code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[Any] ={ '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any =['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict =[ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] =[ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a__ : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
'''simple docstring''' from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : list[list[int]] ): __UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__A ) != 0: __UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCamelCase = rows else: __UpperCamelCase = [] def _lowerCamelCase ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCamelCase ( self : str ): return len(self.rows ) @property def _lowerCamelCase ( self : Any ): return len(self.rows[0] ) @property def _lowerCamelCase ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def _lowerCamelCase ( self : Dict ): return self.order[0] == self.order[1] def _lowerCamelCase ( self : Any ): __UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCamelCase ( self : List[str] ): return bool(self.determinant() ) def _lowerCamelCase ( self : Dict , __A : int , __A : int ): __UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _lowerCamelCase ( self : Dict , __A : int , __A : int ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _lowerCamelCase ( self : List[str] ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCamelCase ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__A ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__A ) else: __UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: __UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __A : object ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , __A : object ): return not self == other def __neg__( self : List[Any] ): return self * -1 def __add__( self : List[str] , __A : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , __A : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __A : Matrix | int | float ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Union[str, Any] , __A : int ): if not isinstance(__A , __A ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) __UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : Tuple = SwinvaConfig() __a : Union[str, Any] = swinva_name.split('_' ) __a : Tuple = name_split[1] if "to" in name_split[3]: __a : List[str] = int(name_split[3][-3:] ) else: __a : Union[str, Any] = int(name_split[3] ) if "to" in name_split[2]: __a : Optional[int] = int(name_split[2][-2:] ) else: __a : int = int(name_split[2][6:] ) if model_size == "tiny": __a : Optional[Any] = 96 __a : Union[str, Any] = (2, 2, 6, 2) __a : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": __a : str = 96 __a : Dict = (2, 2, 18, 2) __a : Union[str, Any] = (3, 6, 12, 24) elif model_size == "base": __a : Any = 128 __a : Any = (2, 2, 18, 2) __a : List[str] = (4, 8, 16, 32) else: __a : Optional[Any] = 192 __a : str = (2, 2, 18, 2) __a : Dict = (6, 12, 24, 48) if "to" in swinva_name: __a : Any = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __a : Tuple = 21_841 __a : Optional[int] = 'huggingface/label-files' __a : List[Any] = 'imagenet-22k-id2label.json' __a : Any = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __a : Dict = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a : str = idalabel __a : List[str] = {v: k for k, v in idalabel.items()} else: __a : List[str] = 1_000 __a : Tuple = 'huggingface/label-files' __a : Union[str, Any] = 'imagenet-1k-id2label.json' __a : Optional[int] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __a : Optional[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a : Union[str, Any] = idalabel __a : List[str] = {v: k for k, v in idalabel.items()} __a : Union[str, Any] = img_size __a : str = num_classes __a : List[Any] = embed_dim __a : str = depths __a : Optional[int] = num_heads __a : Optional[Any] = window_size return config def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): if "patch_embed.proj" in name: __a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __a : Any = 'encoder.' + name if "attn.proj" in name: __a : str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __a : Optional[int] = name.replace('attn' , 'attention.self' ) if "norm1" in name: __a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a : Dict = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __a : Union[str, Any] = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __a : str = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __a : Dict = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __a : Dict = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": __a : str = 'layernorm.weight' if name == "norm.bias": __a : List[Any] = 'layernorm.bias' if "head" in name: __a : str = name.replace('head' , 'classifier' ) else: __a : Optional[Any] = 'swinv2.' + name return name def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any ): for key in orig_state_dict.copy().keys(): __a : List[Any] = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __a : Any = key.split('.' ) __a : Union[str, Any] = int(key_split[1] ) __a : int = int(key_split[3] ) __a : Dict = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a : Optional[int] = val[:dim, :] __a : Tuple = val[dim : dim * 2, :] __a : str = val[-dim:, :] else: __a : int = val[:dim] __a : List[str] = val[ dim : dim * 2 ] __a : Any = val[-dim:] else: __a : str = val return orig_state_dict def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Optional[int] = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __a : Optional[int] = get_swinva_config(_SCREAMING_SNAKE_CASE ) __a : Tuple = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __a : Any = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __a : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' __a : Any = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) __a : Optional[int] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __a : Dict = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) __a : List[str] = timm_model(inputs['pixel_values'] ) __a : int = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": __lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowercase : Any = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
294
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class __UpperCamelCase : A_ = 42 A_ = None A_ = None def lowerCamelCase (_SCREAMING_SNAKE_CASE : TreeNode | None ): # Validation def is_valid_tree(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> bool: if node is None: return True if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( _SCREAMING_SNAKE_CASE : TreeNode | None , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _SCREAMING_SNAKE_CASE , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _SCREAMING_SNAKE_CASE ) ) return is_binary_search_tree_recursive_check(_SCREAMING_SNAKE_CASE , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
294
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger() @dataclass class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: nn.Module __UpperCamelCase: List[nn.Module] = field(default_factory=snake_case__ ) __UpperCamelCase: list = field(default_factory=snake_case__ ) def _A ( self : List[str] , A : Optional[int] , A : Tensor , A : Tensor ): _UpperCAmelCase : Union[str, Any] = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self : Any , A : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def _A ( self : List[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: nn.Module __UpperCamelCase: nn.Module __UpperCamelCase: int = 0 __UpperCamelCase: List = field(default_factory=snake_case__ ) __UpperCamelCase: List = field(default_factory=snake_case__ ) def __call__( self : Optional[Any] , A : Tensor ): _UpperCAmelCase : Optional[Any] = Tracker(self.dest )(A ).parametrized _UpperCAmelCase : List[Any] = Tracker(self.src )(A ).parametrized _UpperCAmelCase : str = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) _UpperCAmelCase : int = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ): raise Exception( F"""Numbers of operations are different. Source module has {len(A )} operations while""" F""" destination module has {len(A )}.""" ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : ResNetConfig , _UpperCAmelCase : Path , _UpperCAmelCase : bool = True ) -> str: """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): _UpperCAmelCase : Any = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval() _UpperCAmelCase : Union[str, Any] = ResNetForImageClassification(_UpperCAmelCase ).eval() _UpperCAmelCase : Optional[int] = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase ) _UpperCAmelCase : List[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_UpperCAmelCase ) assert torch.allclose(from_model(_UpperCAmelCase ) , our_model(_UpperCAmelCase ).logits ), "The model logits don't match the original one." _UpperCAmelCase : Tuple = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(_UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_UpperCAmelCase , ) # we can use the convnext one _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_UpperCAmelCase , ) print(F"""Pushed {checkpoint_name}""" ) def UpperCamelCase_ ( _UpperCAmelCase : Path , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = True ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = "imagenet-1k-id2label.json" _UpperCAmelCase : Optional[int] = 1_000 _UpperCAmelCase : Optional[int] = (1, num_labels) _UpperCAmelCase : Union[str, Any] = "huggingface/label-files" _UpperCAmelCase : int = num_labels _UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Optional[int] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : str = idalabel _UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Union[str, Any] = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(_UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() __SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
31
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } _UpperCAmelCase = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off _UpperCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = MBartTokenizer lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ): """simple docstring""" A_ : List[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) A_ : Union[str, Any] = vocab_file A_ : Optional[int] = False if not self.vocab_file else True A_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) A_ : Tuple = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A_ : Dict = src_lang if src_lang is not None else 'en_XX' A_ : Dict = self.convert_tokens_to_ids(self._src_lang ) A_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) A_ : int = src_lang A_ : Optional[int] = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) A_ : Optional[Any] = self.convert_tokens_to_ids(lowercase ) A_ : Dict = tgt_lang_id return inputs def lowerCAmelCase_ ( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ): """simple docstring""" A_ : Union[str, Any] = src_lang A_ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = self.convert_tokens_to_ids(lowercase ) A_ : Optional[Any] = [] A_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] A_ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) A_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) A_ : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = self.convert_tokens_to_ids(lowercase ) A_ : List[Any] = [] A_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] A_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) A_ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) A_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return A_ : Dict = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
140
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any]=13 , _SCREAMING_SNAKE_CASE : Optional[int]=30 , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[Any]=3 , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=32 , _SCREAMING_SNAKE_CASE : Optional[int]=5 , _SCREAMING_SNAKE_CASE : Optional[int]=4 , _SCREAMING_SNAKE_CASE : Optional[int]=37 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : int=0.1 , _SCREAMING_SNAKE_CASE : Dict=10 , _SCREAMING_SNAKE_CASE : int=0.02 , _SCREAMING_SNAKE_CASE : Any=3 , _SCREAMING_SNAKE_CASE : Dict=0.6 , _SCREAMING_SNAKE_CASE : List[str]=None , )-> int: lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : Dict = patch_size lowerCAmelCase__ : Any = num_channels lowerCAmelCase__ : List[str] = is_training lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : List[Any] = mask_ratio lowerCAmelCase__ : Dict = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase__ : List[str] = (image_size // patch_size) ** 2 lowerCAmelCase__ : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__( self : Optional[int] )-> str: lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[Any] = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Optional[Any] )-> Any: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Any: lowerCAmelCase__ : Dict = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = (self.image_size // self.patch_size) ** 2 lowerCAmelCase__ : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : Optional[int] = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__( self : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = config_and_inputs lowerCAmelCase__ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase): _a : List[str] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _a : Optional[int] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _a : List[str] = False _a : Optional[int] = False _a : int = False _a : Any = False def UpperCAmelCase__( self : Tuple )-> int: lowerCAmelCase__ : Tuple = ViTMAEModelTester(self ) lowerCAmelCase__ : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCAmelCase__( self : str )-> List[str]: pass def UpperCAmelCase__( self : Union[str, Any] )-> Any: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] )-> Optional[int]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )-> Any: # make masks reproducible np.random.seed(2 ) lowerCAmelCase__ : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCAmelCase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase__ : Optional[int] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase__ : str = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase__ : List[str] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Optional[int] = outputs[0].cpu().numpy() lowerCAmelCase__ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans lowerCAmelCase__ : Dict = after_outputs[0].cpu().numpy() lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' ) def UpperCAmelCase__( self : List[str] )-> Any: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' ) def UpperCAmelCase__( self : Dict )-> Optional[int]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' ) def UpperCAmelCase__( self : str )-> List[Any]: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__( self : Optional[int] )-> str: pass @slow def UpperCAmelCase__( self : str )-> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : List[Any] = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Any )-> Any: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCAmelCase__( self : str )-> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase__ : int = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = self.default_image_processor lowerCAmelCase__ : List[str] = prepare_img() lowerCAmelCase__ : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase__ : Tuple = ViTMAEConfig() lowerCAmelCase__ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase__ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCAmelCase__ : List[str] = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits lowerCAmelCase__ : Dict = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
366
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class _a ( _lowercase): _a : List[Any] = '''dpr''' def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : List[str]=3_0522 , _SCREAMING_SNAKE_CASE : Optional[int]=768 , _SCREAMING_SNAKE_CASE : List[str]=12 , _SCREAMING_SNAKE_CASE : Tuple=12 , _SCREAMING_SNAKE_CASE : str=3072 , _SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , _SCREAMING_SNAKE_CASE : Dict=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : List[str]=512 , _SCREAMING_SNAKE_CASE : int=2 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , _SCREAMING_SNAKE_CASE : Tuple=1E-12 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0 , _SCREAMING_SNAKE_CASE : List[str]="absolute" , _SCREAMING_SNAKE_CASE : int = 0 , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> Optional[int]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Union[str, Any] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : str = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : Dict = projection_dim lowerCAmelCase__ : int = position_embedding_type
211
0
from math import factorial def lowerCAmelCase__ ( a__: int , a__: int , a__: float ) -> float: '''simple docstring''' if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(A__ , A__ ) or not isinstance(A__ , A__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _UpperCAmelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _UpperCAmelCase = float(factorial(A__ ) ) coefficient /= factorial(A__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
329
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> Dict: '''simple docstring''' _lowercase =feature_size _lowercase =sampling_rate _lowercase =padding_value _lowercase =kwargs.pop('padding_side' , 'right' ) _lowercase =kwargs.pop('return_attention_mask' , lowerCAmelCase ) super().__init__(**lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> BatchFeature: '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _lowercase ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase ) == 0: if return_attention_mask: _lowercase =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowercase =required_input[0] if isinstance(lowerCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowercase =0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase ): _lowercase =required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase ): _lowercase ='tf' elif is_torch_tensor(lowerCAmelCase ): _lowercase ='pt' elif isinstance(lowerCAmelCase , (int, float, list, tuple, np.ndarray) ): _lowercase ='np' else: raise ValueError( F'''type of {first_element} unknown: {type(lowerCAmelCase )}. ''' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _lowercase =to_numpy(lowerCAmelCase ) else: _lowercase =[to_numpy(lowerCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _lowercase =self._get_padding_strategies(padding=lowerCAmelCase , max_length=lowerCAmelCase ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =len(lowerCAmelCase ) if not all(len(lowerCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _lowercase =[] for i in range(lowerCAmelCase ): _lowercase ={k: v[i] for k, v in processed_features.items()} # truncation _lowercase =self._truncate( lowerCAmelCase , max_length=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) truncated_inputs.append(lowerCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowercase =PaddingStrategy.MAX_LENGTH _lowercase ={} for i in range(lowerCAmelCase ): # padding _lowercase =self._pad( truncated_inputs[i] , max_length=lowerCAmelCase , padding_strategy=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _lowercase =[] if value.dtype is np.dtype(np.floataa ): _lowercase =value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase ) return BatchFeature(lowerCAmelCase , tensor_type=lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase = None , lowerCAmelCase = None , ) -> dict: '''simple docstring''' _lowercase =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowercase =len(lowerCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowercase =np.ones(len(lowerCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: _lowercase =max_length - len(lowerCAmelCase ) if self.padding_side == "right": if return_attention_mask: _lowercase =np.pad( processed_features['attention_mask'] , (0, difference) ) _lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowercase =np.pad( lowerCAmelCase , lowerCAmelCase , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowercase =np.pad( processed_features['attention_mask'] , (difference, 0) ) _lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowercase =np.pad( lowerCAmelCase , lowerCAmelCase , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> Any: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _lowercase =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =len(lowerCAmelCase ) > max_length if needs_to_be_truncated: _lowercase =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowercase =processed_features['attention_mask'][:max_length] return processed_features def A__ ( self , lowerCAmelCase=False , lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' if padding is not False: if padding is True: _lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase , lowerCAmelCase ): _lowercase =PaddingStrategy(lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): _lowercase =padding else: _lowercase =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
205
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Tuple ,__UpperCamelCase : Any ,__UpperCamelCase : str ): """simple docstring""" for param, grad_param in zip(model_a.parameters() ,model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : int=True ): """simple docstring""" model.train() A_ = model(lowerCamelCase_ ) A_ = F.mse_loss(lowerCamelCase_ ,target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCamelCase_ ) def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" set_seed(42 ) A_ = RegressionModel() A_ = deepcopy(lowerCamelCase_ ) A_ = RegressionDataset(length=80 ) A_ = DataLoader(lowerCamelCase_ ,batch_size=16 ) model.to(accelerator.device ) if sched: A_ = AdamW(params=model.parameters() ,lr=1E-3 ) A_ = AdamW(params=ddp_model.parameters() ,lr=1E-3 ) A_ = LambdaLR(lowerCamelCase_ ,lr_lambda=lambda __UpperCamelCase : epoch**0.65 ) A_ = LambdaLR(lowerCamelCase_ ,lr_lambda=lambda __UpperCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: A_ = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) else: A_ = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = get_training_setup(lowerCamelCase_ ) # Use a single batch A_ = next(iter(lowerCamelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ = accelerator.gather((ddp_input, ddp_target) ) A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_ ): step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) else: # Sync grads step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad ,ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) A_ = ddp_input[torch.randperm(len(lowerCamelCase_ ) )] def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = get_training_setup(lowerCamelCase_ ) # Use a single batch A_ = next(iter(lowerCamelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ = accelerator.gather((ddp_input, ddp_target) ) A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_ ): step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) else: # Sync grads step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) A_ = ddp_input[torch.randperm(len(lowerCamelCase_ ) )] def __snake_case ( __UpperCamelCase : Dict=False ,__UpperCamelCase : Any=False ): """simple docstring""" A_ = Accelerator( split_batches=lowerCamelCase_ ,dispatch_batches=lowerCamelCase_ ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ = get_training_setup(lowerCamelCase_ ) for iteration, batch in enumerate(lowerCamelCase_ ): A_ = batch.values() # Gather the distributed inputs and targs for the base model A_ = accelerator.gather((ddp_input, ddp_target) ) A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCamelCase_ ): step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) A_ = ddp_input[torch.randperm(len(lowerCamelCase_ ) )] GradientState._reset_state() def __snake_case ( __UpperCamelCase : int=False ,__UpperCamelCase : Optional[int]=False ): """simple docstring""" A_ = Accelerator( split_batches=lowerCamelCase_ ,dispatch_batches=lowerCamelCase_ ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ = get_training_setup(lowerCamelCase_ ,lowerCamelCase_ ) for iteration, batch in enumerate(lowerCamelCase_ ): A_ = batch.values() # Gather the distributed inputs and targs for the base model A_ = accelerator.gather((ddp_input, ddp_target) ) A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCamelCase_ ): step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' A_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __snake_case ( ): """simple docstring""" A_ = Accelerator() A_ = RegressionDataset(length=80 ) A_ = DataLoader(lowerCamelCase_ ,batch_size=16 ) A_ = RegressionDataset(length=96 ) A_ = DataLoader(lowerCamelCase_ ,batch_size=16 ) A_ = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCamelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase_ ) if iteration < len(lowerCamelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCamelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase_ ) if batch_num < len(lowerCamelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __snake_case ( ): """simple docstring""" A_ = Accelerator() A_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCamelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCamelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " ,f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' ,) test_gradient_accumulation(lowerCamelCase_ ,lowerCamelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" ,"2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " ,"`split_batches=False`, `dispatch_batches=False`**" ,) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " ,f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' ,) test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase_ ,lowerCamelCase_ ) def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" main() if __name__ == "__main__": main()
356
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
0
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask a : int = logging.getLogger(__name__) class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] ="""token-classification""" def __init__( self , lowerCAmelCase__ ) -> Dict: if type(lowerCAmelCase__ ) == dict: a : str = Namespace(**lowerCAmelCase__ ) a : List[str] = import_module("tasks" ) try: a : Optional[Any] = getattr(lowerCAmelCase__ , hparams.task_type ) a : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) a : Any = self.token_classification_task.get_labels(hparams.labels ) a : Dict = CrossEntropyLoss().ignore_index super().__init__(lowerCAmelCase__ , len(self.labels ) , self.mode ) def __a ( self , **lowerCAmelCase__ ) -> Tuple: return self.model(**lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: a : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": a : str = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids a : Optional[int] = self(**lowerCAmelCase__ ) a : Optional[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __a ( self ) -> Dict: a : Optional[int] = self.hparams for mode in ["train", "dev", "test"]: a : Tuple = self._feature_file(lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowerCAmelCase__ ) a : int = torch.load(lowerCAmelCase__ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) a : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , lowerCAmelCase__ ) a : Dict = self.token_classification_task.convert_examples_to_features( lowerCAmelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCAmelCase__ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> DataLoader: a : Dict = self._feature_file(lowerCAmelCase__ ) logger.info("Loading features from cached file %s" , lowerCAmelCase__ ) a : Union[str, Any] = torch.load(lowerCAmelCase__ ) a : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) a : Optional[int] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: a : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: a : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) a : Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , batch_size=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: """Compute validation""" "" a : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": a : Union[str, Any] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids a : Tuple = self(**lowerCAmelCase__ ) a, a : Optional[int] = outputs[:2] a : Any = logits.detach().cpu().numpy() a : Optional[Any] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __a ( self , lowerCAmelCase__ ) -> int: a : Optional[Any] = torch.stack([x["val_loss"] for x in outputs] ).mean() a : Tuple = np.concatenate([x["pred"] for x in outputs] , axis=0 ) a : Any = np.argmax(lowerCAmelCase__ , axis=2 ) a : Any = np.concatenate([x["target"] for x in outputs] , axis=0 ) a : List[str] = dict(enumerate(self.labels ) ) a : str = [[] for _ in range(out_label_ids.shape[0] )] a : Any = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) a : int = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowerCAmelCase__ , lowerCAmelCase__ ), "precision": precision_score(lowerCAmelCase__ , lowerCAmelCase__ ), "recall": recall_score(lowerCAmelCase__ , lowerCAmelCase__ ), "f1": fa_score(lowerCAmelCase__ , lowerCAmelCase__ ), } a : List[str] = dict(results.items() ) a : str = results return ret, preds_list, out_label_list def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: # when stable a, a, a : Dict = self._eval_end(lowerCAmelCase__ ) a : Union[str, Any] = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __a ( self , lowerCAmelCase__ ) -> Tuple: # updating to test_epoch_end instead of deprecated test_end a, a, a : List[Any] = self._eval_end(lowerCAmelCase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 a : Optional[Any] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: # Add NER specific options BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( "--task_type" , default="NER" , type=lowerCAmelCase__ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=lowerCAmelCase__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowerCAmelCase__ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowerCAmelCase__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) a : Optional[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd()) a : Tuple = parser.parse_args() a : Optional[int] = NERTransformer(args) a : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 a : Any = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) a : Optional[int] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
105
"""simple docstring""" import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : Dict="sayef/fsner-bert-base-uncased" ): super(lowercase_ ,self ).__init__() lowerCAmelCase__ : int = AutoModel.from_pretrained(lowercase_ ,return_dict=lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.nn.CosineSimilarity(3 ,1E-08 ) lowerCAmelCase__ : List[str] = torch.nn.Softmax(dim=1 ) def __lowerCAmelCase ( self : str ,**lowercase_ : int ): return self.bert(**lowercase_ ).last_hidden_state def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Optional[int] ): return token_embeddings.sum(2 ,keepdim=lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : int ,lowercase_ : str ,lowercase_ : Tuple=1 ): return self.softmax(T * self.cos(lowercase_ ,lowercase_ ) ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : List[Any] = W_supports['''sizes'''].tolist() lowerCAmelCase__ : Dict = W_supports['''start_token_id'''].item() lowerCAmelCase__ : Union[str, Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase__ : Optional[Any] = self.BERT(**lowercase_ ) lowerCAmelCase__ : int = self.BERT(**lowercase_ ) lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : int = W_supports['''input_ids'''] == start_token_id lowerCAmelCase__ : Optional[Any] = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(lowercase_ ): if i == 0: lowerCAmelCase__ : str = 0 else: lowerCAmelCase__ : List[Any] = support_sizes[i - 1] lowerCAmelCase__ : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase__ : List[Any] = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase__ : Union[str, Any] = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase__ : Any = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase__ : List[Any] = torch.vstack((p_starts, p_start) ) lowerCAmelCase__ : List[Any] = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase__ : Union[str, Any] = p_start lowerCAmelCase__ : str = p_end return p_starts, p_ends
106
