : Optional[Any]=2 , lowercase : List[str]=0.02 , lowercase : Dict=3 , lowercase : List[Any]=4 , lowercase : str=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 99 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 37 UpperCAmelCase = '''gelu''' UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = None def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : List[str] , lowercase : str , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModel(config=lowercase ) UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , lowercase : Any , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = True UpperCAmelCase = TFRoFormerForCausalLM(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self : List[Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : str , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForSequenceClassification(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = TFRoFormerForMultipleChoice(config=lowercase ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str , lowercase : List[str] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] , lowercase : Any , lowercase : Optional[int] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForTokenClassification(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict , lowercase : int , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = TFRoFormerForQuestionAnswering(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _a ( __a , __a , unittest.TestCase ): __a : Any = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __a : Tuple = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __a : List[Any] = False __a : Dict = False def A ( self : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowercase ) @require_tf class _a ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = model(lowercase )[0] # TODO Replace vocab size UpperCAmelCase = 50_000 UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , lowercase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 ) @require_tf class _a ( unittest.TestCase ): __a : List[Any] = 1e-4 def A ( self : str ): '''simple docstring''' UpperCAmelCase = tf.constant([[4, 10]] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase = emba(input_ids.shape ) UpperCAmelCase = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) @require_tf class _a ( unittest.TestCase ): __a : Dict = 1e-4 def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCAmelCase = embed_positions([2, 16, 768] )[None, None, :, :] UpperCAmelCase , UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase , lowercase , lowercase ) UpperCAmelCase = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCAmelCase = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance )
34
'''simple docstring''' import torch from torch import nn class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=1 ,lowercase__ : Optional[Any]=False ): super().__init__() __lowercase = n_token __lowercase = d_embed __lowercase = d_proj __lowercase = cutoffs + [n_token] __lowercase = [0] + self.cutoffs __lowercase = div_val __lowercase = self.cutoffs[0] __lowercase = len(self.cutoffs ) - 1 __lowercase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowercase = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) __lowercase = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowercase = nn.ModuleList() __lowercase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) else: self.out_projs.append(lowercase__ ) self.out_layers.append(nn.Linear(lowercase__ ,lowercase__ ) ) else: for i in range(len(self.cutoffs ) ): __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) self.out_layers.append(nn.Linear(lowercase__ ,r_idx - l_idx ) ) __lowercase = keep_order def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Any ): if proj is None: __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowercase = nn.functional.linear(lowercase__ ,proj.t().contiguous() ) __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any=None ,lowercase__ : List[str]=False ): if labels is not None: # Shift so that tokens < n predict n __lowercase = hidden[..., :-1, :].contiguous() __lowercase = labels[..., 1:].contiguous() __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) __lowercase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: __lowercase = labels != -1_0_0 __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = ( -nn.functional.log_softmax(lowercase__ ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowercase = nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) if labels is None: __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = 0 __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowercase = (labels >= l_idx) & (labels < r_idx) __lowercase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowercase = labels.index_select(0 ,lowercase__ ) - l_idx __lowercase = head_logprob.index_select(0 ,lowercase__ ) __lowercase = hidden.index_select(0 ,lowercase__ ) else: __lowercase = hidden if i == 0: if labels is not None: __lowercase = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowercase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowercase = logprob_i if labels is not None: if (hasattr(self ,'''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 ,lowercase__ ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ): if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = head_logprob[:, -i] + tail_logprob_i __lowercase = logprob_i return out
104
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __A : int , __A : str=7 , __A : Union[str, Any]=3 , __A : Union[str, Any]=3_0 , __A : Optional[int]=4_0_0 , __A : Optional[Any]=True , __A : Optional[int]=None , __A : Union[str, Any]=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : Any=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : Optional[Any]=1 / 2_5_5 , __A : Union[str, Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : Optional[Any] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : List[Any] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = min_resolution snake_case__ : Optional[Any] = max_resolution snake_case__ : str = do_resize snake_case__ : List[str] = size snake_case__ : List[Any] = do_normalize snake_case__ : Dict = image_mean snake_case__ : List[Any] = image_std snake_case__ : int = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : str = do_pad def _lowercase ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : Dict , __A : Union[str, Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Any = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : List[str] = int(self.size["shortest_edge"] * h / w ) snake_case__ : Tuple = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Optional[Any] = self.size["shortest_edge"] snake_case__ : List[Any] = self.size["shortest_edge"] else: snake_case__ : Union[str, Any] = [] for image in image_inputs: snake_case__, snake_case__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Any = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Optional[int] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : Optional[int] ): snake_case__ : str = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Union[str, Any] ): snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Tuple ): snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Any ): pass def _lowercase ( self : Optional[int] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : Union[str, Any] = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Any ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Union[str, Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[int] ): # prepare image and target snake_case__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : List[str] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Optional[Any] = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : int = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Union[str, Any] ): # prepare image, target and masks_path snake_case__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Optional[int] = json.loads(f.read() ) snake_case__ : Any = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : List[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Dict = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Dict = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
286
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = PhobertTokenizer a_ = False def _lowercase ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Optional[int] = ["T@@", "i", "I", "R@@", "r", "e@@"] snake_case__ : int = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Dict = ["#version: 0.2", "l à</w>"] snake_case__ : Optional[Any] = {"unk_token": "<unk>"} snake_case__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def _lowercase ( self : List[str] , **__A : Any ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__A ) def _lowercase ( self : Tuple , __A : List[Any] ): snake_case__ : str = "Tôi là VinAI Research" snake_case__ : int = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def _lowercase ( self : Optional[int] ): snake_case__ : int = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : Tuple = "Tôi là VinAI Research" snake_case__ : List[Any] = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() snake_case__ : int = tokenizer.tokenize(__A ) print(__A ) self.assertListEqual(__A , __A ) snake_case__ : Any = tokens + [tokenizer.unk_token] snake_case__ : Any = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A )
286
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]=1_0 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : int=3_2 * 4 , __lowerCAmelCase : Dict=3_2 * 6 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : List[str]=3_2 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Dict = is_training _lowerCamelCase : str = use_auxiliary_loss _lowerCamelCase : Any = num_queries _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : int = min_size _lowerCamelCase : Any = max_size _lowerCamelCase : int = num_labels _lowerCamelCase : List[str] = mask_feature_size def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__lowerCAmelCase ) > 0.5 ).float() _lowerCamelCase : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=__lowerCAmelCase ) > 0.5).long() _lowerCamelCase : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = output.encoder_hidden_states _lowerCamelCase : Tuple = output.pixel_decoder_hidden_states _lowerCamelCase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , config.decoder_config.decoder_layers ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=False ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : Optional[int] = MaskFormerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Tuple = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = MaskFormerForInstanceSegmentation(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() def comm_check_on_output(__lowerCAmelCase : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCamelCase : str = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) _lowerCamelCase : List[str] = model( pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () snake_case__ : Any = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : List[str] = False snake_case__ : Optional[int] = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = MaskFormerModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__lowerCAmelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCamelCase : Union[str, Any] = MaskFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 _lowerCamelCase : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=__lowerCAmelCase ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=__lowerCAmelCase ), '''class_labels''': torch.zeros(2 , 1_0 , device=__lowerCAmelCase ).long(), } _lowerCamelCase : int = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = model(**__lowerCAmelCase , output_attentions=__lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCamelCase : Union[str, Any] = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : Any = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : List[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCamelCase : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase__ = 1E-4 def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : Any = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : int = model(**__lowerCAmelCase ) _lowerCamelCase : str = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : int = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : List[str] = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] _lowerCamelCase : Any = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : str = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : Tuple = self.default_image_processor _lowerCamelCase : Tuple = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : int = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] _lowerCamelCase : List[Any] = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : Any = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[str] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) _lowerCamelCase : Union[str, Any] = inputs['''pixel_values'''].to(__lowerCAmelCase ) _lowerCamelCase : Dict = [el.to(__lowerCAmelCase ) for el in inputs['''mask_labels''']] _lowerCamelCase : Optional[Any] = [el.to(__lowerCAmelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _lowerCamelCase : Tuple = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
72