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCAmelCase : List[str] = '''bert-base-cased''' _lowerCAmelCase : Any = '''fp16''' _lowerCAmelCase : List[Any] = '''bf16''' _lowerCAmelCase : Union[str, Any] = [FPaa, BFaa] @require_fsdp @require_cuda class A_ ( _a ): def _lowercase ( self: Union[str, Any] ): '''simple docstring''' super().setUp() _lowerCamelCase : Dict = dict( ACCELERATE_USE_FSDP="true" ,MASTER_ADDR="localhost" ,MASTER_PORT="10999" ,RANK="0" ,LOCAL_RANK="0" ,WORLD_SIZE="1" ,) def _lowercase ( self: int ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = self.dist_env.copy() _lowerCamelCase : Any = F"""{i + 1}""" _lowerCamelCase : str = strategy with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCAmelCase ): _lowerCamelCase : List[Any] = self.dist_env.copy() _lowerCamelCase : List[Any] = prefetch_policy with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : List[Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def _lowercase ( self: List[str] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCAmelCase ): _lowerCamelCase : Tuple = self.dist_env.copy() _lowerCamelCase : int = state_dict_type with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Dict = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[Any] = AutoModel.from_pretrained(__lowerCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: _lowerCamelCase : Optional[int] = self.dist_env.copy() _lowerCamelCase : Any = policy if policy == "TRANSFORMER_BASED_WRAP": _lowerCamelCase : List[str] = "BertLayer" elif policy == "SIZE_BASED_WRAP": _lowerCamelCase : Optional[int] = "2000" with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _lowerCamelCase : Any = self.dist_env.copy() _lowerCamelCase : List[str] = "TRANSFORMER_BASED_WRAP" _lowerCamelCase : Optional[Any] = "T5Layer" with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Tuple = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _lowerCamelCase : Any = self.dist_env.copy() _lowerCamelCase : Union[str, Any] = "SIZE_BASED_WRAP" _lowerCamelCase : Tuple = "0" with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Any = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _lowercase ( self: str ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _lowerCamelCase : List[str] = self.dist_env.copy() _lowerCamelCase : List[Any] = mp_dtype with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Dict = Accelerator() if mp_dtype == "fp16": _lowerCamelCase : List[str] = torch.floataa elif mp_dtype == "bf16": _lowerCamelCase : Union[str, Any] = torch.bfloataa _lowerCamelCase : int = MixedPrecision(param_dtype=__lowerCAmelCase ,reduce_dtype=__lowerCAmelCase ,buffer_dtype=__lowerCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _lowerCamelCase : Dict = self.dist_env.copy() _lowerCamelCase : Union[str, Any] = str(__lowerCAmelCase ).lower() with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class A_ ( _a ): def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() _lowerCamelCase : List[str] = 0.82 _lowerCamelCase : Union[str, Any] = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _lowerCamelCase : Optional[int] = { "multi_gpu_fp16": 3_200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2_000, "fsdp_full_shard_transformer_based_wrap_fp16": 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _lowerCamelCase : Tuple = 160 _lowerCamelCase : Optional[int] = 160 _lowerCamelCase : Any = inspect.getfile(accelerate.test_utils ) _lowerCamelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = os.path.join(self.test_scripts_folder ,"test_performance.py" ) _lowerCamelCase : List[Any] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _lowerCamelCase : int = cmd.copy() for i, strategy in enumerate(__lowerCAmelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = os.path.join(self.test_scripts_folder ,"test_checkpointing.py" ) _lowerCamelCase : Tuple = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__lowerCAmelCase ): _lowerCamelCase : Tuple = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _lowerCamelCase : Dict = len(__lowerCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: _lowerCamelCase : List[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() ) _lowerCamelCase : int = cmd_config[:-1] _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdir ,"epoch_0" ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = os.path.join(self.test_scripts_folder ,"test_peak_memory_usage.py" ) _lowerCamelCase : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _lowerCamelCase : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(__lowerCAmelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() )
340
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _snake_case = pytest.mark.integration _snake_case = {'comet'} _snake_case = importlib.util.find_spec('fairseq') is not None _snake_case = {'code_eval'} _snake_case = os.name == 'nt' _snake_case = {'bertscore', 'frugalscore', 'perplexity'} _snake_case = importlib.util.find_spec('transformers') is not None def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , UpperCamelCase__ ) return wrapper def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , UpperCamelCase__ ) return wrapper def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , UpperCamelCase__ ) return wrapper def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case_ , snake_case_ , snake_case_ ) @local class UpperCamelCase ( parameterized.TestCase ): UpperCamelCase : Tuple = {} UpperCamelCase : List[str] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Any ) -> Dict: _a : Optional[Any] = """[...]""" _a : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase__ ) ).module_path ) _a : List[str] = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase__ ) # check parameters _a : Optional[Any] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCAmelCase__ , metric_module.__name__ ): with self.use_local_metrics(): try: _a : Any = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _lowercase ( self : List[str] , UpperCAmelCase__ : Optional[int] ) -> int: _a : Optional[int] = """[...]""" _a : List[str] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase__ ) ).module_path ) # run doctest with self.use_local_metrics(): _a : List[str] = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ) -> Union[str, Any]: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase__ ): yield else: yield @contextmanager def _lowercase ( self : Tuple ) -> Optional[int]: def load_local_metric(UpperCAmelCase__ : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Tuple ): return load_metric(os.path.join("""metrics""" , UpperCAmelCase__ ) , *UpperCAmelCase__ , **UpperCAmelCase__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: _a : Optional[int] = load_local_metric yield @classmethod def _lowercase ( cls : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> List[str]: def wrapper(UpperCAmelCase__ : str ): _a : int = contextmanager(UpperCAmelCase__ ) _a : Tuple = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class UpperCamelCase ( snake_case_ ): def _lowercase ( self : str , UpperCAmelCase__ : List[str] ) -> int: assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: _a : int = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' import torch def bert_cos_score_idf(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: _a : List[str] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' def load_from_checkpoint(UpperCamelCase__ ): class UpperCamelCase : def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[int] ) -> int: assert len(UpperCAmelCase__ ) == 2 _a : str = [0.1_9, 0.9_2] return scores, sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: _a : str = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: _a : str = load_from_checkpoint yield def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) _a : Union[str, Any] = """ERROR""" _a : Union[str, Any] = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase__ )
294
"""simple docstring""" import cva import numpy as np class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> Dict: if k in (0.0_4, 0.0_6): _a : List[str] = k _a : List[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Dict ) -> str: return str(self.k ) def _lowercase ( self : int , UpperCAmelCase__ : str ) -> tuple[cva.Mat, list[list[int]]]: _a : Dict = cva.imread(UpperCAmelCase__ , 0 ) _a , _a : List[Any] = img.shape _a : list[list[int]] = [] _a : List[Any] = img.copy() _a : int = cva.cvtColor(UpperCAmelCase__ , cva.COLOR_GRAY2RGB ) _a , _a : Any = np.gradient(UpperCAmelCase__ ) _a : Tuple = dx**2 _a : Union[str, Any] = dy**2 _a : Union[str, Any] = dx * dy _a : int = 0.0_4 _a : List[str] = self.window_size // 2 for y in range(UpperCAmelCase__ , h - offset ): for x in range(UpperCAmelCase__ , w - offset ): _a : str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : Any = (wxx * wyy) - (wxy**2) _a : Tuple = wxx + wyy _a : Any = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": _snake_case = HarrisCorner(0.04, 3) _snake_case , _snake_case = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
294
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''time_series_transformer''' __snake_case = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : str , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : str = "student_t" , __UpperCAmelCase : str = "nll" , __UpperCAmelCase : int = 1 , __UpperCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __UpperCAmelCase : Optional[Union[str, bool]] = "mean" , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : int = 64 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : List[Any]=True , **__UpperCAmelCase : Dict , ) ->int: """simple docstring""" a = prediction_length a = context_length or prediction_length a = distribution_output a = loss a = input_size a = num_time_features a = lags_sequence a = scaling a = num_dynamic_real_features a = num_static_real_features a = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) a = cardinality else: a = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) a = embedding_dimension else: a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] a = num_parallel_samples # Transformer architecture configuration a = input_size * len(__UpperCAmelCase ) + self._number_of_features a = d_model a = encoder_attention_heads a = decoder_attention_heads a = encoder_ffn_dim a = decoder_ffn_dim a = encoder_layers a = decoder_layers a = dropout a = attention_dropout a = activation_dropout a = encoder_layerdrop a = decoder_layerdrop a = activation_function a = init_std a = use_cache super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
367
def _a ( a :list ) -> list: if len(a ) <= 1: return lst a = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a , a = lst[i], lst[i - 1] i -= 1 if i == 0: a = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
0
lowercase : Union[str, Any] = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def A_ ( A__ , A__ , A__ ) -> list[str]: a__ : List[str] = set() # keep track of all the paths to be checked a__ : Union[str, Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue a__ : Tuple = queue.pop(0 ) # get the last node from the path a__ : Optional[int] = path[-1] if node not in explored: a__ : List[str] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: a__ : Optional[Any] = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def A_ ( A__ , A__ , A__ ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 a__ : Tuple = [start] a__ : Union[str, Any] = set(A__ ) # Keep tab on distances from `start` node. a__ : Optional[Any] = {start: 0, target: -1} while queue: a__ : str = queue.pop(0 ) if node == target: a__ : List[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) a__ : int = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
99
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" if isinstance(__A , __A): _a = np.full((len(__A), sequence_length, 2) , __A) else: _a = np.full((len(__A), sequence_length) , __A) for i, tensor in enumerate(__A): if padding_side == "right": if isinstance(__A , __A): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] else: if isinstance(__A , __A): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] return out_tensor.tolist() def lowerCAmelCase (__A): """simple docstring""" _a = ord(__A) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True _a = unicodedata.category(__A) if cat.startswith('''P'''): return True return False @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : PreTrainedTokenizerBase __lowerCamelCase : Union[bool, str, PaddingStrategy] = True __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : int = -100 __lowerCamelCase : str = "pt" def a__ (self , A ) -> List[str]: """simple docstring""" import torch _a = '''label''' if '''label''' in features[0].keys() else '''labels''' _a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _a = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch _a = torch.tensor(batch['''entity_ids'''] ).shape[1] _a = self.tokenizer.padding_side if padding_side == "right": _a = [ list(A ) + [self.label_pad_token_id] * (sequence_length - len(A )) for label in labels ] else: _a = [ [self.label_pad_token_id] * (sequence_length - len(A )) + list(A ) for label in labels ] _a = [feature['''ner_tags'''] for feature in features] _a = padding_tensor(A , -1 , A , A ) _a = [feature['''original_entity_spans'''] for feature in features] _a = padding_tensor(A , (-1, -1) , A , A ) _a = {k: torch.tensor(A , dtype=torch.intaa ) for k, v in batch.items()} return batch
211
0
def lowerCAmelCase_ ( _snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __magic_name__ : List[Any] = 0 __magic_name__ : Optional[int] = len(_snake_case ) - 1 __magic_name__ : Optional[Any] = 0 while index >= 0: __magic_name__ : List[str] = (ord(column_title[index] ) - 64) * pow(26 , _snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
41
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( snake_case ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'BridgeTowerImageProcessor' UpperCamelCase__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _a , _a ): super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): __magic_name__ : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask __magic_name__ : List[str] = self.image_processor( _a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a ) encoding.update(_a ) return encoding def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.tokenizer.model_input_names __magic_name__ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
41
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = [] __lowerCAmelCase , __lowerCAmelCase : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __lowerCAmelCase : Union[str, Any] = result + left + right return input_list def __lowerCAmelCase (_UpperCamelCase ): if len(_UpperCamelCase ) <= 1: return input_list __lowerCAmelCase : List[str] = list(_UpperCamelCase ) # iteration for two-way merging __lowerCAmelCase : Optional[int] = 2 while p <= len(_UpperCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = i __lowerCAmelCase : Optional[int] = i + p - 1 __lowerCAmelCase : Tuple = (low + high + 1) // 2 __lowerCAmelCase : Union[str, Any] = merge(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # final merge of last two parts if p * 2 >= len(_UpperCamelCase ): __lowerCAmelCase : Dict = i __lowerCAmelCase : Tuple = merge(_UpperCamelCase , 0 , _UpperCamelCase , len(_UpperCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase__ = [] else: lowerCamelCase__ = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
86
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
329
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a_ ( self) -> Tuple: snake_case_ = 1 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCAmelCase__) return image @property def a_ ( self) -> Union[str, Any]: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) return model @property def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) return model @property def a_ ( self) -> Dict: torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowerCAmelCase__) @property def a_ ( self) -> Optional[Any]: def extract(*lowerCAmelCase__, **lowerCAmelCase__): class UpperCamelCase : def __init__( self) -> List[Any]: snake_case_ = torch.ones([0]) def a_ ( self, lowerCAmelCase__) -> Optional[int]: self.pixel_values.to(lowerCAmelCase__) return self return Out() return extract def a_ ( self) -> Optional[int]: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.dummy_cond_unet snake_case_ = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase__, set_alpha_to_one=lowerCAmelCase__, ) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk snake_case_ = StableDiffusionPipeline( unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, vae=lowerCAmelCase__, text_encoder=lowerCAmelCase__, tokenizer=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=self.dummy_extractor, ) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A painting of a squirrel eating a burger' snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(0) snake_case_ = sd_pipe([prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type='np') snake_case_ = output.images snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(0) snake_case_ = sd_pipe( [prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type='np', return_dict=lowerCAmelCase__, )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> List[str]: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.dummy_cond_unet snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk snake_case_ = StableDiffusionPipeline( unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, vae=lowerCAmelCase__, text_encoder=lowerCAmelCase__, tokenizer=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=self.dummy_extractor, ) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A painting of a squirrel eating a burger' snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(0) snake_case_ = sd_pipe([prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type='np') snake_case_ = output.images snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(0) snake_case_ = sd_pipe( [prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type='np', return_dict=lowerCAmelCase__, )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Optional[Any]: snake_case_ = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe', safety_checker=lowerCAmelCase__) assert isinstance(lowerCAmelCase__, lowerCAmelCase__) assert isinstance(pipe.scheduler, lowerCAmelCase__) assert pipe.safety_checker is None snake_case_ = pipe('example prompt', num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__) snake_case_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__) # sanity check that the pipeline still works assert pipe.safety_checker is None snake_case_ = pipe('example prompt', num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def a_ ( self) -> List[str]: snake_case_ = self.dummy_cond_unet snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 snake_case_ = unet.half() snake_case_ = vae.half() snake_case_ = bert.half() # make sure here that pndm scheduler skips prk snake_case_ = StableDiffusionPipeline( unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, vae=lowerCAmelCase__, text_encoder=lowerCAmelCase__, tokenizer=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=self.dummy_extractor, ) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A painting of a squirrel eating a burger' snake_case_ = sd_pipe([prompt], num_inference_steps=2, output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', safety_checker=lowerCAmelCase__) snake_case_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) snake_case_ = 40_0366_0346 snake_case_ = 7 # without safety guidance (sld_guidance_scale = 0) snake_case_ = torch.manual_seed(lowerCAmelCase__) snake_case_ = sd_pipe( [prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] snake_case_ = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) snake_case_ = torch.manual_seed(lowerCAmelCase__) snake_case_ = sd_pipe( [prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] snake_case_ = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Tuple: snake_case_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', safety_checker=lowerCAmelCase__) snake_case_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'padme amidala taking a bath artwork, safe for work, no nudity' snake_case_ = 27_3497_1755 snake_case_ = 7 snake_case_ = torch.manual_seed(lowerCAmelCase__) snake_case_ = sd_pipe( [prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] snake_case_ = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 snake_case_ = torch.manual_seed(lowerCAmelCase__) snake_case_ = sd_pipe( [prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] snake_case_ = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> List[str]: snake_case_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) snake_case_ = 10_4435_5234 snake_case_ = 12 snake_case_ = torch.manual_seed(lowerCAmelCase__) snake_case_ = sd_pipe( [prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] snake_case_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 snake_case_ = torch.manual_seed(lowerCAmelCase__) snake_case_ = sd_pipe( [prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] snake_case_ = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
312
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
1
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> Dict: """simple docstring""" lowerCAmelCase__ = [False] * len(UpperCamelCase_ ) lowerCAmelCase__ = [] queue.append(UpperCamelCase_ ) lowerCAmelCase__ = True while queue: lowerCAmelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCamelCase_ ) lowerCAmelCase__ = True lowerCAmelCase__ = u return visited[t] def _a ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> Dict: """simple docstring""" lowerCAmelCase__ = [-1] * (len(UpperCamelCase_ )) lowerCAmelCase__ = 0 while bfs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = float("Inf" ) lowerCAmelCase__ = sink while s != source: # Find the minimum value in select path lowerCAmelCase__ = min(UpperCamelCase_ , graph[parent[s]][s] ) lowerCAmelCase__ = parent[s] max_flow += path_flow lowerCAmelCase__ = sink while v != source: lowerCAmelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase__ = parent[v] return max_flow a_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a_, a_ = 0, 5 print(ford_fulkerson(graph, source, sink))
340
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
1
from pathlib import Path import numpy as np from PIL import Image def lowerCAmelCase_ ( __lowerCAmelCase )-> np.ndarray: '''simple docstring''' UpperCAmelCase : List[Any] =rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def lowerCAmelCase_ ( __lowerCAmelCase )-> np.ndarray: '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> np.ndarray: '''simple docstring''' UpperCAmelCase : Tuple =np.zeros_like(__lowerCAmelCase ) UpperCAmelCase : List[Any] =np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase : List[str] =image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase : Dict =( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase : Dict =int(summation > 0 ) return output if __name__ == "__main__": # read original image __snake_case = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' __snake_case = np.array(Image.open(lena_path)) # kernel to be applied __snake_case = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __snake_case = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __snake_case = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
353
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json'''} __snake_case = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __snake_case = {'''mgp-str''': 27} class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case__ , snake_case__="[GO]" , snake_case__="[GO]" , snake_case__="[s]" , snake_case__="[GO]" , **snake_case__ ) -> Any: '''simple docstring''' super().__init__( unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : int =json.load(snake_case__ ) UpperCAmelCase : List[str] ={v: k for k, v in self.vocab.items()} @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return len(self.vocab ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =[] for s in text: char_tokens.extend(snake_case__ ) return char_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(snake_case__ ) ) return UpperCAmelCase : List[Any] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) return (vocab_file,)
78
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ = 16 a_ = 32 def lowerCamelCase__ ( _a): return int(x / 2**20) class _UpperCamelCase : '''simple docstring''' def __enter__( self : Tuple ) -> Any: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero SCREAMING_SNAKE_CASE : Any = torch.cuda.memory_allocated() return self def __exit__( self : List[str] , *a : int ) -> List[str]: """simple docstring""" gc.collect() torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE : Dict = torch.cuda.max_memory_allocated() SCREAMING_SNAKE_CASE : str = bamb(self.end - self.begin ) SCREAMING_SNAKE_CASE : Any = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCamelCase__ ( _a , _a = 16 , _a = "bert-base-cased" , _a = 320 , _a = 160 , ): SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(snake_case_) SCREAMING_SNAKE_CASE : List[str] = load_dataset( "glue" , "mrpc" , split={"train": f"train[:{n_train}]", "validation": f"validation[:{n_val}]"}) def tokenize_function(_a): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case_ , max_length=snake_case_) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE : List[Any] = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=snake_case_) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_a): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="max_length" , max_length=128 , return_tensors="pt") return tokenizer.pad(snake_case_ , padding="longest" , return_tensors="pt") # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["train"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_) SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_) return train_dataloader, eval_dataloader def lowerCamelCase__ ( _a , _a): # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Optional[int] = config["""lr"""] SCREAMING_SNAKE_CASE : Tuple = int(config["num_epochs"]) SCREAMING_SNAKE_CASE : Any = int(config["seed"]) SCREAMING_SNAKE_CASE : Tuple = int(config["batch_size"]) SCREAMING_SNAKE_CASE : Any = args.model_name_or_path set_seed(snake_case_) SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataloaders(snake_case_ , snake_case_ , snake_case_ , args.n_train , args.n_val) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_) # Instantiate optimizer SCREAMING_SNAKE_CASE : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE : Tuple = optimizer_cls(params=model.parameters() , lr=snake_case_) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : str = (len(snake_case_) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE : str = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE : Dict = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE : Optional[Any] = 0 # Now we train the model SCREAMING_SNAKE_CASE : Optional[Any] = {} for epoch in range(snake_case_ , snake_case_): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_): SCREAMING_SNAKE_CASE : Dict = model(**snake_case_) SCREAMING_SNAKE_CASE : Dict = outputs.loss SCREAMING_SNAKE_CASE : Dict = loss / gradient_accumulation_steps accelerator.backward(snake_case_) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin))) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used)) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked)) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin))) SCREAMING_SNAKE_CASE : List[str] = tracemalloc.peaked + bamb(tracemalloc.begin) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json") , "w") as f: json.dump(snake_case_ , snake_case_) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path" , type=snake_case_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , ) parser.add_argument( "--output_dir" , type=snake_case_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=snake_case_ , default=snake_case_ , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=snake_case_ , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=snake_case_ , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=snake_case_ , default=1 , help="Number of train epochs." , ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE : Optional[int] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case_ , snake_case_) if __name__ == "__main__": main()
76
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _snake_case = getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,): _A : Dict = str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ ) _A : Tuple = Path(snake_case_ ) _A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(snake_case_ ) _A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: _A : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params _A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _A : int = num_return_sequences _A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: _A : Optional[int] = tokenizer.model_max_length if prefix is None: _A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """""" _A : Optional[int] = SeqaSeqDataset( snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ ) _A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn ) _A : Optional[Any] = [] for batch in tqdm(snake_case_ ): _A : Tuple = model.generate( input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,) _A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) _A : Dict = batch["""ids"""] if num_return_sequences > 1: _A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(snake_case_,snake_case_ ) return results, sampler.num_replicas def lowerCAmelCase_ ( ): _A : Tuple = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",) parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" ) parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ ) parser.add_argument( """--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" ) parser.add_argument( """--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",) parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument( """--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""",action="""store_true""" ) parser.add_argument("""--debug""",action="""store_true""" ) _A : Union[str, Any] = time.time() _A , _A : List[str] = parser.parse_known_args() _A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) _A : Dict = Path(args.save_dir + """_tmp""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. _A : int = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _A : Any = {} if args.src_lang is not None: _A : int = args.src_lang if args.tgt_lang is not None: _A : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) _A , _A : str = eval_data_dir( args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,) if args.local_rank <= 0: _A : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) _A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout ) _A : Optional[int] = combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: _A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(snake_case_,snake_case_ ) return _A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(snake_case_ ) as f: _A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt _A : Dict = """translation""" in args.task _A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge _A : Tuple = """bleu""" if calc_bleu else """rouge""" _A : Dict = score_fn(snake_case_,snake_case_ ) _A : List[Any] = len(snake_case_ ) _A : Optional[int] = time.time() - start_time _A : Dict = round(runtime / metrics["""n_obs"""],4 ) _A : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics _A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(snake_case_,snake_case_,indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = [] for partial_result in partial_results: records.extend(snake_case_ ) _A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] ) _A : List[str] = [x["""pred"""] for x in records] return preds def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # WAIT FOR lots of .json files _A : Optional[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) _A : List[str] = None while (time.time() - start_wait) < timeout: _A : str = list(save_dir.glob("""rank_*.json""" ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved _A : List[str] = lmap(snake_case_,snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
26
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = CLIPConfig __magic_name__ = ['CLIPEncoderLayer'] def __init__( self , __snake_case ): super().__init__(__snake_case ) snake_case = CLIPVisionModelWithProjection(config.vision_config ) snake_case = nn.Linear(config.vision_config.projection_dim , 1 ) snake_case = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def a_ ( self , __snake_case , __snake_case , __snake_case=0.5 , __snake_case=0.5 ): snake_case = self.vision_model(__snake_case )[0] snake_case = self.p_head(__snake_case ) snake_case = nsfw_detected.flatten() snake_case = nsfw_detected > p_threshold snake_case = nsfw_detected.tolist() if any(__snake_case ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(__snake_case ): if nsfw_detected_: snake_case = np.zeros(images[idx].shape ) snake_case = self.w_head(__snake_case ) snake_case = watermark_detected.flatten() snake_case = watermark_detected > w_threshold snake_case = watermark_detected.tolist() if any(__snake_case ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(__snake_case ): if watermark_detected_: snake_case = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
213
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Dict = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
213
1
'''simple docstring''' import unittest import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , ) -> np.ndarray: lowerCamelCase__ : Tuple = np.shape(UpperCamelCase ) lowerCamelCase__ : Optional[int] = np.shape(UpperCamelCase ) lowerCamelCase__ : List[Any] = np.shape(UpperCamelCase ) if shape_a[0] != shape_b[0]: lowerCamelCase__ : List[str] = ( """Expected the same number of rows for A and B. """ f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCamelCase ) if shape_b[1] != shape_c[1]: lowerCamelCase__ : Tuple = ( """Expected the same number of columns for B and C. """ f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = pseudo_inv if a_inv is None: try: lowerCamelCase__ : str = np.linalg.inv(UpperCamelCase ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : Optional[Any] = np.array([[2, 1], [6, 3]] ) lowerCamelCase__ : Dict = schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Any = np.block([[a, b], [b.T, c]] ) lowerCamelCase__ : List[Any] = np.linalg.det(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = np.linalg.det(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = np.linalg.det(UpperCamelCase__ ) self.assertAlmostEqual(UpperCamelCase__ , det_a * det_s ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : str = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase__ ): schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : int = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : List[str] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase__ ): schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
41
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y return abs(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ () -> Tuple: try: lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCamelCase__ : Any = int(nums[0] ) lowerCamelCase__ : Optional[Any] = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
41
1
from math import factorial, pi def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple = 30 )-> List[str]: if not isinstance(_A , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_A , _A ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) _snake_case : Dict = float(_A ) _snake_case : List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_A ) ) def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str = 30 )-> List[str]: if not isinstance(_A , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_A , _A ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) _snake_case : int = float(_A ) _snake_case : str = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
358
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_ ( lowerCAmelCase: Features )-> Optional[int]: _snake_case : str = np.inf def set_batch_size(lowerCAmelCase: FeatureType ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ) and feature.dtype == "binary": _snake_case : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase , lowerCAmelCase ) return None if batch_size is np.inf else batch_size class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : NestedDataStructureLike[PathLike] , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : Optional[Features] = None , UpperCamelCase : str = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , split=UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase , streaming=UpperCamelCase , num_proc=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = path_or_paths if isinstance(UpperCamelCase , UpperCamelCase ) else {self.split: path_or_paths} _snake_case : List[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] _snake_case : Optional[Any] = Parquet( cache_dir=UpperCamelCase , data_files=UpperCamelCase , features=UpperCamelCase , hash=UpperCamelCase , **UpperCamelCase , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.streaming: _snake_case : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Union[str, Any] = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None self.builder.download_and_prepare( download_config=UpperCamelCase , download_mode=UpperCamelCase , verification_mode=UpperCamelCase , base_path=UpperCamelCase , num_proc=self.num_proc , ) _snake_case : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : '''simple docstring''' def __init__( self : int , UpperCamelCase : Dataset , UpperCamelCase : Union[PathLike, BinaryIO] , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Dict , ): '''simple docstring''' _snake_case : Tuple = dataset _snake_case : Union[str, Any] = path_or_buf _snake_case : List[Any] = batch_size or get_writer_batch_size(dataset.features ) _snake_case : Optional[Any] = parquet_writer_kwargs def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: _snake_case : Any = self._write(file_obj=UpperCamelCase , batch_size=UpperCamelCase , **self.parquet_writer_kwargs ) else: _snake_case : Tuple = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase , **self.parquet_writer_kwargs ) return written def UpperCamelCase_ ( self : Dict , UpperCamelCase : BinaryIO , UpperCamelCase : int , **UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : List[str] = 0 _snake_case : Dict = parquet_writer_kwargs.pop('path_or_buf' , UpperCamelCase ) _snake_case : Optional[Any] = self.dataset.features.arrow_schema _snake_case : str = pq.ParquetWriter(UpperCamelCase , schema=UpperCamelCase , **UpperCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): _snake_case : Tuple = query_table( table=self.dataset._data , key=slice(UpperCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase ) written += batch.nbytes writer.close() return written
260
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a :Any = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __a :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
312
1
"""simple docstring""" import argparse from collections import defaultdict def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[Any] = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(A__ ,"r" ) as f: UpperCAmelCase_ : Any = f.readlines() UpperCAmelCase_ : List[str] = F"""class {class_name}(""" UpperCAmelCase_ : List[Any] = F"""{4 * ' '}def {test_name}(""" UpperCAmelCase_ : List[str] = F"""{8 * ' '}{correct_line.split()[0]}""" UpperCAmelCase_ : Tuple = F"""{16 * ' '}{correct_line.split()[0]}""" UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : int = [] for line in lines: if line.startswith(A__ ): UpperCAmelCase_ : List[str] = True elif in_class and line.startswith(A__ ): UpperCAmelCase_ : Optional[Any] = True elif in_class and in_func and (line.startswith(A__ ) or line.startswith(A__ )): UpperCAmelCase_ : Any = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ : str = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ : str = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * ' '}{correct_line}""" ) UpperCAmelCase_ : Tuple = False else: new_lines.append(A__ ) with open(A__ ,"w" ) as f: for line in new_lines: f.write(A__ ) def snake_case ( A__ ,A__=None ): if fail is not None: with open(A__ ,"r" ) as f: UpperCAmelCase_ : List[Any] = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ : Dict = None with open(A__ ,"r" ) as f: UpperCAmelCase_ : Tuple = f.readlines() UpperCAmelCase_ : Dict = defaultdict(A__ ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(A__ ,A__ ,A__ ,A__ ,A__ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) lowerCamelCase_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
253
"""simple docstring""" from math import factorial def snake_case ( A__ = 1_00 ): return sum(int(A__ ) for x in str(factorial(A__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
253
1
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup SCREAMING_SNAKE_CASE : Optional[int] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() if args.check_lib: SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module("""transformers""") SCREAMING_SNAKE_CASE : Union[str, Any] = Path(transformers_module.__file__).parent else: SCREAMING_SNAKE_CASE : List[Any] = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
102
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case_ = logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""pixel_values"""] def __init__( self :int , lowercase_ :bool = True , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :bool = True , lowercase_ :Union[int, float] = 1 / 2_55 , lowercase_ :bool = True , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :bool = True , **lowercase_ :Union[str, Any] , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase = size if size is not None else {'height': 3_84, 'width': 3_84} UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase = do_convert_rgb def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :np.ndarray , lowercase_ :Dict[str, int] , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Any , ) -> np.ndarray: UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCAmelCase = (size['height'], size['width']) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :np.ndarray , lowercase_ :Union[int, float] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[int] , ) -> int: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :np.ndarray , lowercase_ :Union[float, List[float]] , lowercase_ :Union[float, List[float]] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[Any] , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :ImageInput , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Dict[str, int]] = None , lowercase_ :PILImageResampling = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[float] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[str, TensorType]] = None , lowercase_ :bool = None , lowercase_ :ChannelDimension = ChannelDimension.FIRST , **lowercase_ :Tuple , ) -> PIL.Image.Image: UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase_ ) return encoded_outputs
78
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _A ( unittest.TestCase ): """simple docstring""" def __a ( self : int ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] = inspect.getfile(accelerate.test_utils ) lowercase : str = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowercase : Optional[int] = test_metrics @require_cpu def __a ( self : int ) -> int: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __a ( self : str ) -> List[Any]: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def __a ( self : List[str] ) -> Tuple: """simple docstring""" self.test_metrics.main() @require_multi_gpu def __a ( self : str ) -> Tuple: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowercase : Any = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() )
351
import os from collections.abc import Iterator def snake_case( __magic_name__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__magic_name__ ): lowercase : Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__magic_name__ )[1] in (".py", ".ipynb"): yield os.path.join(__magic_name__ , __magic_name__ ).lstrip('''./''' ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return F"""{i * ' '}*""" if i else "\n##" def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__magic_name__ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__magic_name__ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def snake_case( __magic_name__ = "." ) -> None: '''simple docstring''' lowercase : str = '''''' for filepath in sorted(good_file_paths(__magic_name__ ) ): lowercase , lowercase : Optional[int] = os.path.split(__magic_name__ ) if filepath != old_path: lowercase : str = print_path(__magic_name__ , __magic_name__ ) lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase : Optional[Any] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) lowercase : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(__magic_name__ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
116
0
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCamelCase ( yaml.SafeLoader ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : str = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase_ : str = [tuple(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else key for key in keys] lowercase_ : List[Any] = Counter(__UpperCamelCase ) lowercase_ : str = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[int] = super().construct_mapping(__UpperCamelCase ,deep=__UpperCamelCase ) self._check_no_duplicates_on_constructed_node(__UpperCamelCase ) return mapping def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase_ : Dict = full_content[1:].index('---' ) + 1 lowercase_ : Optional[int] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__SCREAMING_SNAKE_CASE ) class UpperCamelCase ( lowercase_ ): # class attributes lowercase = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file: lowercase_ , lowercase_ : Optional[int] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCamelCase ) else: return cls() def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' if path.exists(): with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file: lowercase_ : Dict = readme_file.read() else: lowercase_ : int = None lowercase_ : Any = self._to_readme(__UpperCamelCase ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as readme_file: readme_file.write(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase = None ) -> str: '''simple docstring''' if readme_content is not None: lowercase_ , lowercase_ : Optional[Any] = _split_yaml_from_readme(__UpperCamelCase ) lowercase_ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase_ : Tuple = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' lowercase_ : List[str] = yaml.load(__UpperCamelCase ,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase_ : Dict = { (key.replace('-' ,'_' ) if key.replace('-' ,'_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace('_' ,'-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } ,sort_keys=__UpperCamelCase ,allow_unicode=__UpperCamelCase ,encoding='utf-8' ,).decode('utf-8' ) __SCREAMING_SNAKE_CASE ={ "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser __SCREAMING_SNAKE_CASE =ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") __SCREAMING_SNAKE_CASE =ap.parse_args() __SCREAMING_SNAKE_CASE =Path(args.readme_filepath) __SCREAMING_SNAKE_CASE =DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
213
"""simple docstring""" import argparse import struct import unittest class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : str = data # Initialize hash values lowercase_ : Optional[int] = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants lowercase_ : Tuple = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] lowercase_ : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCAmelCase ( __UpperCamelCase ) -> bytes: '''simple docstring''' lowercase_ : str = B'\x80' + (B'\x00' * (63 - (len(__UpperCamelCase ) + 8) % 64)) lowercase_ : str = struct.pack('>Q' ,(len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : Optional[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase_ : Any = list(struct.unpack('>16L' ,__UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase_ : str = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowercase_ : int = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowercase_ : Optional[Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression lowercase_ : Tuple = self.ror(__UpperCamelCase ,6 ) ^ self.ror(__UpperCamelCase ,11 ) ^ self.ror(__UpperCamelCase ,25 ) lowercase_ : Union[str, Any] = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) lowercase_ : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 lowercase_ : Optional[int] = self.ror(__UpperCamelCase ,2 ) ^ self.ror(__UpperCamelCase ,13 ) ^ self.ror(__UpperCamelCase ,22 ) lowercase_ : Optional[Any] = (a & b) ^ (a & c) ^ (b & c) lowercase_ : Any = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) lowercase_ : str = [a, b, c, d, e, f, g, h] # Modify final values lowercase_ : Dict = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] lowercase_ : Any = ''.join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> None: '''simple docstring''' import hashlib lowercase_ : Union[str, Any] = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash ,hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def lowercase__( ): import doctest doctest.testmod() lowercase_ : Tuple = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) lowercase_ : Any = parser.parse_args() lowercase_ : int = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase_ : str = f.read() else: lowercase_ : Optional[int] = bytes(__SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(__SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
213
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :jnp.ndarray _UpperCAmelCase :jnp.ndarray class lowercase__ ( nn.Module ): _UpperCAmelCase :int _UpperCAmelCase :Tuple[int] = (16, 32, 96, 256) _UpperCAmelCase :jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Optional[Any] =nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase_ : Optional[int] =[] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ : Dict =self.block_out_channels[i] lowerCamelCase_ : Union[str, Any] =self.block_out_channels[i + 1] lowerCamelCase_ : Any =nn.Conv( snake_case__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCamelCase_ : List[Any] =nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCamelCase_ : Union[str, Any] =blocks lowerCamelCase_ : List[str] =nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : int , snake_case__ : List[str] ): lowerCamelCase_ : Union[str, Any] =self.conv_in(snake_case__ ) lowerCamelCase_ : Tuple =nn.silu(snake_case__ ) for block in self.blocks: lowerCamelCase_ : int =block(snake_case__ ) lowerCamelCase_ : str =nn.silu(snake_case__ ) lowerCamelCase_ : str =self.conv_out(snake_case__ ) return embedding @flax_register_to_config class lowercase__ ( nn.Module, snake_case__, snake_case__ ): _UpperCAmelCase :int = 32 _UpperCAmelCase :int = 4 _UpperCAmelCase :Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCAmelCase :Union[bool, Tuple[bool]] = False _UpperCAmelCase :Tuple[int] = (320, 640, 1280, 1280) _UpperCAmelCase :int = 2 _UpperCAmelCase :Union[int, Tuple[int]] = 8 _UpperCAmelCase :Optional[Union[int, Tuple[int]]] = None _UpperCAmelCase :int = 1280 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :bool = False _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True _UpperCAmelCase :int = 0 _UpperCAmelCase :str = "rgb" _UpperCAmelCase :Tuple[int] = (16, 32, 96, 256) def UpperCAmelCase__ ( self : int , snake_case__ : jax.random.KeyArray ): # init input tensors lowerCamelCase_ : Tuple =(1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ : Optional[Any] =jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCamelCase_ : Any =jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ : int =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ : Any =(1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ : str =jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =jax.random.split(snake_case__ ) lowerCamelCase_ : Any ={"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Optional[Any] =self.block_out_channels lowerCamelCase_ : Union[str, Any] =block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ : Union[str, Any] =self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ : Dict =nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ : Tuple =FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ : Any =FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) lowerCamelCase_ : List[Any] =FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase_ : Tuple =self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Dict =(only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : str =(num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ : List[Any] =[] lowerCamelCase_ : List[str] =[] lowerCamelCase_ : Optional[int] =block_out_channels[0] lowerCamelCase_ : Tuple =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ : Optional[Any] =output_channel lowerCamelCase_ : List[str] =block_out_channels[i] lowerCamelCase_ : List[Any] =i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ : Dict =FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase_ : List[Any] =FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) for _ in range(self.layers_per_block ): lowerCamelCase_ : Tuple =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) if not is_final_block: lowerCamelCase_ : List[Any] =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) lowerCamelCase_ : str =down_blocks lowerCamelCase_ : List[Any] =controlnet_down_blocks # mid lowerCamelCase_ : Dict =block_out_channels[-1] lowerCamelCase_ : str =FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase_ : List[str] =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : float = 1.0 , snake_case__ : bool = True , snake_case__ : bool = False , ): lowerCamelCase_ : Any =self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ : List[Any] =jnp.flip(snake_case__ , axis=1 ) # 1. time if not isinstance(snake_case__ , jnp.ndarray ): lowerCamelCase_ : Dict =jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ : Any =timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ : Dict =jnp.expand_dims(snake_case__ , 0 ) lowerCamelCase_ : Optional[Any] =self.time_proj(snake_case__ ) lowerCamelCase_ : Optional[int] =self.time_embedding(snake_case__ ) # 2. pre-process lowerCamelCase_ : Optional[Any] =jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCamelCase_ : str =self.conv_in(snake_case__ ) lowerCamelCase_ : Any =jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCamelCase_ : Any =self.controlnet_cond_embedding(snake_case__ ) sample += controlnet_cond # 3. down lowerCamelCase_ : Tuple =(sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ , lowerCamelCase_ : Tuple =down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: lowerCamelCase_ , lowerCamelCase_ : int =down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ : Any =self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) # 5. contronet blocks lowerCamelCase_ : Dict =() for down_block_res_sample, controlnet_block in zip(snake_case__ , self.controlnet_down_blocks ): lowerCamelCase_ : Optional[Any] =controlnet_block(snake_case__ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ : Any =controlnet_down_block_res_samples lowerCamelCase_ : List[str] =self.controlnet_mid_block(snake_case__ ) # 6. scaling lowerCamelCase_ : Any =[sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case__ , mid_block_res_sample=snake_case__ )
209
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast A__ : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase__ ( datasets.BuilderConfig ): _UpperCAmelCase :int = 10000 _UpperCAmelCase :Optional[List[str]] = None _UpperCAmelCase :Optional[datasets.Features] = None class lowercase__ ( datasets.ArrowBasedBuilder ): _UpperCAmelCase :Optional[int] = ParquetConfig def UpperCAmelCase__ ( self : Optional[int] ): return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[Any] ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowerCamelCase_ : str =dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): lowerCamelCase_ : Dict =data_files if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : List[Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ : Any =[dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowerCamelCase_ : Optional[int] =[] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Optional[int] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ : int =[dl_manager.iter_files(snake_case__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(snake_case__ ): with open(snake_case__ , "rb" ) as f: lowerCamelCase_ : List[Any] =datasets.Features.from_arrow_schema(pq.read_schema(snake_case__ ) ) break splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"files": files} ) ) return splits def UpperCAmelCase__ ( self : int , snake_case__ : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase_ : List[str] =table_cast(snake_case__ , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : int , snake_case__ : Optional[Any] ): lowerCamelCase_ : Tuple =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): with open(snake_case__ , "rb" ) as f: lowerCamelCase_ : List[str] =pq.ParquetFile(snake_case__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCamelCase_ : Union[str, Any] =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(snake_case__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise
209
1
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Optional[int] = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _a : Dict = hex_num[0] == '-' if is_negative: _a : Optional[int] = hex_num[1:] try: _a : Optional[Any] = int(lowerCAmelCase_ , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _a : int = '' while int_num > 0: _a : Union[str, Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
89
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = " " ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 0 for index, char in enumerate(_SCREAMING_SNAKE_CASE ): if char == separator: split_words.append(string[last_index:index] ) _UpperCAmelCase = index + 1 elif index + 1 == len(_SCREAMING_SNAKE_CASE ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
260
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case=9_9 , __snake_case=1_3 , __snake_case=7 , __snake_case=9 , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=3_2 , __snake_case=5 , __snake_case=4 , __snake_case=3_7 , __snake_case=8 , __snake_case=0.1 , __snake_case=0.002 , __snake_case=1 , __snake_case=0 , __snake_case=0 , __snake_case=None , __snake_case=None , ): snake_case = parent snake_case = batch_size snake_case = encoder_seq_length snake_case = decoder_seq_length # For common tests snake_case = self.decoder_seq_length snake_case = is_training snake_case = use_attention_mask snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = d_ff snake_case = relative_attention_num_buckets snake_case = dropout_rate snake_case = initializer_factor snake_case = eos_token_id snake_case = pad_token_id snake_case = decoder_start_token_id snake_case = None snake_case = decoder_layers def a_ ( self ): return TaConfig.from_pretrained('''google/umt5-base''' ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , ): if attention_mask is None: snake_case = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__snake_case ) if decoder_head_mask is None: snake_case = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__snake_case ) if cross_attn_head_mask is None: snake_case = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def a_ ( self ): snake_case = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case = input_ids.clamp(self.pad_token_id + 1 ) snake_case = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case = self.get_config() snake_case = config.num_attention_heads snake_case = self.prepare_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, input_dict def a_ ( self ): snake_case , snake_case = self.prepare_config_and_inputs() return config, inputs_dict def a_ ( self ): return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a_ ( self ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): snake_case = UMTaModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model( input_ids=__snake_case , decoder_input_ids=__snake_case , attention_mask=__snake_case , decoder_attention_mask=__snake_case , ) snake_case = model(input_ids=__snake_case , decoder_input_ids=__snake_case ) snake_case = result.last_hidden_state snake_case = result.past_key_values snake_case = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): snake_case = UMTaModel(config=__snake_case ).get_decoder().to(__snake_case ).eval() # first forward pass snake_case = model(__snake_case , use_cache=__snake_case ) snake_case = model(__snake_case ) snake_case = model(__snake_case , use_cache=__snake_case ) self.parent.assertTrue(len(__snake_case ) == len(__snake_case ) ) self.parent.assertTrue(len(__snake_case ) == len(__snake_case ) + 1 ) snake_case , snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = model(__snake_case )['''last_hidden_state'''] snake_case = model(__snake_case , past_key_values=__snake_case )['''last_hidden_state'''] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -1, random_slice_idx].detach() snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def a_ ( self , __snake_case , __snake_case , ): snake_case = UMTaModel(config=__snake_case ).to(__snake_case ).half().eval() snake_case = model(**__snake_case )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__snake_case ).any().item() ) @require_torch class A__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __magic_name__ = (UMTaForConditionalGeneration,) if is_torch_available() else () __magic_name__ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = True # The small UMT5 model needs higher percentages for CPU/MP tests __magic_name__ = [0.8, 0.9] def a_ ( self ): snake_case = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() snake_case = UMTaModel(config_and_inputs[0] ).to(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=__snake_case , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__snake_case ) def a_ ( self ): snake_case = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] snake_case = self.model_tester.prepare_config_and_inputs() snake_case = config_and_inputs[0] snake_case = UMTaForConditionalGeneration(__snake_case ).eval() model.to(__snake_case ) snake_case = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__snake_case ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__snake_case ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__snake_case ), } for attn_name, (name, mask) in zip(__snake_case , head_masking.items() ): snake_case = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case = torch.ones( config.num_decoder_layers , config.num_heads , device=__snake_case ) snake_case = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__snake_case , return_dict_in_generate=__snake_case , **__snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def a_ ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def a_ ( self ): snake_case = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__snake_case ).to(__snake_case ) snake_case = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__snake_case , legacy=__snake_case ) snake_case = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] snake_case = tokenizer(__snake_case , return_tensors='''pt''' , padding=__snake_case ).input_ids # fmt: off snake_case = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__snake_case , __snake_case ) snake_case = model.generate(input_ids.to(__snake_case ) ) snake_case = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] snake_case = tokenizer.batch_decode(__snake_case ) self.assertEqual(__snake_case , __snake_case )
213
import math class A__ : """simple docstring""" def a_ ( self , __snake_case , __snake_case ): snake_case = 0.0 snake_case = 0.0 for i in range(len(__snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): for i in range(len(__snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase__ (): """simple docstring""" snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case = SelfOrganizingMap() snake_case = 3 snake_case = 0.5 for _ in range(UpperCamelCase_ ): for j in range(len(UpperCamelCase_ ) ): # training sample snake_case = training_samples[j] # Compute the winning vector snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # Update the winning vector snake_case = self_organizing_map.update(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # classify test sample snake_case = [0, 0, 0, 1] snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
213
1
class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = data SCREAMING_SNAKE_CASE_ : List[str] = previous SCREAMING_SNAKE_CASE_ : List[Any] = next_node def __str__( self ): """simple docstring""" return f"{self.data}" def UpperCAmelCase ( self ): """simple docstring""" return self.data def UpperCAmelCase ( self ): """simple docstring""" return self.next def UpperCAmelCase ( self ): """simple docstring""" return self.previous class _A : def __init__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = head def __iter__( self ): """simple docstring""" return self def UpperCAmelCase ( self ): """simple docstring""" if not self.current: raise StopIteration else: SCREAMING_SNAKE_CASE_ : Tuple = self.current.get_data() SCREAMING_SNAKE_CASE_ : List[str] = self.current.get_next() return value class _A : def __init__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # First node in list SCREAMING_SNAKE_CASE_ : int = None # Last node in list def __str__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.head SCREAMING_SNAKE_CASE_ : Any = [] while current is not None: nodes.append(current.get_data() ) SCREAMING_SNAKE_CASE_ : Any = current.get_next() return " ".join(str(_SCREAMING_SNAKE_CASE ) for node in nodes ) def __contains__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.head while current: if current.get_data() == value: return True SCREAMING_SNAKE_CASE_ : int = current.get_next() return False def __iter__( self ): """simple docstring""" return LinkedListIterator(self.head ) def UpperCAmelCase ( self ): """simple docstring""" if self.head: return self.head.get_data() return None def UpperCAmelCase ( self ): """simple docstring""" if self.tail: return self.tail.get_data() return None def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.head is None: SCREAMING_SNAKE_CASE_ : int = node SCREAMING_SNAKE_CASE_ : Optional[int] = node else: self.insert_before_node(self.head , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.head is None: self.set_head(_SCREAMING_SNAKE_CASE ) else: self.insert_after_node(self.tail , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = Node(_SCREAMING_SNAKE_CASE ) if self.head is None: self.set_head(_SCREAMING_SNAKE_CASE ) else: self.set_tail(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = node SCREAMING_SNAKE_CASE_ : Tuple = node.previous if node.get_previous() is None: SCREAMING_SNAKE_CASE_ : List[str] = node_to_insert else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = node_to_insert SCREAMING_SNAKE_CASE_ : Optional[int] = node_to_insert def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = node SCREAMING_SNAKE_CASE_ : Tuple = node.next if node.get_next() is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = node_to_insert else: SCREAMING_SNAKE_CASE_ : Dict = node_to_insert SCREAMING_SNAKE_CASE_ : Union[str, Any] = node_to_insert def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : List[Any] = Node(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return current_position += 1 SCREAMING_SNAKE_CASE_ : int = node.next self.insert_after_node(self.tail , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.head while node: if node.get_data() == item: return node SCREAMING_SNAKE_CASE_ : List[Any] = node.get_next() raise Exception('Node not found' ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if (node := self.get_node(_SCREAMING_SNAKE_CASE )) is not None: if node == self.head: SCREAMING_SNAKE_CASE_ : List[str] = self.head.get_next() if node == self.tail: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tail.get_previous() self.remove_node_pointers(_SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if node.get_next(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.previous if node.get_previous(): SCREAMING_SNAKE_CASE_ : Optional[Any] = node.next SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None def UpperCAmelCase ( self ): """simple docstring""" return self.head is None def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
253
import os from typing import Dict, List, Tuple, TypeVar, Union lowerCAmelCase : str = TypeVar('T') lowerCAmelCase : Optional[Any] = Union[List[T], Tuple[T, ...]] lowerCAmelCase : str = Union[T, List[T], Dict[str, T]] lowerCAmelCase : Union[str, Any] = Union[str, bytes, os.PathLike]
253
1