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _snake_case : def A__ ( self : List[str], __lowercase : Optional[int] ): raise NotImplementedError() def A__ ( self : List[Any] ): raise NotImplementedError() class _snake_case ( lowercase__): def __init__( self : List[str], __lowercase : "AutoTokenizer", __lowercase : bool = False, **__lowercase : List[Any] ): lowercase__ = tokenizer lowercase__ = skip_prompt lowercase__ = decode_kwargs # variables used in the streaming process lowercase__ = [] lowercase__ = 0 lowercase__ = True def A__ ( self : Union[str, Any], __lowercase : Any ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: lowercase__ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase__ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase__ = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): lowercase__ = text[self.print_len :] lowercase__ = [] lowercase__ = 0 # If the last token is a CJK character, we print the characters. elif len(__lowercase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase__ = text[self.print_len :] self.print_len += len(__lowercase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase__ = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(__lowercase ) self.on_finalized_text(__lowercase ) def A__ ( self : Optional[Any] ): # Flush the cache, if it exists if len(self.token_cache ) > 0: lowercase__ = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) lowercase__ = text[self.print_len :] lowercase__ = [] lowercase__ = 0 else: lowercase__ = "" lowercase__ = True self.on_finalized_text(__lowercase, stream_end=__lowercase ) def A__ ( self : Optional[Any], __lowercase : str, __lowercase : bool = False ): print(__lowercase, flush=__lowercase, end="" if not stream_end else None ) def A__ ( self : Optional[int], __lowercase : Union[str, Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False class _snake_case ( lowercase__): def __init__( self : Dict, __lowercase : "AutoTokenizer", __lowercase : bool = False, __lowercase : Optional[float] = None, **__lowercase : str ): super().__init__(__lowercase, __lowercase, **__lowercase ) lowercase__ = Queue() lowercase__ = None lowercase__ = timeout def A__ ( self : List[str], __lowercase : str, __lowercase : bool = False ): self.text_queue.put(__lowercase, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : str ): return self def A__ ( self : Dict ): lowercase__ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
368
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = r"\w+[.]\d+" lowercase__ = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: lowercase__ = key.replace(SCREAMING_SNAKE_CASE_ , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowercase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=42 ): # Step 1: Convert pytorch tensor to numpy lowercase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase__ = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowercase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowercase__ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowercase__ , lowercase__ = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase__ = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
224
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase : Dict = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class UpperCAmelCase_ ( unittest.TestCase , _A ): '''simple docstring''' def _lowercase ( self : Union[str, Any] ) -> Any: """simple docstring""" __magic_name__ = load_tool("""text-question-answering""" ) self.tool.setup() __magic_name__ = load_tool("""text-question-answering""" , remote=UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.tool(UpperCamelCase__ , """What did Hugging Face do in April 2021?""" ) self.assertEqual(UpperCamelCase__ , """launched the BigScience Research Workshop""" ) def _lowercase ( self : List[str] ) -> int: """simple docstring""" __magic_name__ = self.remote_tool(UpperCamelCase__ , """What did Hugging Face do in April 2021?""" ) self.assertEqual(UpperCamelCase__ , """launched the BigScience Research Workshop""" ) def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.tool(text=UpperCamelCase__ , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(UpperCamelCase__ , """launched the BigScience Research Workshop""" ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.remote_tool(text=UpperCamelCase__ , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(UpperCamelCase__ , """launched the BigScience Research Workshop""" )
88
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? snake_case__ : Any = '''ssube/stable-diffusion-x4-upscaler-onnx''' def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Tuple: a_ : Union[str, Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ) a_ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.get_dummy_inputs() a_ : int = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : List[Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = self.get_dummy_inputs() a_ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : str = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: a_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.get_dummy_inputs() a_ : Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Optional[Any] = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: a_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.get_dummy_inputs() a_ : Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : int = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.get_dummy_inputs() a_ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Union[str, Any] = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : List[str] = ort.SessionOptions() a_ : int = False return options def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a_ : int = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default a_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = 'A fantasy landscape, trending on artstation' a_ : str = torch.manual_seed(0 ) a_ : List[str] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) a_ : Dict = output.images a_ : Any = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : str = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a_ : List[str] = init_image.resize((1_2_8, 1_2_8) ) a_ : Dict = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) a_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Any = 'A fantasy landscape, trending on artstation' a_ : Tuple = torch.manual_seed(0 ) a_ : Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) a_ : str = output.images a_ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : Tuple = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
32
0
import math def UpperCamelCase( lowercase_ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase( lowercase_ = 0.1 ) -> int: '''simple docstring''' snake_case_ = 3 snake_case_ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
34
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
34
1