'''simple docstring''' import math import sys import cva import numpy as np def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : float ): """simple docstring""" __magic_name__ : List[str] = math.sqrt(lowerCAmelCase ) __magic_name__ : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : float ): """simple docstring""" __magic_name__ : Tuple = np.zeros((kernel_size, kernel_size) ) for i in range(0 , lowerCAmelCase ): for j in range(0 , lowerCAmelCase ): __magic_name__ : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : int , ): """simple docstring""" __magic_name__ : Any = np.zeros(img.shape ) __magic_name__ : Dict = get_gauss_kernel(lowerCAmelCase , lowerCAmelCase ) __magic_name__ , __magic_name__ : Tuple = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __magic_name__ : List[Any] = get_slice(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __magic_name__ : int = img_s - img_s[kernel_size // 2, kernel_size // 2] __magic_name__ : int = vec_gaussian(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Union[str, Any] = np.multiply(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : int = np.multiply(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[int] = np.sum(lowerCAmelCase ) / np.sum(lowerCAmelCase ) __magic_name__ : List[str] = val return imga def lowerCamelCase ( lowerCAmelCase : list ): """simple docstring""" __magic_name__ : List[str] = args[1] if args[1:] else '../image_data/lena.jpg' __magic_name__ : Tuple = float(args[2] ) if args[2:] else 1.0 __magic_name__ : str = float(args[3] ) if args[3:] else 1.0 if args[4:]: __magic_name__ : List[str] = int(args[4] ) __magic_name__ : Optional[int] = kernel_size + abs(kernel_size % 2 - 1 ) else: __magic_name__ : str = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Union[str, Any] = parse_args(sys.argv) lowerCAmelCase :int = cva.imread(filename, 0) cva.imshow('''input image''', img) lowerCAmelCase :Tuple = img / 2_5_5 lowerCAmelCase :Optional[int] = out.astype('''float32''') lowerCAmelCase :List[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase :Tuple = out * 2_5_5 lowerCAmelCase :Union[str, Any] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
275
'''simple docstring''' import math def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return math.pow(lowerCAmelCase , 2 ) - a def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" return 2 * x def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" __magic_name__ : List[Any] = 2.0 while start <= a: __magic_name__ : List[str] = math.pow(lowerCAmelCase , 2 ) return start def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int = 9999 , lowerCAmelCase : float = 0.00_0000_0000_0001 ): """simple docstring""" if a < 0: raise ValueError('math domain error' ) __magic_name__ : Any = get_initial_point(lowerCAmelCase ) for _ in range(lowerCAmelCase ): __magic_name__ : List[str] = value __magic_name__ : Optional[int] = value - fx(lowerCAmelCase , lowerCAmelCase ) / fx_derivative(lowerCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
275
1
'''simple docstring''' from math import factorial def snake_case_ (_a : Union[str, Any] = 2_0 ): UpperCAmelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase = n // 2 return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: A =int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
34
from manim import * class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Union[str, Any] = Rectangle(height=0.5, width=0.5 ) A : Optional[int] = Rectangle(height=0.25, width=0.25 ) A : Optional[Any] = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) A : List[str] = [mem.copy() for i in range(6 )] A : Any = [mem.copy() for i in range(6 )] A : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : str = VGroup(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : List[Any] = Text("""CPU""", font_size=24 ) A : Optional[int] = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) A : List[Any] = [mem.copy() for i in range(4 )] A : Optional[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : Dict = Text("""GPU""", font_size=24 ) A : Any = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) A : Optional[int] = [mem.copy() for i in range(6 )] A : List[str] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : Optional[int] = Text("""Model""", font_size=24 ) A : List[Any] = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) A : Tuple = [] A : Tuple = [] A : Any = [] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) A : Any = Rectangle(height=0.46 / 4, width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__, opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0], direction=lowerCamelCase__, buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1], direction=lowerCamelCase__, buff=0.0 ) self.add(lowerCamelCase__ ) model_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__, *lowerCamelCase__, *lowerCamelCase__ ) A : int = [mem.copy() for i in range(6 )] A : List[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : str = Text("""Loaded Checkpoint""", font_size=24 ) A : List[str] = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCamelCase__ ) A : Optional[int] = [] A : List[Any] = [] for i, rect in enumerate(lowerCamelCase__ ): A : int = fill.copy().set_fill(lowerCamelCase__, opacity=0.7 ) target.move_to(lowerCamelCase__ ) ckpt_arr.append(lowerCamelCase__ ) A : List[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__, *lowerCamelCase__ ) A : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A : List[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__, lowerCamelCase__ ) A : Union[str, Any] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''', font_size=18, ) blue_text.next_to(lowerCamelCase__, DOWN * 2.4, aligned_edge=key_text.get_left() ) self.add(lowerCamelCase__ ) A : List[str] = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''', font_size=24, ) step_a.move_to([2, 2, 0] ) A : List[str] = [meta_mem.copy() for i in range(6 )] A : List[Any] = [meta_mem.copy() for i in range(6 )] A : List[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : List[str] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : Dict = VGroup(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 ) A : Optional[Any] = Text("""Disk""", font_size=24 ) A : List[str] = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowerCamelCase__, run_time=3 ), Write(lowerCamelCase__, run_time=1 ), Create(lowerCamelCase__, run_time=1 ) ) A : str = [] for i, rect in enumerate(lowerCamelCase__ ): A : Optional[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCamelCase__, run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(FadeOut(lowerCamelCase__ ) ) A : List[str] = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''', font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__, run_time=3 ) ) self.play( FadeOut(lowerCamelCase__, lowerCamelCase__, *lowerCamelCase__, *lowerCamelCase__ ), ) self.wait()
116
0
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _A = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _lowercase : lowercase_ = PegasusConfig lowercase_ = {} lowercase_ = 'gelu' def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=7 , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_=99 , UpperCAmelCase_=32 , UpperCAmelCase_=5 , UpperCAmelCase_=4 , UpperCAmelCase_=37 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=20 , UpperCAmelCase_=2 , UpperCAmelCase_=1 , UpperCAmelCase_=0 , ) -> Any: lowerCamelCase : Union[str, Any] = parent lowerCamelCase : int = batch_size lowerCamelCase : Optional[int] = seq_length lowerCamelCase : Optional[int] = is_training lowerCamelCase : int = use_labels lowerCamelCase : Union[str, Any] = vocab_size lowerCamelCase : List[str] = hidden_size lowerCamelCase : Optional[Any] = num_hidden_layers lowerCamelCase : str = num_attention_heads lowerCamelCase : Optional[int] = intermediate_size lowerCamelCase : List[Any] = hidden_dropout_prob lowerCamelCase : int = attention_probs_dropout_prob lowerCamelCase : int = max_position_embeddings lowerCamelCase : Dict = eos_token_id lowerCamelCase : Union[str, Any] = pad_token_id lowerCamelCase : Dict = bos_token_id def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCamelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase : Optional[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase : Tuple = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = 20 lowerCamelCase : List[Any] = model_class_name(UpperCAmelCase_ ) lowerCamelCase : List[str] = model.encode(inputs_dict['input_ids'] ) lowerCamelCase , lowerCamelCase : str = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCamelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCamelCase : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase : str = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCamelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase : List[str] = model.decode(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : List[str] = 20 lowerCamelCase : List[str] = model_class_name(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = model.encode(inputs_dict['input_ids'] ) lowerCamelCase , lowerCamelCase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCamelCase : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase : List[str] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase : Tuple = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCamelCase : str = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase : Tuple = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ ) lowerCamelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase ( a_, a_, a_, a_=None, a_=None, ): '''simple docstring''' if attention_mask is None: lowerCamelCase : int = np.not_equal(a_, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCamelCase : str = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : List[Any] = FlaxPegasusModelTester(self ) lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> int: lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> str: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase : Optional[int] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Optional[int] = model_class(UpperCAmelCase_ ) @jax.jit def encode_jitted(UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) with self.subTest('JIT Enabled' ): lowerCamelCase : int = encode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase : Union[str, Any] = encode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( self ) -> int: lowerCamelCase , lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase : Optional[Any] = model_class(UpperCAmelCase_ ) lowerCamelCase : Dict = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowerCamelCase : int = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest('JIT Enabled' ): lowerCamelCase : Optional[int] = decode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase : List[Any] = decode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCamelCase ( self ) -> Optional[Any]: for model_class_name in self.all_model_classes: lowerCamelCase : Dict = model_class_name.from_pretrained('google/pegasus-large' , from_pt=UpperCAmelCase_ ) lowerCamelCase : Any = np.ones((1, 1) ) lowerCamelCase : Optional[Any] = model(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @slow def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[int] = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) lowerCamelCase : Dict = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) lowerCamelCase : List[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCamelCase : Union[str, Any] = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] lowerCamelCase : str = tokenizer(UpperCAmelCase_ , return_tensors='np' , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences lowerCamelCase : Any = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) assert tgt_text == decoded
205
"""simple docstring""" def UpperCAmelCase ( ): '''simple docstring''' return 1 def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a_ ) def UpperCAmelCase ( a_ = 200 ): '''simple docstring''' return two_pound(a_ ) if __name__ == "__main__": print(solution(int(input().strip())))
205
1
class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ): '''simple docstring''' lowerCamelCase__ = data lowerCamelCase__ = previous lowerCamelCase__ = next_node def __str__( self ): '''simple docstring''' return F'{self.data}' def __lowerCamelCase ( self ): '''simple docstring''' return self.data def __lowerCamelCase ( self ): '''simple docstring''' return self.next def __lowerCamelCase ( self ): '''simple docstring''' return self.previous class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = head def __iter__( self ): '''simple docstring''' return self def __lowerCamelCase ( self ): '''simple docstring''' if not self.current: raise StopIteration else: lowerCamelCase__ = self.current.get_data() lowerCamelCase__ = self.current.get_next() return value class __A : '''simple docstring''' def __init__( self ): '''simple docstring''' lowerCamelCase__ = None # First node in list lowerCamelCase__ = None # Last node in list def __str__( self ): '''simple docstring''' lowerCamelCase__ = self.head lowerCamelCase__ = [] while current is not None: nodes.append(current.get_data() ) lowerCamelCase__ = current.get_next() return " ".join(str(__lowerCAmelCase ) for node in nodes ) def __contains__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.head while current: if current.get_data() == value: return True lowerCamelCase__ = current.get_next() return False def __iter__( self ): '''simple docstring''' return LinkedListIterator(self.head ) def __lowerCamelCase ( self ): '''simple docstring''' if self.head: return self.head.get_data() return None def __lowerCamelCase ( self ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if self.head is None: lowerCamelCase__ = node lowerCamelCase__ = node else: self.insert_before_node(self.head , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if self.head is None: self.set_head(__lowerCAmelCase ) else: self.insert_after_node(self.tail , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = Node(__lowerCAmelCase ) if self.head is None: self.set_head(__lowerCAmelCase ) else: self.set_tail(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = node lowerCamelCase__ = node.previous if node.get_previous() is None: lowerCamelCase__ = node_to_insert else: lowerCamelCase__ = node_to_insert lowerCamelCase__ = node_to_insert def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = node lowerCamelCase__ = node.next if node.get_next() is None: lowerCamelCase__ = node_to_insert else: lowerCamelCase__ = node_to_insert lowerCamelCase__ = node_to_insert def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = 1 lowerCamelCase__ = Node(__lowerCAmelCase ) lowerCamelCase__ = self.head while node: if current_position == position: self.insert_before_node(__lowerCAmelCase , __lowerCAmelCase ) return current_position += 1 lowerCamelCase__ = node.next self.insert_after_node(self.tail , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.head while node: if node.get_data() == item: return node lowerCamelCase__ = node.get_next() raise Exception('''Node not found''' ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if (node := self.get_node(__lowerCAmelCase )) is not None: if node == self.head: lowerCamelCase__ = self.head.get_next() if node == self.tail: lowerCamelCase__ = self.tail.get_previous() self.remove_node_pointers(__lowerCAmelCase ) @staticmethod def __lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' if node.get_next(): lowerCamelCase__ = node.previous if node.get_previous(): lowerCamelCase__ = node.next lowerCamelCase__ = None lowerCamelCase__ = None def __lowerCamelCase ( self ): '''simple docstring''' return self.head is None def lowerCAmelCase__() -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
209
def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(__snake_case ) * abs(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
209
1
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowerCAmelCase : Any = TypeVar("T") class UpperCAmelCase_ ( Generic[T] ): def __init__( self : Dict , A : Union[str, Any] = True ): _UpperCAmelCase : List[str] = {} # dictionary of lists _UpperCAmelCase : Dict = directed def snake_case_ ( self : Any , A : Dict , A : str ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_SCREAMING_SNAKE_CASE ) self.adj_list[destination_vertex].append(_SCREAMING_SNAKE_CASE ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _UpperCAmelCase : Dict = [destination_vertex] _UpperCAmelCase : str = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_SCREAMING_SNAKE_CASE ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _UpperCAmelCase : Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _UpperCAmelCase : Optional[int] = [destination_vertex] _UpperCAmelCase : Optional[int] = [] return self def __repr__( self : Dict ): return pformat(self.adj_list )
355
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = GPTSanJapaneseTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[str] = {'do_clean_text': False, 'add_prefix_space': False} def snake_case_ ( self : Any ): super().setUp() # fmt: off _UpperCAmelCase : Any = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Optional[int] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _UpperCAmelCase : List[Any] = {"unk_token": "<unk>"} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def snake_case_ ( self : int , **A : List[str] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : int , A : Any ): _UpperCAmelCase : Optional[Any] = "こんにちは、世界。 \nこんばんは、㔺界。😀" _UpperCAmelCase : List[Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def snake_case_ ( self : Optional[Any] , A : str ): _UpperCAmelCase , _UpperCAmelCase : str = self.get_input_output_texts(A ) _UpperCAmelCase : List[Any] = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def snake_case_ ( self : Any ): pass # TODO add if relevant def snake_case_ ( self : Union[str, Any] ): pass # TODO add if relevant def snake_case_ ( self : int ): pass # TODO add if relevant def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Optional[int] = "こんにちは、世界。 こんばんは、㔺界。" _UpperCAmelCase : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _UpperCAmelCase : List[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens _UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens _UpperCAmelCase : str = tokens + [tokenizer.unk_token] _UpperCAmelCase : Any = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Any ): _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Dict = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _UpperCAmelCase : Tuple = "こんにちは、、、、世界。こんばんは、、、、世界。" _UpperCAmelCase : int = tokenizer.encode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Dict ): _UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : List[Any] = "こんにちは、世界。" _UpperCAmelCase : List[str] = "こんばんは、㔺界。😀" _UpperCAmelCase : Any = "こんにちは、世界。こんばんは、世界。😀" _UpperCAmelCase : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) _UpperCAmelCase : Tuple = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _UpperCAmelCase : Optional[int] = tokenizer.encode(A , prefix_text=A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : Any = "こんにちは、世界。" _UpperCAmelCase : List[Any] = "こんばんは、㔺界。😀" _UpperCAmelCase : Optional[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[str] = [1] + [0] * (len_prefix + len_text + 1) _UpperCAmelCase : str = [1] * (len_prefix + len_text + 1) + [0] _UpperCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCAmelCase : Union[str, Any] = tokenizer(prefix_text + input_text ).token_type_ids _UpperCAmelCase : Any = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _UpperCAmelCase : List[Any] = tokenizer(A , prefix_text=A ).token_type_ids self.assertListEqual(A , A ) self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Dict = tokenizer.encode("あンいワ" ) _UpperCAmelCase : str = tokenizer.encode("" , prefix_text="あンいワ" ) _UpperCAmelCase : Dict = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertNotEqual(A , A ) self.assertNotEqual(A , A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _UpperCAmelCase : Tuple = tokenizer(A , padding=A ) _UpperCAmelCase : str = tokenizer.batch_encode_plus(A , padding=A ) # fmt: off _UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _UpperCAmelCase : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A ) self.assertListEqual(x_token.token_type_ids , A ) self.assertListEqual(x_token.attention_mask , A ) self.assertListEqual(x_token_a.input_ids , A ) self.assertListEqual(x_token_a.token_type_ids , A ) self.assertListEqual(x_token_a.attention_mask , A ) def snake_case_ ( self : List[Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def snake_case_ ( self : int ): # tokenizer has no padding token pass
202
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'funnel' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self ,__UpperCamelCase=3_0522 ,__UpperCamelCase=[4, 4, 4] ,__UpperCamelCase=None ,__UpperCamelCase=2 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=64 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu_new" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.1 ,__UpperCamelCase=None ,__UpperCamelCase=1e-9 ,__UpperCamelCase="mean" ,__UpperCamelCase="relative_shift" ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Dict: '''simple docstring''' lowercase_ : Union[str, Any] = vocab_size lowercase_ : Optional[int] = block_sizes lowercase_ : Any = [1] * len(__UpperCamelCase ) if block_repeats is None else block_repeats assert len(__UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowercase_ : Optional[Any] = num_decoder_layers lowercase_ : List[Any] = d_model lowercase_ : Any = n_head lowercase_ : List[str] = d_head lowercase_ : Any = d_inner lowercase_ : Any = hidden_act lowercase_ : Optional[int] = hidden_dropout lowercase_ : Union[str, Any] = attention_dropout lowercase_ : Optional[Any] = activation_dropout lowercase_ : int = initializer_range lowercase_ : Union[str, Any] = initializer_std lowercase_ : Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' lowercase_ : int = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' lowercase_ : Tuple = attention_type lowercase_ : List[str] = separate_cls lowercase_ : Any = truncate_seq lowercase_ : str = pool_q_only super().__init__(**__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
213
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
213
1
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=A ): '''simple docstring''' _A : Dict = ['''keras_nlp'''] def __init__( self : Optional[int] , *_a : Tuple , **_a : Optional[Any] ): requires_backends(self , ['''keras_nlp'''] )
35
from __future__ import annotations lowercase = list[list[int]] # assigning initial values to the grid lowercase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowercase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase_ ( UpperCamelCase__ : Matrix, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' if location := find_empty_location(UpperCamelCase__ ): UpperCamelCase__ , UpperCamelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10 ): if is_safe(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): UpperCamelCase__ = digit if sudoku(UpperCamelCase__ ) is not None: return grid UpperCamelCase__ = 0 return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(UpperCamelCase__, end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 2_0) print_solution(example_grid) print("""\nExample grid solution:""") lowercase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
35
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _UpperCamelCase = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self , A_ , A_ , A_ = None , A_ = None ) ->int: '''simple docstring''' __lowerCAmelCase : Dict = None __lowerCAmelCase : Any = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __lowerCAmelCase : Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(A_ ): if item not in EXCLUDE_EXAMPLES: __lowerCAmelCase : int = os.path.join(A_ , A_ ) if os.path.isfile(A_ ) and ".py" in item_path: with self.subTest( tested_script=A_ , feature_script=A_ , tested_section='''main()''' if parser_only else '''training_function()''' , ): __lowerCAmelCase : str = compare_against_test( os.path.join(A_ , A_ ) , A_ , A_ , A_ ) __lowerCAmelCase : Union[str, Any] = '''\n'''.join(A_ ) if special_strings is not None: for string in special_strings: __lowerCAmelCase : Any = diff.replace(A_ , '''''' ) self.assertEqual(A_ , '''''' ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' self.one_complete_example('''complete_nlp_example.py''' , A_ ) self.one_complete_example('''complete_nlp_example.py''' , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Tuple = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __lowerCAmelCase : List[str] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , A_ , A_ , A_ ) self.one_complete_example('''complete_cv_example.py''' , A_ , A_ , A_ ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __lowercase (_UpperCAmelCase ): _UpperCamelCase = False @classmethod def UpperCamelCase__ ( cls ) ->Union[str, Any]: '''simple docstring''' super().setUpClass() __lowerCAmelCase : Dict = tempfile.mkdtemp() __lowerCAmelCase : Tuple = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __lowerCAmelCase : Dict = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase__ ( cls ) ->List[str]: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : int = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __lowerCAmelCase : Dict = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() __lowerCAmelCase : Any = run_command(self._launch_args + testargs , return_stdout=A_ ) self.assertNotIn('''epoch 0:''' , A_ ) self.assertIn('''epoch 1:''' , A_ ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Dict = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() __lowerCAmelCase : List[str] = run_command(self._launch_args + testargs , return_stdout=A_ ) if torch.cuda.is_available(): __lowerCAmelCase : List[Any] = torch.cuda.device_count() else: __lowerCAmelCase : Tuple = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , A_ ) self.assertIn('''epoch 1:''' , A_ ) else: self.assertIn('''epoch 0:''' , A_ ) self.assertIn('''epoch 1:''' , A_ ) @slow def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __lowerCAmelCase : List[Any] = run_command(self._launch_args + testargs , return_stdout=A_ ) __lowerCAmelCase : Tuple = re.findall('''({.+})''' , A_ ) __lowerCAmelCase : Tuple = [r for r in results if '''accuracy''' in r][-1] __lowerCAmelCase : List[str] = ast.literal_eval(A_ ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: __lowerCAmelCase : List[Any] = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(A_ , '''tracking''' ) ) ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Dict = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
275
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"vocab_file": "spiece.model"} _UpperCamelCase = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _UpperCamelCase = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_=False , A_=False , A_=False , A_=None , A_=None , A_=None , A_=None , A_ = None , **A_ , ) ->None: '''simple docstring''' __lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase : int = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __lowerCAmelCase : Union[str, Any] = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __lowerCAmelCase : str = '''<|endoftext|>''' if eos_token is None else eos_token __lowerCAmelCase : Any = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __lowerCAmelCase : Dict = unk_token if pad_token is None else pad_token __lowerCAmelCase : int = eos_token if bos_token is None else bos_token else: __lowerCAmelCase : Optional[int] = '''<pad>''' if pad_token is None else pad_token __lowerCAmelCase : List[str] = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) __lowerCAmelCase : Union[str, Any] = do_lower_case __lowerCAmelCase : Union[str, Any] = remove_space __lowerCAmelCase : int = keep_accents __lowerCAmelCase : Union[str, Any] = vocab_file __lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # Used for whitespace normalization in input texts # fmt : off __lowerCAmelCase : List[Any] = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __lowerCAmelCase : int = re.compile( f"""[{"".join(map(A_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.__dict__.copy() __lowerCAmelCase : List[Any] = None return state def __setstate__( self , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase : List[Any] = {} __lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return len(self.sp_model ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : int = self.non_printing_characters_re.sub('''''' , A_ ) # Normalize whitespaces __lowerCAmelCase : List[str] = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __lowerCAmelCase : Tuple = unicodedata.normalize('''NFC''' , A_ ) return text def UpperCamelCase__ ( self , A_ , **A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = self.preprocess_text(A_ ) return self.sp_model.encode(A_ , out_type=A_ ) def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' return self.sp_model.PieceToId(A_ ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' return self.sp_model.IdToPiece(A_ ) @staticmethod def UpperCamelCase__ ( A_ ) ->str: '''simple docstring''' return out_string def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : str = [] __lowerCAmelCase : Tuple = '''''' __lowerCAmelCase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Optional[int] = [] else: current_sub_tokens.append(A_ ) __lowerCAmelCase : str = False out_string += self.sp_model.decode(A_ ) return out_string def UpperCamelCase__ ( self ) ->Dict[str, int]: '''simple docstring''' __lowerCAmelCase : str = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , A_ , A_ = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase : Any = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , '''wb''' ) as fi: __lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def UpperCamelCase__ ( self , A_ , A_ = False ) ->Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(A_ , A_ ): __lowerCAmelCase : Optional[Any] = self.preprocess_text(A_ ) __lowerCAmelCase : Dict = self.sp_model.encode(A_ ) else: __lowerCAmelCase : Dict = [self.preprocess_text(A_ ) for t in text] __lowerCAmelCase : Optional[int] = self.sp_model.encode(A_ ) if return_tensors is True or return_tensors == "pt": __lowerCAmelCase : Tuple = torch.tensor(A_ ) return token_ids def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' return self.sp_model.decode(A_ ) def UpperCamelCase__ ( self , A_ ) ->List[int]: '''simple docstring''' __lowerCAmelCase : int = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __lowerCAmelCase : Any = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(A_ ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=A_ )
275
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase ( __UpperCamelCase ): lowerCAmelCase : str = ["""image_processor""", """tokenizer"""] lowerCAmelCase : Optional[Any] = """LayoutLMv3ImageProcessor""" lowerCAmelCase : Union[str, Any] = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , **UpperCAmelCase__ ): A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase__ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = 0 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = True , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features['words'] A__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) # add pixel values A__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: A__ = self.get_overflowing_images(UpperCAmelCase__ , encoded_inputs["overflow_to_sample_mapping"] ) A__ = images return encoded_inputs def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(UpperCAmelCase__ )} and {len(UpperCAmelCase__ )}""" ) return images_with_overflow def __A ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property def __A ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __A ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase__ , ) return self.image_processor_class @property def __A ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase__ , ) return self.image_processor
351
import datasets from .evaluate import evaluate UpperCAmelCase_ : List[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" UpperCAmelCase_ : Any = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" UpperCAmelCase_ : Tuple = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=UpperCAmelCase__ , predictions=UpperCAmelCase__ ) return score
198
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = ["""image_processor""", """tokenizer"""] _a = """BridgeTowerImageProcessor""" _a = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = True , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchEncoding: '''simple docstring''' _lowercase =self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) # add pixel_values + pixel_mask _lowercase =self.image_processor( lowerCAmelCase , return_tensors=lowerCAmelCase , do_normalize=lowerCAmelCase , do_center_crop=lowerCAmelCase , **lowerCAmelCase ) encoding.update(lowerCAmelCase ) return encoding def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.tokenizer.model_input_names _lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
205
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
1
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , snake_case_ : int , snake_case_ : str=None , snake_case_ : Union[str, Any]=None ): snake_case__ : List[str] = data snake_case__ : int = previous snake_case__ : Dict = next_node def __str__( self : List[Any] ): return f"{self.data}" def lowerCamelCase ( self : Optional[int] ): return self.data def lowerCamelCase ( self : Any ): return self.next def lowerCamelCase ( self : Union[str, Any] ): return self.previous class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] , snake_case_ : List[str] ): snake_case__ : Any = head def __iter__( self : int ): return self def lowerCamelCase ( self : Union[str, Any] ): if not self.current: raise StopIteration else: snake_case__ : str = self.current.get_data() snake_case__ : str = self.current.get_next() return value class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] ): snake_case__ : Optional[Any] = None # First node in list snake_case__ : Any = None # Last node in list def __str__( self : Any ): snake_case__ : Optional[int] = self.head snake_case__ : int = [] while current is not None: nodes.append(current.get_data() ) snake_case__ : List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : Optional[Any] , snake_case_ : int ): snake_case__ : int = self.head while current: if current.get_data() == value: return True snake_case__ : List[str] = current.get_next() return False def __iter__( self : str ): return LinkedListIterator(self.head ) def lowerCamelCase ( self : List[Any] ): if self.head: return self.head.get_data() return None def lowerCamelCase ( self : Optional[int] ): if self.tail: return self.tail.get_data() return None def lowerCamelCase ( self : List[str] , snake_case_ : Node ): if self.head is None: snake_case__ : Tuple = node snake_case__ : Tuple = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCamelCase ( self : List[str] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : int ): snake_case__ : Dict = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCamelCase ( self : List[Any] , snake_case_ : Node , snake_case_ : Node ): snake_case__ : Any = node snake_case__ : Optional[int] = node.previous if node.get_previous() is None: snake_case__ : List[Any] = node_to_insert else: snake_case__ : List[Any] = node_to_insert snake_case__ : List[Any] = node_to_insert def lowerCamelCase ( self : str , snake_case_ : Node , snake_case_ : Node ): snake_case__ : Dict = node snake_case__ : Any = node.next if node.get_next() is None: snake_case__ : str = node_to_insert else: snake_case__ : Dict = node_to_insert snake_case__ : Union[str, Any] = node_to_insert def lowerCamelCase ( self : Dict , snake_case_ : int , snake_case_ : int ): snake_case__ : str = 1 snake_case__ : Union[str, Any] = Node(snake_case_ ) snake_case__ : Union[str, Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 snake_case__ : Any = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : int ): snake_case__ : Optional[Any] = self.head while node: if node.get_data() == item: return node snake_case__ : Any = node.get_next() raise Exception("""Node not found""" ) def lowerCamelCase ( self : str , snake_case_ : str ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: snake_case__ : List[str] = self.head.get_next() if node == self.tail: snake_case__ : List[Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCamelCase ( snake_case_ : Node ): if node.get_next(): snake_case__ : Tuple = node.previous if node.get_previous(): snake_case__ : Any = node.next snake_case__ : str = None snake_case__ : Union[str, Any] = None def lowerCamelCase ( self : Dict ): return self.head is None def __snake_case( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' import numpy as np def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1e-12 , _lowerCAmelCase = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_lowerCAmelCase ) == np.iscomplexobj(_lowerCAmelCase ) snake_case__ : str = np.iscomplexobj(_lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. snake_case__ : Tuple = False snake_case__ : Any = 0 snake_case__ : List[str] = 0 snake_case__ : Dict = 1e12 while not convergence: # Multiple matrix by the vector. snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , _lowerCAmelCase ) # Normalize the resulting output vector. snake_case__ : Optional[Any] = w / np.linalg.norm(_lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) snake_case__ : List[str] = vector.conj().T if is_complex else vector.T snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , np.dot(_lowerCAmelCase , _lowerCAmelCase ) ) # Check convergence. snake_case__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: snake_case__ : Dict = True snake_case__ : Union[str, Any] = lambda_ if is_complex: snake_case__ : int = np.real(lambda_ ) return lambda_, vector def __snake_case( ) -> None: snake_case__ : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) snake_case__ : Tuple = np.array([41, 4, 20] ) snake_case__ : Dict = real_input_matrix.astype(np.complexaaa ) snake_case__ : Optional[int] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T snake_case__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": snake_case__ : Dict = real_input_matrix snake_case__ : Optional[Any] = real_vector elif problem_type == "complex": snake_case__ : Optional[Any] = complex_input_matrix snake_case__ : Optional[Any] = complex_vector # Our implementation. snake_case__ , snake_case__ : Tuple = power_iteration(_lowerCAmelCase , _lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). snake_case__ , snake_case__ : Dict = np.linalg.eigh(_lowerCAmelCase ) # Last eigenvalue is the maximum one. snake_case__ : Optional[int] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. snake_case__ : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_lowerCAmelCase ) - np.abs(_lowerCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
43
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 'mobilenet_v1' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ): super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __a = num_channels __a = image_size __a = depth_multiplier __a = min_depth __a = hidden_act __a = tf_padding __a = classifier_dropout_prob __a = initializer_range __a = layer_norm_eps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = version.parse('1.11' ) @property def __UpperCAmelCase ( self ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __UpperCAmelCase ( self ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __UpperCAmelCase ( self ): return 1E-4
45
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _A : Optional[int] = """ Human: <<task>> Assistant: """ _A : List[Any] = """huggingface-tools/default-prompts""" _A : Optional[int] = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def __magic_name__ ( __snake_case : int , __snake_case : List[Any] , __snake_case : Dict="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: lowercase : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , __snake_case ) is not None: return prompt_or_repo_id lowercase : Optional[int] = cached_file( __snake_case , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(__snake_case , "r" , encoding="utf-8" ) as f: return f.read()
202
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase_ ={ """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =["""MobileViTFeatureExtractor"""] UpperCamelCase_ =["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =[ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =[ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCamelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
128
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _a : def __init__( self : Dict, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[int]=1_3, lowerCAmelCase__ : Optional[Any]=7, lowerCAmelCase__ : Optional[Any]=True, lowerCAmelCase__ : Any=True, lowerCAmelCase__ : str=True, lowerCAmelCase__ : Any=9_9, lowerCAmelCase__ : Dict=3_2, lowerCAmelCase__ : List[Any]=5, lowerCAmelCase__ : Tuple=4, lowerCAmelCase__ : List[Any]=3_7, lowerCAmelCase__ : Tuple="gelu", lowerCAmelCase__ : Any=0.1, lowerCAmelCase__ : Optional[Any]=0.1, lowerCAmelCase__ : Dict=5_1_2, lowerCAmelCase__ : List[str]=1_6, lowerCAmelCase__ : Tuple=2, lowerCAmelCase__ : int=0.02, lowerCAmelCase__ : int=3, lowerCAmelCase__ : Optional[Any]=4, lowerCAmelCase__ : Dict=None, ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : Tuple = use_token_type_ids _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : int = type_vocab_size _UpperCamelCase : List[str] = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : int = num_labels _UpperCamelCase : List[str] = num_choices _UpperCamelCase : str = scope _UpperCamelCase : Optional[int] = self.vocab_size - 1 def snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : List[str] = None if self.use_token_type_ids: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _UpperCamelCase : Optional[int] = None _UpperCamelCase : str = None _UpperCamelCase : List[str] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _UpperCamelCase : Dict = ids_tensor([self.batch_size], self.num_choices ) _UpperCamelCase : str = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) _UpperCamelCase : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], *lowerCAmelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[str] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, head_mask=lowerCAmelCase__ ) _UpperCamelCase : Any = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__ ) _UpperCamelCase : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Any, lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : Any = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Tuple = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[int], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[Any], *lowerCAmelCase__ : Any ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : List[str], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Dict, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Union[str, Any] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Tuple = config_and_inputs _UpperCamelCase : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[str], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case ( self : str, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[int]=False ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = super()._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__, return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCamelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Tuple = inputs_dict['''labels'''] _UpperCamelCase : List[str] = inputs_dict['''labels'''] _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase__ ) return inputs_dict def snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = OpenAIGPTModelTester(self ) _UpperCamelCase : int = ConfigTester(self, config_class=lowerCAmelCase__, n_embd=3_7 ) def snake_case ( self : Optional[int] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def snake_case ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _a ( unittest.TestCase ): @slow def snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) _UpperCamelCase : str = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=lowerCAmelCase__ ) # the president is _UpperCamelCase : Optional[int] = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCamelCase : Union[str, Any] = model.generate(lowerCAmelCase__, do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist(), lowerCAmelCase__ )
128
1
'''simple docstring''' from __future__ import annotations from typing import Any def __snake_case( _lowerCAmelCase ) -> int: if not postfix_notation: return 0 snake_case__ : Tuple = {"""+""", """-""", """*""", """/"""} snake_case__ : list[Any] = [] for token in postfix_notation: if token in operations: snake_case__ , snake_case__ : Optional[int] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowerCAmelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
1
import glob import os import random from string import ascii_lowercase, digits import cva _lowerCAmelCase : Optional[Any] = '''''' _lowerCAmelCase : List[str] = '''''' _lowerCAmelCase : Dict = '''''' _lowerCAmelCase : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __snake_case ( ) -> None: A_ , A_ : List[Any] = get_dataset(_lowerCAmelCase , _lowerCAmelCase ) print("Processing..." ) A_ , A_ , A_ : List[str] = update_image_and_anno(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for index, image in enumerate(_lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A_ : Union[str, Any] = random_chars(32 ) A_ : Tuple = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] A_ : int = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" , _lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Success {index+1}/{len(_lowerCAmelCase )} with {file_name}" ) A_ : List[Any] = [] for anno in new_annos[index]: A_ : Union[str, Any] = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(_lowerCAmelCase ) with open(f"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> tuple[list, list]: A_ : str = [] A_ : Any = [] for label_file in glob.glob(os.path.join(_lowerCAmelCase , "*.txt" ) ): A_ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCAmelCase ) as in_file: A_ : Any = in_file.readlines() A_ : Optional[Any] = os.path.join(_lowerCAmelCase , f"{label_name}.jpg" ) A_ : List[Any] = [] for obj_list in obj_lists: A_ : int = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowerCAmelCase ) labels.append(_lowerCAmelCase ) return img_paths, labels def __snake_case ( _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: A_ : Tuple = [] A_ : int = [] A_ : Optional[int] = [] for idx in range(len(_lowerCAmelCase ) ): A_ : Optional[int] = [] A_ : Optional[int] = img_list[idx] path_list.append(_lowerCAmelCase ) A_ : Union[str, Any] = anno_list[idx] A_ : int = cva.imread(_lowerCAmelCase ) if flip_type == 1: A_ : Optional[Any] = cva.flip(_lowerCAmelCase , _lowerCAmelCase ) for bbox in img_annos: A_ : int = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: A_ : Union[str, Any] = cva.flip(_lowerCAmelCase , _lowerCAmelCase ) for bbox in img_annos: A_ : Any = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowerCAmelCase ) new_imgs_list.append(_lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __snake_case ( _lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" A_ : Optional[Any] = ascii_lowercase + digits return "".join(random.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
70
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger('''transformers.models.speecht5''') _lowerCAmelCase : int = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } _lowerCAmelCase : str = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } _lowerCAmelCase : int = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } _lowerCAmelCase : Union[str, Any] = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } _lowerCAmelCase : Union[str, Any] = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } _lowerCAmelCase : int = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } _lowerCAmelCase : Any = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } _lowerCAmelCase : List[str] = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } _lowerCAmelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _lowerCAmelCase : Dict = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Tuple = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] _lowerCAmelCase : Tuple = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] _lowerCAmelCase : int = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] _lowerCAmelCase : Optional[int] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ) -> Optional[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : Tuple = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Dict = value elif weight_type == "weight_g": A_ : int = value elif weight_type == "weight_v": A_ : str = value elif weight_type == "bias": A_ : int = value elif weight_type == "running_mean": A_ : str = value elif weight_type == "running_var": A_ : Any = value elif weight_type == "num_batches_tracked": A_ : str = value else: A_ : int = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> Union[str, Any]: for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_ , A_ : Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: A_ : Tuple = [] if task == "s2t": A_ : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder A_ : str = MAPPING_S2T A_ : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": A_ : Optional[int] = None A_ : Dict = MAPPING_T2S A_ : Any = IGNORE_KEYS_T2S elif task == "s2s": A_ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder A_ : Dict = MAPPING_S2S A_ : List[str] = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase , _lowerCAmelCase ): logger.info(f"{name} was ignored" ) continue A_ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: A_ , A_ : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: A_ : int = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: A_ : str = True if "*" in mapped_key: A_ : List[str] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : Optional[int] = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : Union[str, Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Tuple = "bias" elif "weight" in name: A_ : List[Any] = "weight" elif "running_mean" in name: A_ : Union[str, Any] = "running_mean" elif "running_var" in name: A_ : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: A_ : List[Any] = "num_batches_tracked" else: A_ : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> List[Any]: A_ : int = full_name.split("conv_layers." )[-1] A_ : Optional[Any] = name.split("." ) A_ : List[Any] = int(items[0] ) A_ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , ) -> Optional[Any]: if config_path is not None: A_ : Dict = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: A_ : Optional[int] = SpeechTaConfig() if task == "s2t": A_ : Optional[Any] = config.max_text_positions A_ : Optional[int] = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": A_ : str = 1876 A_ : List[str] = 600 A_ : List[str] = config.max_speech_positions A_ : Tuple = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": A_ : Optional[int] = 1876 A_ : int = config.max_speech_positions A_ : Union[str, Any] = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f"Unknown task name: {task}" ) if vocab_path: A_ : int = SpeechTaTokenizer(_lowerCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it A_ : str = AddedToken("<mask>" , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) A_ : int = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) A_ : int = SpeechTaFeatureExtractor() A_ : Optional[Any] = SpeechTaProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) A_ : Union[str, Any] = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , _lowerCAmelCase , _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
70
1
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _A : Optional[Any] =logging.get_logger(__name__) _A : int ={name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: lowerCamelCase__ : Optional[Any] = TOKENIZER_CLASSES else: lowerCamelCase__ : Dict = {tokenizer_name: getattr(UpperCamelCase , tokenizer_name + """Fast""" )} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: lowerCamelCase__ : Tuple = TOKENIZER_CLASSES[tokenizer_name] lowerCamelCase__ : Optional[int] = True if checkpoint_name is None: lowerCamelCase__ : Any = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCamelCase__ : Any = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer lowerCamelCase__ : List[str] = tokenizer_class.from_pretrained(UpperCamelCase , force_download=UpperCamelCase ) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: lowerCamelCase__ , lowerCamelCase__ : List[str] = checkpoint.split("""/""" ) lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , UpperCamelCase ) elif add_prefix: lowerCamelCase__ : Optional[int] = checkpoint lowerCamelCase__ : Optional[Any] = dump_path else: lowerCamelCase__ : str = None lowerCamelCase__ : Union[str, Any] = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCamelCase__ : Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCamelCase__ : Optional[Any] = file_path.split(UpperCamelCase )[-1][0] if next_char == "/": lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[Any] = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) lowerCamelCase__ : Any = tokenizer.save_pretrained( UpperCamelCase , legacy_format=UpperCamelCase , filename_prefix=UpperCamelCase ) logger.info(f'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(UpperCamelCase ) logger.info(f'''=> removing {file_name}''' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) _A : Optional[int] =parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
41
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase = 1 , UpperCAmelCase = 1000 ): lowercase__ : Dict = 1 lowercase__ : Dict = 0 for divide_by_number in range(UpperCAmelCase , digit + 1 ): lowercase__ : list[int] = [] lowercase__ : Union[str, Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase ): lowercase__ : Dict = len(UpperCAmelCase ) lowercase__ : Optional[Any] = divide_by_number else: has_been_divided.append(UpperCAmelCase ) lowercase__ : int = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
198
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
132
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A_ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) A_ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = """https://pypi.org/pypi/diffusers/json""" _snake_case : Optional[int] = json.loads(request.urlopen(snake_case__ ).read() )["""releases"""].keys() return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : str = Path(snake_case__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _snake_case : List[Any] = Path(snake_case__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : List[Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : Union[str, Any] = f.read() # Imports of the form `import .xxx` _snake_case : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" _snake_case : Tuple = False _snake_case : Any = [module_file] _snake_case : str = [] # Let's recurse through all relative imports while not no_change: _snake_case : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case__ ) ) _snake_case : Dict = Path(snake_case__ ).parent _snake_case : Dict = [str(module_path / m ) for m in new_imports] _snake_case : Tuple = [f for f in new_import_files if f not in all_relative_imports] _snake_case : str = [F"{f}.py" for f in new_import_files] _snake_case : Dict = len(snake_case__ ) == 0 all_relative_imports.extend(snake_case__ ) return all_relative_imports def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : int = f.read() # Imports of the form `import xxx` _snake_case : Tuple = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Only keep the top-level module _snake_case : Tuple = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all _snake_case : Any = list(set(snake_case__ ) ) _snake_case : int = [] for imp in imports: try: importlib.import_module(snake_case__ ) except ImportError: missing_packages.append(snake_case__ ) if len(snake_case__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`" ) return get_relative_imports(snake_case__ ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = module_path.replace(os.path.sep , """.""" ) _snake_case : int = importlib.import_module(snake_case__ ) if class_name is None: return find_pipeline_class(snake_case__ ) return getattr(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" from ..pipelines import DiffusionPipeline _snake_case : Tuple = dict(inspect.getmembers(snake_case__ , inspect.isclass ) ) _snake_case : Dict = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) _snake_case : List[str] = cls return pipeline_class def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ): """simple docstring""" _snake_case : List[str] = str(snake_case__ ) _snake_case : Optional[Any] = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ): _snake_case : List[str] = module_file_or_url _snake_case : Optional[Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: _snake_case : Tuple = get_diffusers_versions() # cut ".dev0" _snake_case : Union[str, Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: _snake_case : int = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: _snake_case : Optional[Any] = F"v{revision}" elif revision == "main": _snake_case : int = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub _snake_case : List[str] = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ ) try: _snake_case : Dict = cached_download( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Union[str, Any] = """git""" _snake_case : str = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached _snake_case : str = hf_hub_download( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Optional[Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment _snake_case : int = check_imports(snake_case__ ) # Now we move the module inside our cached dynamic modules. _snake_case : Optional[int] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case__ ) _snake_case : Any = Path(snake_case__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case__ , submodule_path / module_file ) for module_needed in modules_needed: _snake_case : Any = F"{module_needed}.py" shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case__ , snake_case__ ): _snake_case : Any = use_auth_token elif use_auth_token is True: _snake_case : int = HfFolder.get_token() else: _snake_case : Optional[int] = None _snake_case : int = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _snake_case : int = submodule_path / commit_hash _snake_case : Optional[int] = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case__ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case__ , F"{module_needed}.py" , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return os.path.join(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : Tuple , ): """simple docstring""" _snake_case : Union[str, Any] = get_cached_module_file( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return get_class_in_module(snake_case__ , final_module.replace(""".py""" , """""" ) )
132
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class snake_case__(UpperCAmelCase_ ): """simple docstring""" lowercase_ = """ctrl""" lowercase_ = ["""past_key_values"""] lowercase_ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=246_534 , SCREAMING_SNAKE_CASE : Tuple=256 , SCREAMING_SNAKE_CASE : int=1_280 , SCREAMING_SNAKE_CASE : Tuple=8_192 , SCREAMING_SNAKE_CASE : Optional[int]=48 , SCREAMING_SNAKE_CASE : Dict=16 , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1E-6 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : Optional[Any]=True , **SCREAMING_SNAKE_CASE : Dict , ): lowercase__ : List[str] = vocab_size lowercase__ : Optional[Any] = n_positions lowercase__ : Dict = n_embd lowercase__ : Dict = n_layer lowercase__ : List[Any] = n_head lowercase__ : int = dff lowercase__ : Union[str, Any] = resid_pdrop lowercase__ : Optional[int] = embd_pdrop lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : Dict = initializer_range lowercase__ : Any = use_cache super().__init__(**__lowercase )
130
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase = 256 class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = ["""melgan"""] def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> None: super().__init__() # From MELGAN __UpperCamelCase :int = math.log(1E-5) # Matches MelGAN training. __UpperCamelCase :int = 4.0 # Largest value for most examples __UpperCamelCase :str = 128 self.register_modules( notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Dict: __UpperCamelCase , __UpperCamelCase :str = output_range if clip: __UpperCamelCase :Union[str, Any] = torch.clip(__lowercase , self.min_value , self.max_value) # Scale to [0, 1]. __UpperCamelCase :Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Optional[int]: __UpperCamelCase , __UpperCamelCase :int = input_range __UpperCamelCase :Optional[int] = torch.clip(__lowercase , __lowercase , __lowercase) if clip else outputs # Scale to [0, 1]. __UpperCamelCase :List[str] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :List[str] = input_tokens > 0 __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.notes_encoder( encoder_input_tokens=__lowercase , encoder_inputs_mask=__lowercase) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.continuous_encoder( encoder_inputs=__lowercase , encoder_inputs_mask=__lowercase) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> str: __UpperCamelCase :Optional[int] = noise_time if not torch.is_tensor(__lowercase): __UpperCamelCase :str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(__lowercase) and len(timesteps.shape) == 0: __UpperCamelCase :Dict = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase :List[str] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) __UpperCamelCase :Tuple = self.decoder( encodings_and_masks=__lowercase , decoder_input_tokens=__lowercase , decoder_noise_time=__lowercase) return logits @torch.no_grad() def __call__( self , __lowercase , __lowercase = None , __lowercase = 100 , __lowercase = True , __lowercase = "numpy" , __lowercase = None , __lowercase = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowercase , __lowercase) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowercase)}.""") __UpperCamelCase :Union[str, Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) __UpperCamelCase :Union[str, Any] = np.zeros([1, 0, self.n_dims] , np.floataa) __UpperCamelCase :Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) for i, encoder_input_tokens in enumerate(__lowercase): if i == 0: __UpperCamelCase :int = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. __UpperCamelCase :int = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCamelCase :Tuple = ones __UpperCamelCase :Optional[Any] = self.scale_features( __lowercase , output_range=[-1.0, 1.0] , clip=__lowercase) __UpperCamelCase :int = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=__lowercase , continuous_mask=__lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCamelCase :int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowercase) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): __UpperCamelCase :Optional[int] = self.decode( encodings_and_masks=__lowercase , input_tokens=__lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __UpperCamelCase :int = self.scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase).prev_sample __UpperCamelCase :Tuple = self.scale_to_features(__lowercase , input_range=[-1.0, 1.0]) __UpperCamelCase :List[Any] = mel[:1] __UpperCamelCase :Optional[Any] = mel.cpu().float().numpy() __UpperCamelCase :Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowercase , __lowercase) logger.info('''Generated segment''' , __lowercase) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''') elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''') if output_type == "numpy": __UpperCamelCase :Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: __UpperCamelCase :List[str] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowercase)
43
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: complex , lowerCAmelCase: str = "x" , lowerCAmelCase: float = 10**-10 , lowerCAmelCase: int = 1 , )-> complex: _snake_case : Optional[int] = symbols(lowerCAmelCase ) _snake_case : Tuple = lambdify(lowerCAmelCase , lowerCAmelCase ) _snake_case : Union[str, Any] = lambdify(lowerCAmelCase , diff(lowerCAmelCase , lowerCAmelCase ) ) _snake_case : int = starting_point while True: if diff_function(lowerCAmelCase ) != 0: _snake_case : Optional[Any] = prev_guess - multiplicity * func(lowerCAmelCase ) / diff_function( lowerCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _snake_case : Dict = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
360
from __future__ import annotations lowerCAmelCase_ = [] def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int )-> bool: for i in range(len(lowerCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(lowerCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , len(lowerCAmelCase ) ) ): if board[i][j] == 1: return False return True def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int )-> bool: if row >= len(lowerCAmelCase ): solution.append(lowerCAmelCase ) printboard(lowerCAmelCase ) print() return True for i in range(len(lowerCAmelCase ) ): if is_safe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _snake_case : Dict = 1 solve(lowerCAmelCase , row + 1 ) _snake_case : str = 0 return False def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] )-> None: for i in range(len(lowerCAmelCase ) ): for j in range(len(lowerCAmelCase ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) lowerCAmelCase_ = 8 lowerCAmelCase_ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
260
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : List[Any] =logging.getLogger(__name__) UpperCAmelCase : Dict =50 # max width of layer names UpperCAmelCase : Dict =70 # max width of quantizer names def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = parser.add_argument_group("quant_trainer arguments") group.add_argument("--wprec" , type=_lowerCAmelCase , default=8 , help="weight precision") group.add_argument("--aprec" , type=_lowerCAmelCase , default=8 , help="activation precision") group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling") group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers") group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers") group.add_argument("--quant-disable-keyword" , type=_lowerCAmelCase , nargs="+" , help="disable quantizers by keyword") group.add_argument("--quant-disable-layer-module" , type=_lowerCAmelCase , help="disable quantizers by keyword under layer.") group.add_argument("--quant-enable-layer-module" , type=_lowerCAmelCase , help="enable quantizers by keyword under layer") group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use") group.add_argument("--percentile" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="percentile for PercentileCalibrator") group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv") group.add_argument("--clip-gelu" , metavar="N" , type=_lowerCAmelCase , help="clip gelu output maximum value to N") group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _lowerCAmelCase (_lowerCAmelCase): if args.calibrator == "max": UpperCamelCase_ = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator") UpperCamelCase_ = "histogram" elif args.calibrator == "mse": UpperCamelCase_ = "histogram" else: raise ValueError(f"""Invalid calibrator {args.calibrator}""") UpperCamelCase_ = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCAmelCase) UpperCamelCase_ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,))) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCAmelCase) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False): logger.info("Configuring Model for Quantization") logger.info(f"""using quantization package {pytorch_quantization.__file__}""") if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCAmelCase , ["embeddings"] , which="weight" , _disabled=_lowerCAmelCase) if args.quant_disable: set_quantizer_by_name(_lowerCAmelCase , [""] , _disabled=_lowerCAmelCase) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCAmelCase , args.quant_disable_keyword , _disabled=_lowerCAmelCase) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCAmelCase , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=_lowerCAmelCase) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCAmelCase , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=_lowerCAmelCase) if args.recalibrate_weights: recalibrate_weights(_lowerCAmelCase) if args.fuse_qkv: fuse_qkv(_lowerCAmelCase , _lowerCAmelCase) if args.clip_gelu: clip_gelu(_lowerCAmelCase , args.clip_gelu) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase): logger.info("Enabling Calibration") for name, module in model.named_modules(): if name.endswith("_quantizer"): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""") def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): logger.info("Loading calibrated amax") for name, module in model.named_modules(): if name.endswith("_quantizer"): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): def fusea(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): for mod in [qq, qk, qv]: if not hasattr(_lowerCAmelCase , "_amax"): print(" WARNING: NO AMAX BUFFER") return UpperCamelCase_ = qq._amax.detach().item() UpperCamelCase_ = qk._amax.detach().item() UpperCamelCase_ = qv._amax.detach().item() UpperCamelCase_ = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) qq._amax.fill_(_lowerCAmelCase) qk._amax.fill_(_lowerCAmelCase) qv._amax.fill_(_lowerCAmelCase) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""") for name, mod in model.named_modules(): if name.endswith(".attention.self"): logger.info(f"""FUSE_QKV: {name:{name_width}}""") fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): for name, mod in model.named_modules(): if name.endswith(".output.dense") and not name.endswith("attention.output.dense"): UpperCamelCase_ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCAmelCase) UpperCamelCase_ = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""") def _lowerCAmelCase (_lowerCAmelCase): for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , "_weight_quantizer") and mod._weight_quantizer.axis is not None: UpperCamelCase_ = mod.weight.shape[0] UpperCamelCase_ = mod._weight_quantizer._amax.detach() UpperCamelCase_ = torch.ones(_lowerCAmelCase , dtype=amax.dtype , device=amax.device) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""") def _lowerCAmelCase (_lowerCAmelCase): for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , "_weight_quantizer"): if not hasattr(mod.weight_quantizer , "_amax"): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER") continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCamelCase_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis) UpperCamelCase_ = set(range(len(mod.weight.size()))) - axis_set UpperCamelCase_ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCAmelCase , keepdims=_lowerCAmelCase).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""") UpperCamelCase_ = amax def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=25 , _lowerCAmelCase=1_80 , _lowerCAmelCase=None): if ignore is None: UpperCamelCase_ = [] elif not isinstance(_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [ignore] UpperCamelCase_ = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCAmelCase , "weight"): continue UpperCamelCase_ = max(_lowerCAmelCase , len(_lowerCAmelCase)) for name, mod in model.named_modules(): UpperCamelCase_ = getattr(_lowerCAmelCase , "_input_quantizer" , _lowerCAmelCase) UpperCamelCase_ = getattr(_lowerCAmelCase , "_weight_quantizer" , _lowerCAmelCase) if not hasattr(_lowerCAmelCase , "weight"): continue if type(_lowerCAmelCase) in ignore: continue if [True for s in ignore if type(_lowerCAmelCase) is str and s in name]: continue UpperCamelCase_ = f"""Act:{input_q.extra_repr()}""" UpperCamelCase_ = f"""Wgt:{weight_q.extra_repr()}""" UpperCamelCase_ = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(_lowerCAmelCase) <= line_width: logger.info(_lowerCAmelCase) else: logger.info(f"""{name:{name_width}} {act_str}""") logger.info(f"""{' ':{name_width}} {wgt_str}""") def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = 0 for name, mod in model.named_modules(): if isinstance(_lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer): print(f"""{name:80} {mod}""") count += 1 print(f"""{count} TensorQuantizers found in model""") def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if quantizer_mod is not None: assert hasattr(_lowerCAmelCase , _lowerCAmelCase) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) else: logger.warning(f"""{name} has no {quantizer}""") def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="both" , **_lowerCAmelCase): UpperCamelCase_ = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(_lowerCAmelCase , _lowerCAmelCase , "_input_quantizer" , _lowerCAmelCase , _lowerCAmelCase) if which in ["weight", "both"]: set_quantizer(_lowerCAmelCase , _lowerCAmelCase , "_weight_quantizer" , _lowerCAmelCase , _lowerCAmelCase) logger.info(_lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase): for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , "_input_quantizer") or hasattr(_lowerCAmelCase , "_weight_quantizer"): for n in names: if re.search(_lowerCAmelCase , _lowerCAmelCase): set_quantizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase) elif name.endswith("_quantizer"): for n in names: if re.search(_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) logger.info(_lowerCAmelCase)
128
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase (a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = AltDiffusionPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase_ = CLIPTextModel(snake_case__ ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase_ = 77 UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(snake_case__ ) else: UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = "A photo of an astronaut" UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case__ , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
128
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : List[Any] = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """unispeech""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : List[Any]=3_2 , SCREAMING_SNAKE_CASE_ : Dict=7_6_8 , SCREAMING_SNAKE_CASE_ : Tuple=1_2 , SCREAMING_SNAKE_CASE_ : int=1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=1E-5 , SCREAMING_SNAKE_CASE_ : Any="group" , SCREAMING_SNAKE_CASE_ : str="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE_ : List[Any]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_ : int=(1_0, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_2_8 , SCREAMING_SNAKE_CASE_ : List[str]=1_6 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=0.05 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_0 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : int=0.0 , SCREAMING_SNAKE_CASE_ : Any=1_0 , SCREAMING_SNAKE_CASE_ : Any=0 , SCREAMING_SNAKE_CASE_ : List[str]=3_2_0 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Any=1_0_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE_ : str=2_5_6 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]="mean" , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : int=2_5_6 , SCREAMING_SNAKE_CASE_ : int=8_0 , SCREAMING_SNAKE_CASE_ : List[Any]=0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Dict=0.5 , **SCREAMING_SNAKE_CASE_ : Any , ): super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : int = feat_extract_norm lowerCAmelCase_ : List[str] = feat_extract_activation lowerCAmelCase_ : List[Any] = list(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = list(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = conv_bias lowerCAmelCase_ : Optional[Any] = num_conv_pos_embeddings lowerCAmelCase_ : Any = num_conv_pos_embedding_groups lowerCAmelCase_ : Optional[Any] = len(self.conv_dim ) lowerCAmelCase_ : Optional[int] = num_hidden_layers lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : str = hidden_dropout lowerCAmelCase_ : str = attention_dropout lowerCAmelCase_ : Tuple = activation_dropout lowerCAmelCase_ : str = feat_proj_dropout lowerCAmelCase_ : Optional[Any] = final_dropout lowerCAmelCase_ : int = layerdrop lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Dict = num_ctc_classes lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : Union[str, Any] = do_stable_layer_norm lowerCAmelCase_ : Any = use_weighted_layer_sum lowerCAmelCase_ : str = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ : Tuple = apply_spec_augment lowerCAmelCase_ : str = mask_time_prob lowerCAmelCase_ : Optional[int] = mask_time_length lowerCAmelCase_ : Tuple = mask_time_min_masks lowerCAmelCase_ : int = mask_feature_prob lowerCAmelCase_ : Dict = mask_feature_length lowerCAmelCase_ : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase_ : str = num_codevectors_per_group lowerCAmelCase_ : Optional[int] = num_codevector_groups lowerCAmelCase_ : Any = contrastive_logits_temperature lowerCAmelCase_ : int = feat_quantizer_dropout lowerCAmelCase_ : List[Any] = num_negatives lowerCAmelCase_ : str = codevector_dim lowerCAmelCase_ : Union[str, Any] = proj_codevector_dim lowerCAmelCase_ : Optional[int] = diversity_loss_weight # ctc loss lowerCAmelCase_ : Dict = ctc_loss_reduction lowerCAmelCase_ : Optional[Any] = ctc_zero_infinity # pretraining loss lowerCAmelCase_ : Optional[int] = replace_prob @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
289
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowercase__ : Tuple = datasets.logging.get_logger(__name__) lowercase__ : List[Any] = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ lowercase__ : Tuple = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ lowercase__ : List[Any] = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ lowercase__ : List[Any] = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : str ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) lowerCAmelCase_ : List[Any] = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: lowerCAmelCase_ : List[Any] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowerCAmelCase_ : Tuple = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer lowerCAmelCase_ : List[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowerCAmelCase_ : List[str] = score.BleurtScorer(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : Tuple = self.scorer.score(references=SCREAMING_SNAKE_CASE_ , candidates=SCREAMING_SNAKE_CASE_ ) return {"scores": scores}
289
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Union[str, Any] =logging.get_logger(__name__) A__ : str ={ '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class UpperCAmelCase ( snake_case_ ): _lowercase: List[Any] = '''git_vision_model''' def __init__( self : Optional[Any] , __snake_case : List[Any]=7_68 , __snake_case : Dict=30_72 , __snake_case : Dict=12 , __snake_case : List[Any]=12 , __snake_case : int=3 , __snake_case : List[Any]=2_24 , __snake_case : Optional[Any]=16 , __snake_case : Optional[Any]="quick_gelu" , __snake_case : Tuple=1E-5 , __snake_case : Dict=0.0 , __snake_case : Any=0.02 , **__snake_case : Optional[int] , ) -> str: super().__init__(**__snake_case ) _lowerCAmelCase = hidden_size _lowerCAmelCase = intermediate_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = image_size _lowerCAmelCase = initializer_range _lowerCAmelCase = attention_dropout _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = hidden_act @classmethod def lowercase__ ( cls : Dict , __snake_case : Union[str, os.PathLike] , **__snake_case : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__snake_case ) _lowerCAmelCase , _lowerCAmelCase = cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": _lowerCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__snake_case , **__snake_case ) class UpperCAmelCase ( snake_case_ ): _lowercase: List[str] = '''git''' def __init__( self : int , __snake_case : Dict=None , __snake_case : List[str]=3_05_22 , __snake_case : str=7_68 , __snake_case : Optional[int]=6 , __snake_case : Dict=12 , __snake_case : Dict=30_72 , __snake_case : Optional[Any]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=10_24 , __snake_case : List[Any]=0.02 , __snake_case : int=1E-1_2 , __snake_case : int=0 , __snake_case : Tuple="absolute" , __snake_case : Tuple=True , __snake_case : str=False , __snake_case : str=1_01 , __snake_case : Dict=1_02 , __snake_case : str=None , **__snake_case : List[Any] , ) -> Union[str, Any]: super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , pad_token_id=__snake_case , **__snake_case ) if vision_config is None: _lowerCAmelCase = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) _lowerCAmelCase = GitVisionConfig(**__snake_case ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = tie_word_embeddings _lowerCAmelCase = num_image_with_embedding _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id def lowercase__ ( self : str ) -> Optional[Any]: _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.vision_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
70
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_encoder_blocks""" ) ) class UpperCAmelCase : def __init__( self : Optional[int] , __snake_case : str , __snake_case : Dict=13 , __snake_case : str=64 , __snake_case : Dict=3 , __snake_case : Dict=4 , __snake_case : Tuple=[2, 2, 2, 2] , __snake_case : int=[8, 4, 2, 1] , __snake_case : List[str]=[16, 32, 64, 1_28] , __snake_case : Optional[Any]=[1, 4, 8, 16] , __snake_case : Dict=[1, 2, 4, 8] , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : int="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Tuple=0.02 , __snake_case : Union[str, Any]=3 , __snake_case : Tuple=None , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_encoder_blocks _lowerCAmelCase = sr_ratios _lowerCAmelCase = depths _lowerCAmelCase = hidden_sizes _lowerCAmelCase = downsampling_rates _lowerCAmelCase = num_attention_heads _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = scope def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ) -> List[str]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> Tuple: _lowerCAmelCase = SegformerModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = _lowerCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]: _lowerCAmelCase = self.num_labels _lowerCAmelCase = SegformerForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> List[str]: _lowerCAmelCase = 1 _lowerCAmelCase = SegformerForSemanticSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__snake_case ) _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase: Tuple = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase: Tuple = True _lowercase: Union[str, Any] = False _lowercase: Dict = False _lowercase: Optional[Any] = False def lowercase__ ( self : Tuple ) -> Any: _lowerCAmelCase = SegformerModelTester(self ) _lowerCAmelCase = SegformerConfigTester(self , config_class=__snake_case ) def lowercase__ ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Dict ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__snake_case ) def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__snake_case ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> Union[str, Any]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowercase__ ( self : Optional[int] ) -> int: pass def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions _lowerCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(__snake_case ) , __snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _lowerCAmelCase = (self.model_tester.image_size // 32) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _lowerCAmelCase = len(__snake_case ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 1 , len(__snake_case ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) _lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowercase__ ( self : int ) -> List[str]: def check_hidden_states_output(__snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] ): _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Optional[Any] ) -> Any: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(__snake_case ): continue _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.train() _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = model(**__snake_case ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Tuple ) -> Dict: pass @slow def lowercase__ ( self : str ) -> Optional[int]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SegformerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[Any] ) -> Any: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(__snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-1 ) ) @slow def lowercase__ ( self : Any ) -> str: # only resize + normalize _lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) _lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __snake_case ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = outputs.logits.detach().cpu() _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) _lowerCAmelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) _lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) _lowerCAmelCase = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , __snake_case )
70
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCamelCase_ = logging.get_logger(__name__) class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = ['''input_features''', '''attention_mask'''] def __init__( self : Tuple , __lowerCamelCase : List[str]=8_0 , __lowerCamelCase : Dict=1_6_0_0_0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : int=1_0 , __lowerCamelCase : Optional[Any]=2_5 , __lowerCamelCase : Tuple="hamming_window" , __lowerCamelCase : Dict=3_2_7_6_8.0 , __lowerCamelCase : List[Any]=0.9_7 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=False , **__lowerCamelCase : str , ): """simple docstring""" super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = feature_size _SCREAMING_SNAKE_CASE = sampling_rate _SCREAMING_SNAKE_CASE = padding_value _SCREAMING_SNAKE_CASE = hop_length _SCREAMING_SNAKE_CASE = win_length _SCREAMING_SNAKE_CASE = frame_signal_scale _SCREAMING_SNAKE_CASE = preemphasis_coeff _SCREAMING_SNAKE_CASE = mel_floor _SCREAMING_SNAKE_CASE = normalize_means _SCREAMING_SNAKE_CASE = normalize_vars _SCREAMING_SNAKE_CASE = win_function _SCREAMING_SNAKE_CASE = return_attention_mask _SCREAMING_SNAKE_CASE = win_length * sampling_rate // 1_0_0_0 _SCREAMING_SNAKE_CASE = hop_length * sampling_rate // 1_0_0_0 _SCREAMING_SNAKE_CASE = optimal_fft_length(self.sample_size ) _SCREAMING_SNAKE_CASE = (self.n_fft // 2) + 1 def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : np.array ): """simple docstring""" if self.win_function == "hamming_window": _SCREAMING_SNAKE_CASE = window_function(window_length=self.sample_size , name=self.win_function , periodic=__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = window_function(window_length=self.sample_size , name=self.win_function ) _SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _SCREAMING_SNAKE_CASE = spectrogram( one_waveform * self.frame_signal_scale , window=__lowerCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__lowerCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=__lowerCamelCase , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ): """simple docstring""" # make sure we normalize float32 arrays if self.normalize_means: _SCREAMING_SNAKE_CASE = x[:input_length].mean(axis=0 ) _SCREAMING_SNAKE_CASE = np.subtract(__lowerCamelCase , __lowerCamelCase ) if self.normalize_vars: _SCREAMING_SNAKE_CASE = x[:input_length].std(axis=0 ) _SCREAMING_SNAKE_CASE = np.divide(__lowerCamelCase , __lowerCamelCase ) if input_length < x.shape[0]: _SCREAMING_SNAKE_CASE = padding_value # make sure array is in float32 _SCREAMING_SNAKE_CASE = x.astype(np.floataa ) return x def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : List[np.ndarray] , __lowerCamelCase : Optional[np.ndarray] = None ): """simple docstring""" _SCREAMING_SNAKE_CASE = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__lowerCamelCase , __lowerCamelCase , self.padding_value ) for x, n in zip(__lowerCamelCase , __lowerCamelCase )] def __call__( self : Optional[int] , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : int , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _SCREAMING_SNAKE_CASE = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): _SCREAMING_SNAKE_CASE = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _SCREAMING_SNAKE_CASE = [raw_speech] # extract fbank features _SCREAMING_SNAKE_CASE = [self._extract_mfsc_features(__lowerCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding _SCREAMING_SNAKE_CASE = BatchFeature({"input_features": features} ) _SCREAMING_SNAKE_CASE = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) # make sure list is in array format _SCREAMING_SNAKE_CASE = padded_inputs.get("input_features" ) if isinstance(input_features[0] , __lowerCamelCase ): _SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] _SCREAMING_SNAKE_CASE = padded_inputs.get("attention_mask" ) if attention_mask is not None: _SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _SCREAMING_SNAKE_CASE = ( np.array(__lowerCamelCase , dtype=np.intaa ) if self._get_padding_strategies(__lowerCamelCase , max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _SCREAMING_SNAKE_CASE = self.normalize( padded_inputs["input_features"] , attention_mask=__lowerCamelCase ) if return_tensors is not None: _SCREAMING_SNAKE_CASE = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
360
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''efficientnet''' def __init__( self : Optional[Any] , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 6_0_0 , __lowerCamelCase : float = 2.0 , __lowerCamelCase : float = 3.1 , __lowerCamelCase : int = 8 , __lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase : List[int] = [] , __lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase : float = 0.2_5 , __lowerCamelCase : str = "swish" , __lowerCamelCase : int = 2_5_6_0 , __lowerCamelCase : str = "mean" , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 0.0_0_1 , __lowerCamelCase : float = 0.9_9 , __lowerCamelCase : float = 0.5 , __lowerCamelCase : float = 0.2 , **__lowerCamelCase : Tuple , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = width_coefficient _SCREAMING_SNAKE_CASE = depth_coefficient _SCREAMING_SNAKE_CASE = depth_divisor _SCREAMING_SNAKE_CASE = kernel_sizes _SCREAMING_SNAKE_CASE = in_channels _SCREAMING_SNAKE_CASE = out_channels _SCREAMING_SNAKE_CASE = depthwise_padding _SCREAMING_SNAKE_CASE = strides _SCREAMING_SNAKE_CASE = num_block_repeats _SCREAMING_SNAKE_CASE = expand_ratios _SCREAMING_SNAKE_CASE = squeeze_expansion_ratio _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dim _SCREAMING_SNAKE_CASE = pooling_type _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = batch_norm_eps _SCREAMING_SNAKE_CASE = batch_norm_momentum _SCREAMING_SNAKE_CASE = dropout_rate _SCREAMING_SNAKE_CASE = drop_connect_rate _SCREAMING_SNAKE_CASE = sum(__lowerCamelCase ) * 4 class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return 1e-5
111
0
"""simple docstring""" import sys a :int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : List[Any] = 1 for digit in s: product *= int(__lowerCAmelCase ) return product def _lowercase ( __lowerCAmelCase = N ) -> int: SCREAMING_SNAKE_CASE__ : Union[str, Any] = -sys.maxsize - 1 SCREAMING_SNAKE_CASE__ : Tuple = n[:13] SCREAMING_SNAKE_CASE__ : Optional[int] = 13 while cur_index < len(__lowerCAmelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): SCREAMING_SNAKE_CASE__ : Optional[int] = substr[1:] + n[cur_index] cur_index += 1 else: SCREAMING_SNAKE_CASE__ : Optional[int] = max(__lowerCAmelCase , str_eval(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
132
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a :List[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _lowercase ( __lowerCAmelCase ) -> List[str]: for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ : Union[str, Any] = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: SCREAMING_SNAKE_CASE__ : str = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = PegasusConfig(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = PegasusForConditionalGeneration(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch_model.model.state_dict() SCREAMING_SNAKE_CASE__ : Any = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE__ : Tuple = v.T SCREAMING_SNAKE_CASE__ : Any = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE__ : Optional[int] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : Any = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : int = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _lowercase ( __lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: SCREAMING_SNAKE_CASE__ : List[Any] = tf.train.list_variables(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Any = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): SCREAMING_SNAKE_CASE__ : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE__ : str = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = array return tf_weights def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: # save tokenizer first SCREAMING_SNAKE_CASE__ : Any = Path(__lowerCAmelCase ).parent.name SCREAMING_SNAKE_CASE__ : Dict = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] SCREAMING_SNAKE_CASE__ : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tf_weights_as_numpy(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": SCREAMING_SNAKE_CASE__ : Tuple = task_specific_params SCREAMING_SNAKE_CASE__ : str = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": a :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") a :Optional[Any] = parser.parse_args() if args.save_dir is None: a :List[Any] = Path(args.tf_ckpt_path).parent.name a :Optional[Any] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
132
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a__ : Optional[int] = logging.get_logger(__name__) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __SCREAMING_SNAKE_CASE = json.loads(SCREAMING_SNAKE_CASE__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __SCREAMING_SNAKE_CASE = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __SCREAMING_SNAKE_CASE = json.loads(SCREAMING_SNAKE_CASE__ ) if not mpi_options.get("sagemaker_mpi_enabled" , SCREAMING_SNAKE_CASE__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCamelCase_ ( lowerCamelCase_): """simple docstring""" snake_case__ : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , _UpperCAmelCase , ) @cached_property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: __SCREAMING_SNAKE_CASE = torch.device("cpu" ) __SCREAMING_SNAKE_CASE = 0 elif is_sagemaker_model_parallel_available(): __SCREAMING_SNAKE_CASE = smp.local_rank() __SCREAMING_SNAKE_CASE = torch.device("cuda" , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __SCREAMING_SNAKE_CASE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 if device.type == "cuda": torch.cuda.set_device(_UpperCAmelCase ) return device @property def UpperCAmelCase_ ( self : List[Any] ) -> int: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: return False
367
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = IFInpaintingSuperResolutionPipeline snake_case__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"}) snake_case__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=0 ) -> List[str]: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase_ ( self : str ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: self._test_save_load_local() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
195
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __A : List[str] = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
260
0
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =None __UpperCAmelCase : List[Any] =None @property def snake_case ( self ): return self.feat_extract_tester.prepare_feat_extract_dict() def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__a , "feature_size" ) ) self.assertTrue(hasattr(__a , "sampling_rate" ) ) self.assertTrue(hasattr(__a , "padding_value" ) ) def snake_case ( self ): __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__a ) == len(__a ) for x, y in zip(__a , processed_features[input_name] ) ) ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a ) __lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) __lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a ) __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) __lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def snake_case ( self ): __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a ) __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) __lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def snake_case ( self , __a=False ): def _inputs_have_equal_length(__a ): __lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(__a ) != length: return False return True def _inputs_are_equal(__a , __a ): if len(__a ) != len(__a ): return False for input_slice_a, input_slice_a in zip(__a , __a ): if not np.allclose(np.asarray(__a ) , np.asarray(__a ) , atol=1e-3 ): return False return True __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__a ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = self.feat_extract_tester.seq_length_diff __lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff __lowerCAmelCase = self.feat_extract_tester.min_seq_length __lowerCAmelCase = self.feat_extract_tester.batch_size __lowerCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __lowerCAmelCase = feat_extract.pad(__a , padding=__a ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(__a , padding="longest" ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(__a , padding="max_length" , max_length=len(speech_inputs[-1] ) ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="np" ) __lowerCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__a ): feat_extract.pad(__a , padding="max_length" )[input_name] __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=__a , return_tensors="np" ) __lowerCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__a ) ) self.assertTrue(_inputs_have_equal_length(__a ) ) self.assertTrue(_inputs_have_equal_length(__a ) ) self.assertTrue(_inputs_are_equal(__a , __a ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __lowerCAmelCase = feat_extract.pad(__a , pad_to_multiple_of=10 ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(__a , padding="longest" , pad_to_multiple_of=10 ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , pad_to_multiple_of=10 , max_length=__a ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , pad_to_multiple_of=10 , max_length=__a , return_tensors="np" , ) __lowerCAmelCase = input_a[input_name] self.assertTrue(all(len(__a ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(__a , __a ) ) __lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__a ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def snake_case ( self , __a=False ): def _inputs_have_equal_length(__a ): __lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(__a ) != length: return False return True def _inputs_are_equal(__a , __a ): if len(__a ) != len(__a ): return False for input_slice_a, input_slice_a in zip(__a , __a ): if not np.allclose(np.asarray(__a ) , np.asarray(__a ) , atol=1e-3 ): return False return True __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__a ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=__a ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(__a , padding="max_length" , max_length=len(speech_inputs[0] ) ) __lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__a ) ) self.assertFalse(_inputs_have_equal_length(__a ) ) # truncate to smallest with np __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=__a , ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) __lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__a ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__a ) ) # truncate to middle __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=__a , return_tensors="np" , ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=__a ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) __lowerCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(__a ) ) self.assertTrue(_inputs_have_equal_length(__a ) ) self.assertTrue(_inputs_are_equal(__a , __a ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__a ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a ): feat_extract.pad(__a , truncation=__a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a ): feat_extract.pad(__a , padding="longest" , truncation=__a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a ): feat_extract.pad(__a , padding="longest" , truncation=__a )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__a ): feat_extract.pad(__a , padding="max_length" , truncation=__a )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __lowerCAmelCase = 12 __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__a , truncation=__a , ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__a , ) __lowerCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __lowerCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(__a ) ) self.assertFalse(_inputs_have_equal_length(__a ) ) def snake_case ( self ): self._check_padding(numpify=__a ) def snake_case ( self ): self._check_padding(numpify=__a ) def snake_case ( self ): self._check_truncation(numpify=__a ) def snake_case ( self ): self._check_truncation(numpify=__a ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="np" )[input_name] __lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="np" )[input_name] __lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case ( self ): __lowerCAmelCase = self.feat_extract_dict __lowerCAmelCase = True __lowerCAmelCase = self.feature_extraction_class(**__a ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = [len(__a ) for x in speech_inputs] __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , __a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __a ) def snake_case ( self ): __lowerCAmelCase = self.feat_extract_dict __lowerCAmelCase = True __lowerCAmelCase = self.feature_extraction_class(**__a ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = [len(__a ) for x in speech_inputs] __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = min(__a ) __lowerCAmelCase = feat_extract.pad( __a , padding="max_length" , max_length=__a , truncation=__a , return_tensors="np" ) self.assertIn("attention_mask" , __a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
259
"""simple docstring""" import string def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "" for i in sequence: __lowerCAmelCase = ord(_UpperCamelCase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = string.ascii_letters __lowerCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_UpperCamelCase )] if c in letters else c for c in sequence ) def _lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print("Running performance benchmarks..." ) __lowerCAmelCase = "from string import printable ; from __main__ import atbash, atbash_slow" print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_UpperCamelCase )} seconds" ) print(f"> atbash(): {timeit('atbash(printable)' , setup=_UpperCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
259
1
"""simple docstring""" from math import pow def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _UpperCAmelCase = int(pow(lowercase ,lowercase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _UpperCAmelCase , _UpperCAmelCase = backtrack( lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _UpperCAmelCase , _UpperCAmelCase = backtrack( lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase ) return current_sum, solutions_count def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowercase ,lowercase ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = StableUnCLIPPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = 32 _UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
289
1
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings( _SCREAMING_SNAKE_CASE, r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ", ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self , __A ) -> np.ndarray: if self.framework == "tf": a =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": a =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ) else: raise ValueError('''Unsupported framework''' ) return masked_index def SCREAMING_SNAKE_CASE ( self , __A ) -> np.ndarray: a =self.get_masked_index(__A ) a =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def SCREAMING_SNAKE_CASE ( self , __A ) -> str: if isinstance(__A , __A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A=None , **__A ) -> Dict[str, GenericTensor]: if return_tensors is None: a =self.framework a =self.tokenizer(__A , return_tensors=__A ) self.ensure_exactly_one_mask_token(__A ) return model_inputs def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[int]: a =self.model(**__A ) a =model_inputs['''input_ids'''] return model_outputs def SCREAMING_SNAKE_CASE ( self , __A , __A=5 , __A=None ) -> Any: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: a =target_ids.shape[0] a =model_outputs['''input_ids'''][0] a =model_outputs['''logits'''] if self.framework == "tf": a =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] a =outputs.numpy() a =outputs[0, masked_index, :] a =stable_softmax(__A , axis=-1 ) if target_ids is not None: a =tf.gather_nd(tf.squeeze(__A , 0 ) , target_ids.reshape(-1 , 1 ) ) a =tf.expand_dims(__A , 0 ) a =tf.math.top_k(__A , k=__A ) a , a =topk.values.numpy(), topk.indices.numpy() else: a =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample a =outputs[0, masked_index, :] a =logits.softmax(dim=-1 ) if target_ids is not None: a =probs[..., target_ids] a , a =probs.topk(__A ) a =[] a =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): a =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place a =input_ids.numpy().copy() if target_ids is not None: a =target_ids[p].tolist() a =p # Filter padding out: a =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back a =self.tokenizer.decode(__A , skip_special_tokens=__A ) a ={'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__A ) result.append(__A ) if single_mask: return result[0] return result def SCREAMING_SNAKE_CASE ( self , __A , __A=None ) -> List[Any]: if isinstance(__A , __A ): a =[targets] try: a =self.tokenizer.get_vocab() except Exception: a ={} a =[] for target in targets: a =vocab.get(__A , __A ) if id_ is None: a =self.tokenizer( __A , add_special_tokens=__A , return_attention_mask=__A , return_token_type_ids=__A , max_length=1 , truncation=__A , )['''input_ids'''] if len(__A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue a =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) a =list(set(__A ) ) if len(__A ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) a =np.array(__A ) return target_ids def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None ) -> Any: a ={} if targets is not None: a =self.get_target_ids(__A , __A ) a =target_ids if top_k is not None: a =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , __A , *__A , **__A ) -> Optional[int]: a =super().__call__(__A , **__A ) if isinstance(__A , __A ) and len(__A ) == 1: return outputs[0] return outputs
362
"""simple docstring""" def _A ( lowercase = 2_00_00_00 ): """simple docstring""" a =[0 for i in range(n + 1 )] a =1 a =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): a =1 a =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'{solution() = }')
215
0
def __magic_name__ ( __a : Dict ): '''simple docstring''' UpperCamelCase__ = 0 while len(SCREAMING_SNAKE_CASE__ ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(SCREAMING_SNAKE_CASE__ ) ) temp += files[min_index] files.pop(SCREAMING_SNAKE_CASE__ ) files.append(SCREAMING_SNAKE_CASE__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
244
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : str = Dict[str, Any] __UpperCAmelCase : int = List[Prediction] @add_end_docstrings(__lowerCamelCase ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , *A : Optional[int] , **A : Optional[int] ): super().__init__(*A , **A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCAmelCase__ ( self : List[str] , **A : Tuple ): __snake_case: List[str] = {} if "threshold" in kwargs: __snake_case: Optional[Any] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : int , *A : Optional[Any] , **A : Tuple ): return super().__call__(*A , **A ) def UpperCAmelCase__ ( self : Optional[int] , A : str ): __snake_case: Optional[Any] = load_image(A ) __snake_case: Dict = torch.IntTensor([[image.height, image.width]] ) __snake_case: str = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __snake_case: Optional[Any] = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __snake_case: Any = target_size return inputs def UpperCAmelCase__ ( self : Optional[int] , A : Dict ): __snake_case: int = model_inputs.pop("""target_size""" ) __snake_case: int = self.model(**A ) __snake_case: Any = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __snake_case: Optional[int] = model_inputs["""bbox"""] return model_outputs def UpperCAmelCase__ ( self : List[Any] , A : Optional[int] , A : Union[str, Any]=0.9 ): __snake_case: Optional[Any] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __snake_case , __snake_case: Union[str, Any] = target_size[0].tolist() def unnormalize(A : Tuple ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) __snake_case , __snake_case: Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __snake_case: List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __snake_case: int = [unnormalize(A ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __snake_case: int = ["""score""", """label""", """box"""] __snake_case: List[Any] = [dict(zip(A , A ) ) for vals in zip(scores.tolist() , A , A ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __snake_case: Tuple = self.image_processor.post_process_object_detection(A , A , A ) __snake_case: Optional[Any] = raw_annotations[0] __snake_case: int = raw_annotation["""scores"""] __snake_case: int = raw_annotation["""labels"""] __snake_case: Optional[Any] = raw_annotation["""boxes"""] __snake_case: Union[str, Any] = scores.tolist() __snake_case: List[str] = [self.model.config.idalabel[label.item()] for label in labels] __snake_case: List[str] = [self._get_bounding_box(A ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __snake_case: List[Any] = ["""score""", """label""", """box"""] __snake_case: Dict = [ dict(zip(A , A ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCAmelCase__ ( self : Optional[Any] , A : "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __snake_case , __snake_case , __snake_case , __snake_case: Union[str, Any] = box.int().tolist() __snake_case: Optional[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
111
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Optional[int] = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = ["ChineseCLIPFeatureExtractor"] SCREAMING_SNAKE_CASE : List[Any] = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[int] ="""decision_transformer""" lowercase : Dict =["""past_key_values"""] lowercase : Any ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=17 , UpperCamelCase_=4 , UpperCamelCase_=128 , UpperCamelCase_=4096 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=1024 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=None , UpperCamelCase_="relu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ): lowercase_ :Any = state_dim lowercase_ :List[str] = act_dim lowercase_ :List[str] = hidden_size lowercase_ :int = max_ep_len lowercase_ :List[str] = action_tanh lowercase_ :Any = vocab_size lowercase_ :List[Any] = n_positions lowercase_ :List[str] = n_layer lowercase_ :Optional[Any] = n_head lowercase_ :int = n_inner lowercase_ :List[str] = activation_function lowercase_ :List[str] = resid_pdrop lowercase_ :Dict = embd_pdrop lowercase_ :List[Any] = attn_pdrop lowercase_ :Union[str, Any] = layer_norm_epsilon lowercase_ :List[str] = initializer_range lowercase_ :Any = scale_attn_weights lowercase_ :Union[str, Any] = use_cache lowercase_ :Any = scale_attn_by_inverse_layer_idx lowercase_ :Tuple = reorder_and_upcast_attn lowercase_ :int = bos_token_id lowercase_ :List[str] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
0
"""simple docstring""" from __future__ import annotations import time import numpy as np A : Union[str, Any] = [8, 5, 9, 7] A : Dict = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a , __a , ): __lowerCAmelCase = claim_vector __lowerCAmelCase = allocated_resources_table __lowerCAmelCase = maximum_claim_table def snake_case ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def snake_case ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def snake_case ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def snake_case ( self ): return {self.__need().index(__a ): i for i in self.__need()} def snake_case ( self , **__a ): __lowerCAmelCase = self.__need() __lowerCAmelCase = self.__allocated_resources_table __lowerCAmelCase = self.__available_resources() __lowerCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: __lowerCAmelCase = False for each_need in need_list: __lowerCAmelCase = True for index, need in enumerate(__a ): if need > available_resources[index]: __lowerCAmelCase = False break if execution: __lowerCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__a ) # update available/freed resources stack __lowerCAmelCase = np.array(__a ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__a ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def snake_case ( self ): print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__a ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__a ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__a ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
57
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], 'do_convert_rgb': True, } lowercase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = self.get_image_processor() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case ) lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case ) self.assertIsInstance(processor_fast.tokenizer , snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case ) self.assertIsInstance(processor_fast.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) lowercase = self.get_image_processor(do_normalize=snake_case ) lowercase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = self.prepare_image_inputs() lowercase = image_processor(snake_case , return_tensors='np' ) lowercase = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = processor(text=snake_case ) lowercase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = self.prepare_image_inputs() lowercase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(snake_case ) lowercase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = self.prepare_image_inputs() lowercase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
195
0
from collections.abc import Generator from math import sin def UpperCAmelCase__ ( lowerCamelCase ): if len(lowerCamelCase ) != 32: raise ValueError("Input must be of length 32" ) lowercase :Dict = B"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) lowercase :Optional[int] = format(lowerCamelCase, "08x" )[-8:] lowercase :Optional[Any] = B"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[str] = B"" for char in message: bit_string += format(lowerCamelCase, "08b" ).encode("utf-8" ) lowercase :str = format(len(lowerCamelCase ), "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( lowerCamelCase ): if len(lowerCamelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0, len(lowerCamelCase ), 512 ): lowercase :Optional[Any] = bit_string[pos : pos + 512] lowercase :Union[str, Any] = [] for i in range(0, 512, 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) ) yield block_words def UpperCAmelCase__ ( lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) lowercase :List[Any] = format(lowerCamelCase, "032b" ) lowercase :Dict = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCamelCase, 2 ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): return (a + b) % 2**32 def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Any = preprocess(lowerCamelCase ) lowercase :Optional[int] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowercase :Union[str, Any] = 0X6745_2301 lowercase :Optional[int] = 0XEFCD_AB89 lowercase :Optional[Any] = 0X98BA_DCFE lowercase :Optional[int] = 0X1032_5476 lowercase :Tuple = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCamelCase ): lowercase :List[Any] = aa lowercase :List[Any] = ba lowercase :Dict = ca lowercase :int = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowercase :Dict = d ^ (b & (c ^ d)) lowercase :List[str] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowercase :Dict = c ^ (d & (b ^ c)) lowercase :int = (5 * i + 1) % 16 elif i <= 47: lowercase :str = b ^ c ^ d lowercase :Optional[int] = (3 * i + 5) % 16 else: lowercase :Optional[int] = c ^ (b | not_aa(lowerCamelCase )) lowercase :Any = (7 * i) % 16 lowercase :List[Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 lowercase :List[Any] = d lowercase :Any = c lowercase :str = b lowercase :int = sum_aa(lowerCamelCase, left_rotate_aa(lowerCamelCase, shift_amounts[i] ) ) # Add hashed chunk to running total lowercase :int = sum_aa(lowerCamelCase, lowerCamelCase ) lowercase :str = sum_aa(lowerCamelCase, lowerCamelCase ) lowercase :str = sum_aa(lowerCamelCase, lowerCamelCase ) lowercase :Optional[int] = sum_aa(lowerCamelCase, lowerCamelCase ) lowercase :Any = reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
158
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : str = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _UpperCAmelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase): _a = '''mask2former''' _a = ['''swin'''] _a = {'''hidden_size''': '''hidden_dim'''} def __init__( self: List[str] , _lowerCAmelCase: Optional[Dict] = None , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 10_24 , _lowerCAmelCase: str = "relu" , _lowerCAmelCase: int = 6 , _lowerCAmelCase: int = 10 , _lowerCAmelCase: int = 8 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 20_48 , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 2_55 , _lowerCAmelCase: int = 1_00 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 2.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 1_25_44 , _lowerCAmelCase: float = 3.0 , _lowerCAmelCase: float = 0.75 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 1.0 , _lowerCAmelCase: bool = True , _lowerCAmelCase: List[int] = [4, 8, 16, 32] , _lowerCAmelCase: bool = None , **_lowerCAmelCase: List[str] , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) lowercase :Optional[int] = CONFIG_MAPPING["swin"]( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCAmelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :List[str] = backbone_config.pop("model_type" ) lowercase :Tuple = CONFIG_MAPPING[backbone_model_type] lowercase :int = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported )}" ) lowercase :Optional[Any] = backbone_config lowercase :Union[str, Any] = feature_size lowercase :Any = mask_feature_size lowercase :List[Any] = hidden_dim lowercase :Optional[int] = encoder_feedforward_dim lowercase :Dict = activation_function lowercase :Tuple = encoder_layers lowercase :List[str] = decoder_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[Any] = dropout lowercase :Any = dim_feedforward lowercase :List[Any] = pre_norm lowercase :List[Any] = enforce_input_projection lowercase :Optional[int] = common_stride lowercase :List[Any] = ignore_value lowercase :Optional[int] = num_queries lowercase :List[str] = no_object_weight lowercase :Dict = class_weight lowercase :Union[str, Any] = mask_weight lowercase :List[Any] = dice_weight lowercase :Dict = train_num_points lowercase :Optional[int] = oversample_ratio lowercase :List[Any] = importance_sample_ratio lowercase :Dict = init_std lowercase :Union[str, Any] = init_xavier_std lowercase :Optional[Any] = use_auxiliary_loss lowercase :Any = feature_strides lowercase :int = output_auxiliary_logits lowercase :Dict = decoder_layers super().__init__(**_lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Tuple , _lowerCAmelCase: PretrainedConfig , **_lowerCAmelCase: str ): return cls( backbone_config=_lowerCAmelCase , **_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :str = copy.deepcopy(self.__dict__ ) lowercase :Optional[Any] = self.backbone_config.to_dict() lowercase :Union[str, Any] = self.__class__.model_type return output
158
1
import heapq import sys import numpy as np __snake_case = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> Optional[Any]: UpperCamelCase :Any = [] UpperCamelCase :Any = set() def UpperCAmelCase ( self ) -> Dict: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.elements ) == 0 def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE_ ) else: # update # print("update", item) UpperCamelCase :Tuple = [] ((UpperCamelCase) , (UpperCamelCase)) :Optional[int] = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((UpperCamelCase) , (UpperCamelCase)) :int = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = [] ((UpperCamelCase) , (UpperCamelCase)) :List[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((UpperCamelCase) , (UpperCamelCase)) :Tuple = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCAmelCase ( self ) -> Optional[int]: return self.elements[0][1] def UpperCAmelCase ( self ) -> Optional[int]: ((UpperCamelCase) , (UpperCamelCase)) :int = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE_ ) return (priority, item) def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): # euclidean distance UpperCamelCase :Union[str, Any] = np.array(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = np.array(SCREAMING_SNAKE_CASE__ ) return np.linalg.norm(a - b ) def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): # integer division by time variable return consistent_heuristic(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) // t def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : dict[TPos, float] ): UpperCamelCase :Optional[int] = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ans def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): UpperCamelCase :Optional[int] = np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = '''*''' for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if (j, (n - 1) - i) in blocks: UpperCamelCase :Optional[int] = '''#''' UpperCamelCase :List[str] = '''-''' UpperCamelCase :List[Any] = back_pointer[goal] while x != start: ((UpperCamelCase) , (UpperCamelCase)) :List[str] = x # print(x) UpperCamelCase :int = '''-''' UpperCamelCase :Optional[int] = back_pointer[x] UpperCamelCase :Optional[Any] = '''-''' for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) UpperCamelCase :Union[str, Any] = back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE__ , end=''' ''' ) UpperCamelCase :Any = back_pointer[x] print(SCREAMING_SNAKE_CASE__ ) sys.exit() def _A ( SCREAMING_SNAKE_CASE__ : TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , ): for itera in range(SCREAMING_SNAKE_CASE__ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE__ ) # print("s", s) # print("j", j) ((UpperCamelCase) , (UpperCamelCase)) :Any = s UpperCamelCase :str = (x - 1, y) UpperCamelCase :Optional[int] = (x + 1, y) UpperCamelCase :str = (x, y + 1) UpperCamelCase :Any = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = -1 UpperCamelCase :int = float('''inf''' ) if valid(SCREAMING_SNAKE_CASE__ ) and g_function[neighbours] > g_function[s] + 1: UpperCamelCase :str = g_function[s] + 1 UpperCamelCase :Any = s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE__ ): if key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) <= Wa * key( SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): open_list[j].put( SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _A ( ): UpperCamelCase :List[Any] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __snake_case = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __snake_case = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __snake_case = make_common_ground() __snake_case = blocks_blk # hyper parameters __snake_case = 1 __snake_case = 1 __snake_case = 20 __snake_case = 3 # one consistent and two other inconsistent # start and end destination __snake_case = (0, 0) __snake_case = (n - 1, n - 1) __snake_case = 1 def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :Any = {start: 0, goal: float('''inf''' )} UpperCamelCase :Any = {start: -1, goal: -1} UpperCamelCase :Tuple = [] UpperCamelCase :List[str] = set() for i in range(SCREAMING_SNAKE_CASE__ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) UpperCamelCase :list[int] = [] UpperCamelCase :list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , SCREAMING_SNAKE_CASE__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase , UpperCamelCase :Tuple = open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE__ ) expand_state( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) close_list_inad.append(SCREAMING_SNAKE_CASE__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase :str = open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE__ ) expand_state( SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
259
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Dict ='git_vision_model' def __init__( self , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=1e-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = hidden_size UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :Dict = num_hidden_layers UpperCamelCase :int = num_attention_heads UpperCamelCase :List[str] = num_channels UpperCamelCase :Optional[int] = patch_size UpperCamelCase :Optional[int] = image_size UpperCamelCase :List[Any] = initializer_range UpperCamelCase :Union[str, Any] = attention_dropout UpperCamelCase :Tuple = layer_norm_eps UpperCamelCase :Optional[Any] = hidden_act @classmethod def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase :Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": UpperCamelCase :Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Optional[Any] ='git' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=101 , SCREAMING_SNAKE_CASE_=102 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if vision_config is None: UpperCamelCase :Tuple = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) UpperCamelCase :Union[str, Any] = GitVisionConfig(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = vocab_size UpperCamelCase :Optional[Any] = hidden_size UpperCamelCase :List[Any] = num_hidden_layers UpperCamelCase :List[Any] = num_attention_heads UpperCamelCase :Dict = hidden_act UpperCamelCase :List[str] = intermediate_size UpperCamelCase :List[str] = hidden_dropout_prob UpperCamelCase :Optional[int] = attention_probs_dropout_prob UpperCamelCase :Optional[Any] = max_position_embeddings UpperCamelCase :Tuple = initializer_range UpperCamelCase :Any = layer_norm_eps UpperCamelCase :int = position_embedding_type UpperCamelCase :Dict = use_cache UpperCamelCase :Tuple = tie_word_embeddings UpperCamelCase :Union[str, Any] = num_image_with_embedding UpperCamelCase :Optional[int] = bos_token_id UpperCamelCase :List[Any] = eos_token_id def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase :Optional[int] = self.vision_config.to_dict() UpperCamelCase :int = self.__class__.model_type return output
259
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): _A : str = DPTConfig() if "large" in checkpoint_url: _A : List[Any] = 1024 _A : Union[str, Any] = 4096 _A : Tuple = 24 _A : Tuple = 16 _A : int = [5, 11, 17, 23] _A : List[str] = [256, 512, 1024, 1024] _A : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: _A : Optional[Any] = True _A : Union[str, Any] = 150 _A : Dict = """huggingface/label-files""" _A : Any = """ade20k-id2label.json""" _A : Union[str, Any] = json.load(open(cached_download(hf_hub_url(snake_case_,snake_case_,repo_type="""dataset""" ) ),"""r""" ) ) _A : List[str] = {int(snake_case_ ): v for k, v in idalabel.items()} _A : Optional[int] = idalabel _A : int = {v: k for k, v in idalabel.items()} _A : int = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _A : Dict = name.replace("""pretrained.model""","""dpt.encoder""" ) if "pretrained.model" in name: _A : Any = name.replace("""pretrained.model""","""dpt.embeddings""" ) if "patch_embed" in name: _A : List[Any] = name.replace("""patch_embed""","""patch_embeddings""" ) if "pos_embed" in name: _A : str = name.replace("""pos_embed""","""position_embeddings""" ) if "attn.proj" in name: _A : Optional[int] = name.replace("""attn.proj""","""attention.output.dense""" ) if "proj" in name and "project" not in name: _A : int = name.replace("""proj""","""projection""" ) if "blocks" in name: _A : str = name.replace("""blocks""","""layer""" ) if "mlp.fc1" in name: _A : int = name.replace("""mlp.fc1""","""intermediate.dense""" ) if "mlp.fc2" in name: _A : Any = name.replace("""mlp.fc2""","""output.dense""" ) if "norm1" in name: _A : Tuple = name.replace("""norm1""","""layernorm_before""" ) if "norm2" in name: _A : Optional[Any] = name.replace("""norm2""","""layernorm_after""" ) if "scratch.output_conv" in name: _A : List[str] = name.replace("""scratch.output_conv""","""head""" ) if "scratch" in name: _A : Dict = name.replace("""scratch""","""neck""" ) if "layer1_rn" in name: _A : Dict = name.replace("""layer1_rn""","""convs.0""" ) if "layer2_rn" in name: _A : List[Any] = name.replace("""layer2_rn""","""convs.1""" ) if "layer3_rn" in name: _A : str = name.replace("""layer3_rn""","""convs.2""" ) if "layer4_rn" in name: _A : Any = name.replace("""layer4_rn""","""convs.3""" ) if "refinenet" in name: _A : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _A : List[str] = name.replace(f'''refinenet{layer_idx}''',f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _A : Tuple = name.replace("""out_conv""","""projection""" ) if "resConfUnit1" in name: _A : Optional[Any] = name.replace("""resConfUnit1""","""residual_layer1""" ) if "resConfUnit2" in name: _A : List[str] = name.replace("""resConfUnit2""","""residual_layer2""" ) if "conv1" in name: _A : Union[str, Any] = name.replace("""conv1""","""convolution1""" ) if "conv2" in name: _A : List[Any] = name.replace("""conv2""","""convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _A : List[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""","""neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _A : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""","""neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _A : Union[str, Any] = name.replace("""pretrained.act_postprocess3.0.project.0""","""neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _A : Dict = name.replace("""pretrained.act_postprocess4.0.project.0""","""neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _A : int = name.replace("""pretrained.act_postprocess1.3""","""neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _A : Union[str, Any] = name.replace("""pretrained.act_postprocess1.4""","""neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _A : str = name.replace("""pretrained.act_postprocess2.3""","""neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _A : Any = name.replace("""pretrained.act_postprocess2.4""","""neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _A : List[str] = name.replace("""pretrained.act_postprocess3.3""","""neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _A : str = name.replace("""pretrained.act_postprocess4.3""","""neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _A : List[Any] = name.replace("""pretrained.act_postprocess4.4""","""neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _A : int = name.replace("""pretrained""","""dpt""" ) if "bn" in name: _A : Any = name.replace("""bn""","""batch_norm""" ) if "head" in name: _A : List[str] = name.replace("""head""","""head.head""" ) if "encoder.norm" in name: _A : int = name.replace("""encoder.norm""","""layernorm""" ) if "auxlayer" in name: _A : Any = name.replace("""auxlayer""","""auxiliary_head.head""" ) return name def lowerCAmelCase_ ( snake_case_,snake_case_ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A : Optional[Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _A : Any = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A : Optional[int] = in_proj_weight[: config.hidden_size, :] _A : List[str] = in_proj_bias[: config.hidden_size] _A : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _A : Optional[int] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ): _A : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _A : Optional[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A , _A : Optional[int] = get_dpt_config(snake_case_ ) # load original state_dict from URL _A : Tuple = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(snake_case_ ) # rename keys for key in state_dict.copy().keys(): _A : Dict = state_dict.pop(snake_case_ ) _A : List[Any] = val # read in qkv matrices read_in_q_k_v(snake_case_,snake_case_ ) # load HuggingFace model _A : Optional[int] = DPTForSemanticSegmentation(snake_case_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # Check outputs on an image _A : Optional[Any] = 480 if """ade""" in checkpoint_url else 384 _A : str = DPTImageProcessor(size=snake_case_ ) _A : Any = prepare_img() _A : Union[str, Any] = image_processor(snake_case_,return_tensors="""pt""" ) # forward pass _A : List[str] = model(**snake_case_ ).logits if """ade""" in checkpoint_url else model(**snake_case_ ).predicted_depth # Assert logits _A : Optional[Any] = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: _A : List[str] = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(snake_case_ ) assert ( torch.allclose(outputs[0, 0, :3, :3],snake_case_,atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3],snake_case_ ) ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(snake_case_,snake_case_ ),organization="""nielsr""",commit_message="""Add model""",use_temp_dir=snake_case_,) image_processor.push_to_hub( repo_path_or_name=Path(snake_case_,snake_case_ ),organization="""nielsr""",commit_message="""Add image processor""",use_temp_dir=snake_case_,) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) _snake_case = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
343
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
1
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( _lowerCamelCase): def __init__( self : List[str] , lowercase_ : Tuple ): super().__init__() snake_case_ : List[str] = nn.ModuleList(a_ ) def _snake_case ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any] = None , lowercase_ : Dict = None , lowercase_ : List[Any] = None , lowercase_ : Tuple = None , lowercase_ : int = False , lowercase_ : Tuple = True , ): for i, (image, scale, controlnet) in enumerate(zip(a_ , a_ , self.nets ) ): snake_case_ : List[Any] = controlnet( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) # merge samples if i == 0: snake_case_ : Optional[int] = down_samples, mid_sample else: snake_case_ : Dict = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a_ , a_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _snake_case ( self : Dict , lowercase_ : Any , lowercase_ : Any = True , lowercase_ : str = None , lowercase_ : List[str] = False , lowercase_ : List[str] = None , ): snake_case_ : List[Any] = 0 snake_case_ : Dict = save_directory for controlnet in self.nets: controlnet.save_pretrained( a_ , is_main_process=a_ , save_function=a_ , safe_serialization=a_ , variant=a_ , ) idx += 1 snake_case_ : Optional[Any] = model_path_to_save + f"_{idx}" @classmethod def _snake_case ( cls : Tuple , lowercase_ : str , **lowercase_ : Union[str, Any] ): snake_case_ : str = 0 snake_case_ : Union[str, Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case_ : Optional[int] = pretrained_model_path while os.path.isdir(a_ ): snake_case_ : List[str] = ControlNetModel.from_pretrained(a_ , **a_ ) controlnets.append(a_ ) idx += 1 snake_case_ : Tuple = pretrained_model_path + f"_{idx}" logger.info(f"{len(a_ )} controlnets loaded from {pretrained_model_path}." ) if len(a_ ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(a_ )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(a_ )
264
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" _UpperCAmelCase : Dict = model(a_ )["""last_hidden_state"""] _UpperCAmelCase : Dict = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape ,a_ ) # compare the actual values for a slice. _UpperCAmelCase : Tuple = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
215
0
import os import sys import unittest SCREAMING_SNAKE_CASE__ : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE__ : Any = os.path.join(git_repo_path, "src", "diffusers") class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Dict ) -> str: __lowerCamelCase = find_backend(''' if not is_torch_available():''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCamelCase = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCamelCase = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch_and_transformers_and_onnx''' ) def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , SCREAMING_SNAKE_CASE__ ) self.assertIn('''torch_and_transformers''' , SCREAMING_SNAKE_CASE__ ) self.assertIn('''flax_and_transformers''' , SCREAMING_SNAKE_CASE__ ) self.assertIn('''torch_and_transformers_and_onnx''' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __A ( self : Tuple ) -> List[Any]: __lowerCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '''\nCONSTANT = None\n''' ) __lowerCamelCase = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __lowerCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' __lowerCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' __lowerCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , SCREAMING_SNAKE_CASE__ )
339
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any=5 ) -> List[str]: assert masked_input.count("""<mask>""" ) == 1 _lowerCAmelCase : Optional[int] = torch.tensor(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ).unsqueeze(0 ) # Batch size 1 _lowerCAmelCase : str = model(lowerCamelCase__ )[0] # The last hidden-state is the first element of the output tuple _lowerCAmelCase : Optional[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCAmelCase : str = logits[0, masked_index, :] _lowerCAmelCase : Tuple = logits.softmax(dim=0 ) _lowerCAmelCase , _lowerCAmelCase : Any = prob.topk(k=lowerCamelCase__ ,dim=0 ) _lowerCAmelCase : str = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCamelCase__ ) )] ) _lowerCAmelCase : List[str] = tokenizer.mask_token _lowerCAmelCase : List[str] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): _lowerCAmelCase : Union[str, Any] = predicted_token_bpe.replace("""\u2581""" ,""" """ ) if " {0}".format(lowerCamelCase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(lowerCamelCase__ ) ,lowerCamelCase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCamelCase__ ,lowerCamelCase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _a : str = CamembertTokenizer.from_pretrained('camembert-base') _a : List[str] = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() _a : Union[str, Any] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
44
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : Optional[Any] = 32 def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return int(x / 2**20 ) class __lowercase : """simple docstring""" def __enter__( self ) -> Optional[Any]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCamelCase = torch.cuda.memory_allocated() return self def __exit__( self , *A ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() lowerCamelCase = torch.cuda.memory_allocated() lowerCamelCase = torch.cuda.max_memory_allocated() lowerCamelCase = bamb(self.end - self.begin ) lowerCamelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __lowerCamelCase ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : int = 16 , lowerCamelCase__ : str = "bert-base-cased" , lowerCamelCase__ : int = 320 , lowerCamelCase__ : int = 160 , ): '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase__ ) lowerCamelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} ) def tokenize_function(lowerCamelCase__ : str ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config["""lr"""] lowerCamelCase = int(config["""num_epochs"""] ) lowerCamelCase = int(config["""seed"""] ) lowerCamelCase = int(config["""batch_size"""] ) lowerCamelCase = args.model_name_or_path set_seed(lowerCamelCase__ ) lowerCamelCase , lowerCamelCase = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , return_dict=lowerCamelCase__ ) # Instantiate optimizer lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase = optimizer_cls(params=model.parameters() , lr=lowerCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCamelCase = 1 lowerCamelCase = (len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=0 , num_training_steps=lowerCamelCase__ , ) else: lowerCamelCase = DummyScheduler(lowerCamelCase__ , total_num_steps=lowerCamelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase = 0 # Now we train the model lowerCamelCase = {} for epoch in range(lowerCamelCase__ , lowerCamelCase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCamelCase__ ): lowerCamelCase = model(**lowerCamelCase__ ) lowerCamelCase = outputs.loss lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase__ , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowerCamelCase__ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowerCamelCase__ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase__ , default=1 , help="""Number of train epochs.""" , ) lowerCamelCase = parser.parse_args() lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
252
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Dict = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a__ : def __init__( self , A , A=2 , A=32 , A=16 , A=3 , A=True , A=True , A=32 , A=4 , A=[0, 1, 2, 3] , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=0.0_2 , A=3 , A=[1, 384, 24, 24] , A=True , A=None , ) -> Any: '''simple docstring''' a = parent a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = backbone_out_indices a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = num_labels a = backbone_featmap_shape a = scope a = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCAmelCase_ ( self , A , A , A ) -> str: '''simple docstring''' a = DPTModel(config=A ) model.to(A ) model.eval() a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> Optional[int]: '''simple docstring''' a = self.num_labels a = DPTForDepthEstimation(A ) model.to(A ) model.eval() a = model(A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> Dict: '''simple docstring''' a = self.num_labels a = DPTForSemanticSegmentation(A ) model.to(A ) model.eval() a = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a : Union[str, Any] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a : Optional[int] = False a : List[Any] = False a : int = False def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = DPTModelTester(self ) a = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True if model_class in get_values(A ): continue a = model_class(A ) model.to(A ) model.train() a = self._prepare_for_class(A , A , return_labels=A ) a = model(**A ).loss loss.backward() def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = False a = True if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue a = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() a = self._prepare_for_class(A , A , return_labels=A ) a = model(**A ).loss loss.backward() def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() a = _config_zero_init(A ) for model_class in self.all_model_classes: a = model_class(config=A ) # Skip the check for the backbone a = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' pass @slow def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a = DPTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() a = "add" with self.assertRaises(A ): a = DPTForDepthEstimation(A ) def SCREAMING_SNAKE_CASE ( ) -> str: a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class a__ ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) a = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(A ) a = prepare_img() a = image_processor(images=A , return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): a = model(**A ) a = outputs.predicted_depth # verify the predicted depth a = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , A ) a = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , A , atol=1e-4 ) )
180
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCAmelCase_ : __lowerCamelCase : Optional[Any] = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Any = "gelu" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=20 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , ) -> Optional[Any]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCAmelCase = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = TFBlenderbotModel(config=_lowerCAmelCase ).get_decoder() _lowerCAmelCase = inputs_dict["input_ids"] _lowerCAmelCase = input_ids[:1, :] _lowerCAmelCase = inputs_dict["attention_mask"][:1, :] _lowerCAmelCase = inputs_dict["head_mask"] _lowerCAmelCase = 1 # first forward pass _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-3 ) def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: _lowerCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : str = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : int = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Any = True __lowerCamelCase : int = False __lowerCamelCase : List[Any] = False def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = TFBlenderbotModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> str: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_tokenizers @require_tf class lowerCAmelCase_ ( unittest.TestCase ): __lowerCamelCase : List[Any] = ["My friends are cool but they eat too many carbs."] __lowerCamelCase : List[str] = "facebook/blenderbot-400M-distill" @cached_property def _snake_case ( self ) -> Dict: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ) -> List[str]: _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.tokenizer(self.src_text , return_tensors="tf" ) _lowerCAmelCase = self.model.generate( model_inputs.input_ids , ) _lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
158
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=False ): '''simple docstring''' _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase = "" else: _lowerCAmelCase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) _lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = val def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' _lowerCAmelCase = ViTMSNConfig() _lowerCAmelCase = 1000 _lowerCAmelCase = "datasets/huggingface/label-files" _lowerCAmelCase = "imagenet-1k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _lowerCAmelCase = 384 _lowerCAmelCase = 1536 _lowerCAmelCase = 6 elif "l16" in checkpoint_url: _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 _lowerCAmelCase = 0.1 elif "b4" in checkpoint_url: _lowerCAmelCase = 4 elif "l7" in checkpoint_url: _lowerCAmelCase = 7 _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 _lowerCAmelCase = 0.1 _lowerCAmelCase = ViTMSNModel(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["target_encoder"] _lowerCAmelCase = ViTImageProcessor(size=config.image_size ) remove_projection_head(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() _lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) _lowerCAmelCase = ViTImageProcessor( size=config.image_size , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _lowerCAmelCase = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _lowerCAmelCase = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
158
1
def _a ( a :int ) -> bool: if not isinstance(a , a ): a = F"""Input value of [number={number}] must be an integer""" raise TypeError(a ) if number < 0: return False a = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
365
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : List[Any] , lowerCamelCase_ : WhisperForConditionalGeneration , lowerCamelCase_ : WhisperProcessor , lowerCamelCase_ : AutoencoderKL , lowerCamelCase_ : CLIPTextModel , lowerCamelCase_ : CLIPTokenizer , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ : StableDiffusionSafetyChecker , lowerCamelCase_ : CLIPImageProcessor , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=lowerCamelCase_ , speech_processor=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __call__( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=1_6000 , lowerCamelCase_ : int = 512 , lowerCamelCase_ : int = 512 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = self.speech_processor.feature_extractor( lowerCamelCase_ , return_tensors="""pt""" , sampling_rate=lowerCamelCase_ ).input_features.to(self.device ) UpperCamelCase = self.speech_model.generate(lowerCamelCase_ , max_length=48_0000 ) UpperCamelCase = self.speech_processor.tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , normalize=lowerCamelCase_ )[ 0 ] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = 1 elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = len(lowerCamelCase_ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCamelCase_ )}.""" ) # get prompt text embeddings UpperCamelCase = self.tokenizer( lowerCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase = text_embeddings.shape UpperCamelCase = text_embeddings.repeat(1 , lowerCamelCase_ , 1 ) UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase = 42 if negative_prompt is None: UpperCamelCase = [""""""] * batch_size elif type(lowerCamelCase_ ) is not type(lowerCamelCase_ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase_ )} !=""" f""" {type(lowerCamelCase_ )}.""" ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [negative_prompt] elif batch_size != len(lowerCamelCase_ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase_ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: UpperCamelCase = negative_prompt UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( lowerCamelCase_ , padding="""max_length""" , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors="""pt""" , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = uncond_embeddings.shape[1] UpperCamelCase = uncond_embeddings.repeat(1 , lowerCamelCase_ , 1 ) UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device="""cpu""" , dtype=lowerCamelCase_ ).to( self.device ) else: UpperCamelCase = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=lowerCamelCase_ ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # predict the noise residual UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 ) UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = 1 / 0.1_8_2_1_5 * latents UpperCamelCase = self.vae.decode(lowerCamelCase_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase_ , nsfw_content_detected=lowerCamelCase_ )
343
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
1
import os from collections.abc import Iterator def __A ( __lowerCamelCase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__lowerCamelCase ): a = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCamelCase , __lowerCamelCase ).lstrip("""./""" ) def __A ( __lowerCamelCase ) -> Dict: return f'{i * " "}*' if i else "\n##" def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: a = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCamelCase ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(__lowerCamelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def __A ( __lowerCamelCase = "." ) -> None: a = """""" for filepath in sorted(good_file_paths(__lowerCamelCase ) ): a , a = os.path.split(__lowerCamelCase ) if filepath != old_path: a = print_path(__lowerCamelCase , __lowerCamelCase ) a = (filepath.count(os.sep ) + 1) if filepath else 0 a = f'{filepath}/{filename}'.replace(""" """ , """%20""" ) a = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f'{md_prefix(__lowerCamelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md(".")
347
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = (IPNDMScheduler,) UpperCamelCase__ = (('''num_inference_steps''', 50),) def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ): '''simple docstring''' a = {"""num_train_timesteps""": 1000} config.update(**__magic_name__ ) return config def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ): '''simple docstring''' a = dict(self.forward_default_kwargs ) a = kwargs.pop("""num_inference_steps""" , __magic_name__ ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config(**__magic_name__ ) a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals a = dummy_past_residuals[:] if time_step is None: a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) a = scheduler_class.from_pretrained(__magic_name__ ) new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals a = dummy_past_residuals[:] a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ): '''simple docstring''' a = dict(self.forward_default_kwargs ) a = kwargs.pop("""num_inference_steps""" , __magic_name__ ) a = self.dummy_sample a = 0.1 * sample a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals (must be after setting timesteps) a = dummy_past_residuals[:] if time_step is None: a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) a = scheduler_class.from_pretrained(__magic_name__ ) # copy over dummy past residuals new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residual (must be after setting timesteps) a = dummy_past_residuals[:] a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config(**__magic_name__ ) a = scheduler_class(**__magic_name__ ) a = 10 a = self.dummy_model() a = self.dummy_sample_deter scheduler.set_timesteps(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): a = model(__magic_name__ , __magic_name__ ) a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): a = model(__magic_name__ , __magic_name__ ) a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample return sample def lowerCamelCase__ ( self :str ): '''simple docstring''' a = dict(self.forward_default_kwargs ) a = kwargs.pop("""num_inference_steps""" , __magic_name__ ) for scheduler_class in self.scheduler_classes: a = self.get_scheduler_config() a = scheduler_class(**__magic_name__ ) a = self.dummy_sample a = 0.1 * sample if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ): scheduler.set_timesteps(__magic_name__ ) elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ): a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a = dummy_past_residuals[:] a = scheduler.timesteps[5] a = scheduler.timesteps[6] a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = self.full_loop() a = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
347
1
import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase__ = "" UpperCAmelCase__ = "" UpperCAmelCase__ = "" UpperCAmelCase__ = 1 # (0 is vertical, 1 is horizontal) def A ( ) -> None: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = get_dataset(_UpperCAmelCase , _UpperCAmelCase ) print('Processing...' ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = update_image_and_anno(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for index, image in enumerate(_UpperCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCAmelCase = random_chars(32 ) _UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , _UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(_UpperCAmelCase )} with {file_name}" ) _UpperCAmelCase = [] for anno in new_annos[index]: _UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(_UpperCAmelCase ) with open(F"/{file_root}.txt" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> tuple[list, list]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] for label_file in glob.glob(os.path.join(_UpperCAmelCase , '*.txt' ) ): _UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_UpperCAmelCase ) as in_file: _UpperCAmelCase = in_file.readlines() _UpperCAmelCase = os.path.join(_UpperCAmelCase , F"{label_name}.jpg" ) _UpperCAmelCase = [] for obj_list in obj_lists: _UpperCAmelCase = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_UpperCAmelCase ) labels.append(_UpperCAmelCase ) return img_paths, labels def A ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int = 1 ) -> tuple[list, list, list]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for idx in range(len(_UpperCAmelCase ) ): _UpperCAmelCase = [] _UpperCAmelCase = img_list[idx] path_list.append(_UpperCAmelCase ) _UpperCAmelCase = anno_list[idx] _UpperCAmelCase = cva.imread(_UpperCAmelCase ) if flip_type == 1: _UpperCAmelCase = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: _UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _UpperCAmelCase = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: _UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_UpperCAmelCase ) new_imgs_list.append(_UpperCAmelCase ) return new_imgs_list, new_annos_lists, path_list def A ( _UpperCAmelCase : int = 32 ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" _UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
import sys from collections import defaultdict class __lowerCAmelCase : def __init__( self : int) -> str: """simple docstring""" _UpperCAmelCase = [] def _lowerCamelCase ( self : Any , A : List[str]) -> int: """simple docstring""" return self.node_position[vertex] def _lowerCamelCase ( self : Optional[Any] , A : Optional[int] , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = pos def _lowerCamelCase ( self : Tuple , A : Tuple , A : Dict , A : List[str] , A : Optional[Any]) -> Dict: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCAmelCase = 2 * start + 1 else: _UpperCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child] _UpperCAmelCase , _UpperCAmelCase = ( heap[start], positions[start], ) _UpperCAmelCase , _UpperCAmelCase = temp, tempa _UpperCAmelCase = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , A) self.top_to_bottom(A , A , A , A) def _lowerCamelCase ( self : Optional[int] , A : str , A : Optional[Any] , A : Optional[int] , A : str) -> Any: """simple docstring""" _UpperCAmelCase = position[index] while index != 0: _UpperCAmelCase = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: _UpperCAmelCase = heap[parent] _UpperCAmelCase = position[parent] self.set_position(position[parent] , A) else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , A) break _UpperCAmelCase = parent else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , 0) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int] , A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = len(A) // 2 - 1 for i in range(A , -1 , -1): self.top_to_bottom(A , A , len(A) , A) def _lowerCamelCase ( self : Optional[int] , A : int , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = positions[0] _UpperCAmelCase = sys.maxsize self.top_to_bottom(A , 0 , len(A) , A) return temp def A ( _UpperCAmelCase : int ) -> Any: '''simple docstring''' _UpperCAmelCase = Heap() _UpperCAmelCase = [0] * len(_UpperCAmelCase ) _UpperCAmelCase = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCAmelCase = [] for vertex in range(len(_UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCAmelCase ) heap.node_position.append(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = 1 _UpperCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCAmelCase = 0 _UpperCAmelCase = distance heap.heapify(_UpperCAmelCase , _UpperCAmelCase ) for _ in range(1 , len(_UpperCAmelCase ) ): _UpperCAmelCase = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCAmelCase )] ): _UpperCAmelCase = distance heap.bottom_to_top( _UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
339
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _lowercase ( A_ ): lowercase = "vit_mae" def __init__( self : Optional[int] , snake_case : List[str]=7_6_8 , snake_case : List[str]=1_2 , snake_case : int=1_2 , snake_case : Tuple=3_0_7_2 , snake_case : str="gelu" , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=0.0 , snake_case : List[Any]=0.02 , snake_case : Optional[int]=1e-12 , snake_case : List[str]=2_2_4 , snake_case : str=1_6 , snake_case : Dict=3 , snake_case : List[Any]=True , snake_case : Dict=1_6 , snake_case : Any=5_1_2 , snake_case : Optional[int]=8 , snake_case : int=2_0_4_8 , snake_case : Any=0.75 , snake_case : str=False , **snake_case : int , ) -> str: """simple docstring""" super().__init__(**snake_case__ ) UpperCamelCase_ : str = hidden_size UpperCamelCase_ : str = num_hidden_layers UpperCamelCase_ : Optional[Any] = num_attention_heads UpperCamelCase_ : Optional[int] = intermediate_size UpperCamelCase_ : Any = hidden_act UpperCamelCase_ : Dict = hidden_dropout_prob UpperCamelCase_ : Any = attention_probs_dropout_prob UpperCamelCase_ : Dict = initializer_range UpperCamelCase_ : Tuple = layer_norm_eps UpperCamelCase_ : int = image_size UpperCamelCase_ : Optional[int] = patch_size UpperCamelCase_ : Dict = num_channels UpperCamelCase_ : int = qkv_bias UpperCamelCase_ : str = decoder_num_attention_heads UpperCamelCase_ : Optional[int] = decoder_hidden_size UpperCamelCase_ : List[str] = decoder_num_hidden_layers UpperCamelCase_ : List[Any] = decoder_intermediate_size UpperCamelCase_ : Optional[int] = mask_ratio UpperCamelCase_ : Dict = norm_pix_loss
360
a_ = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
50
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
59
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case ( snake_case__ :int , snake_case__ :List[str] , snake_case__ :Union[str, Any]) -> str: # Initialise PyTorch model _A = AlbertConfig.from_json_file(snake_case__) print(F'''Building PyTorch model from configuration: {config}''') _A = AlbertForPreTraining(snake_case__) # Load weights from tf checkpoint load_tf_weights_in_albert(snake_case__ , snake_case__ , snake_case__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , snake_case__) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
180
0
"""simple docstring""" from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) __lowercase = "pytorch_model.bin" __lowercase = "pytorch_model.bin.index.json" __lowercase = "adapter_config.json" __lowercase = "adapter_model.bin" __lowercase = "adapter_model.safetensors" __lowercase = "tf_model.h5" __lowercase = "tf_model.h5.index.json" __lowercase = "model.ckpt" __lowercase = "flax_model.msgpack" __lowercase = "flax_model.msgpack.index.json" __lowercase = "model.safetensors" __lowercase = "model.safetensors.index.json" __lowercase = "config.json" __lowercase = "preprocessor_config.json" __lowercase = FEATURE_EXTRACTOR_NAME __lowercase = "generation_config.json" __lowercase = "modelcard.json" __lowercase = "▁" __lowercase = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility __lowercase = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. __lowercase = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] __lowercase = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' if version.parse(A_ ) < version.parse(A_ ): if "dev" in min_version: a : Optional[int] = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: a : Optional[int] = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
360
"""simple docstring""" from __future__ import annotations import queue class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : Union[str, Any]): a : Optional[Any] = data a : Optional[int] = None a : Union[str, Any] = None def lowercase ( )-> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) a : int = input("Enter the value of the root node: " ).strip().lower() a : queue.Queue = queue.Queue() a : Tuple = TreeNode(int(A_ ) ) q.put(A_ ) while not q.empty(): a : Union[str, Any] = q.get() a : Optional[int] = F'''Enter the left node of {node_found.data}: ''' a : Union[str, Any] = input(A_ ).strip().lower() or "n" if check == "n": return tree_node a : List[str] = TreeNode(int(A_ ) ) a : Any = left_node q.put(A_ ) a : Dict = F'''Enter the right node of {node_found.data}: ''' a : str = input(A_ ).strip().lower() or "n" if check == "n": return tree_node a : Any = TreeNode(int(A_ ) ) a : str = right_node q.put(A_ ) raise def lowercase ( A_ )-> None: '''simple docstring''' if not isinstance(A_ , A_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowercase ( A_ )-> None: '''simple docstring''' if not isinstance(A_ , A_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowercase ( A_ )-> None: '''simple docstring''' if not isinstance(A_ , A_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowercase ( A_ )-> None: '''simple docstring''' if not isinstance(A_ , A_ ) or not node: return a : queue.Queue = queue.Queue() q.put(A_ ) while not q.empty(): a : str = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase ( A_ )-> None: '''simple docstring''' if not isinstance(A_ , A_ ) or not node: return a : queue.Queue = queue.Queue() q.put(A_ ) while not q.empty(): a : Any = [] while not q.empty(): a : Any = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(A_ ) def lowercase ( A_ )-> None: '''simple docstring''' if not isinstance(A_ , A_ ) or not node: return a : list[TreeNode] = [] a : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(A_ ) a : Tuple = n.left # end of while means current node doesn't have left child a : Optional[Any] = stack.pop() # start to traverse its right child a : str = n.right def lowercase ( A_ )-> None: '''simple docstring''' if not isinstance(A_ , A_ ) or not node: return a : list[TreeNode] = [] a : Union[str, Any] = node while n or stack: while n: stack.append(A_ ) a : int = n.left a : str = stack.pop() print(n.data , end="," ) a : Optional[int] = n.right def lowercase ( A_ )-> None: '''simple docstring''' if not isinstance(A_ , A_ ) or not node: return a , a : Tuple = [], [] a : Tuple = node stacka.append(A_ ) while stacka: # to find the reversed order of post order, store it in stack2 a : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(A_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowercase ( A_ = "" , A_=50 , A_="*" )-> str: '''simple docstring''' if not s: return "\n" + width * char a , a : Dict = divmod(width - len(A_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) __lowercase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
226
0
from __future__ import annotations def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> str: """simple docstring""" if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
142
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict: _A : str = parent _A : int = batch_size _A : Optional[int] = num_channels _A : List[Any] = image_size _A : int = min_resolution _A : Optional[int] = max_resolution _A : Any = do_resize _A : List[str] = size if size is not None else {"""height""": 18, """width""": 20} _A : Optional[int] = do_thumbnail _A : str = do_align_axis _A : List[Any] = do_pad _A : Optional[Any] = do_normalize _A : Tuple = image_mean _A : List[str] = image_std def a__ ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DonutImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : List[str] = DonutImageProcessingTester(self ) @property def a__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_thumbnail""" ) ) self.assertTrue(hasattr(_a , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def a__ ( self ) -> Union[str, Any]: pass @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Dict: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
26
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
359
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self , lowerCamelCase=None ): __a = {} if top_k is not None: __a = top_k return {}, {}, postprocess_params def __call__( self , lowerCamelCase , **lowerCamelCase ): return super().__call__(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): __a = load_image(lowerCamelCase ) __a = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def a__ ( self , lowerCamelCase ): __a = self.model(**lowerCamelCase ) return model_outputs def a__ ( self , lowerCamelCase , lowerCamelCase=5 ): if top_k > self.model.config.num_labels: __a = self.model.config.num_labels if self.framework == "pt": __a = model_outputs.logits.softmax(-1 )[0] __a , __a = probs.topk(lowerCamelCase ) elif self.framework == "tf": __a = stable_softmax(model_outputs.logits , axis=-1 )[0] __a = tf.math.top_k(lowerCamelCase , k=lowerCamelCase ) __a , __a = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __a = scores.tolist() __a = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
268
0
"""simple docstring""" import os from collections.abc import Iterator def _a ( _SCREAMING_SNAKE_CASE = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): snake_case_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip("""./""" ) def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: return f"""{i * " "}*""" if i else "\n##" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}""" ) return new_path def _a ( _SCREAMING_SNAKE_CASE = "." ) -> None: snake_case_ = """""" for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): snake_case_ , snake_case_ = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: snake_case_ = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case_ = f"""{filepath}/{filename}""".replace(""" """ , """%20""" ) snake_case_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f"""{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
347
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __A (snake_case__): '''simple docstring''' __lowercase: Optional[int] = """beit""" def __init__( self : List[str] , UpperCAmelCase_ : List[Any]=8_192 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : List[Any]=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[Any]=1E-12 , UpperCAmelCase_ : int=224 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=[3, 5, 7, 11] , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=0.4 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : List[str] , ) ->Optional[Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = use_mask_token snake_case_ = use_absolute_position_embeddings snake_case_ = use_relative_position_bias snake_case_ = use_shared_relative_position_bias snake_case_ = layer_scale_init_value snake_case_ = drop_path_rate snake_case_ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ = out_indices snake_case_ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = semantic_loss_ignore_index class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = version.parse("""1.11""") @property def lowerCAmelCase ( self : Dict ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : Any ) ->float: """simple docstring""" return 1E-4
347
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = LDMTextToImagePipeline UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase : int = False def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _a : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) _a : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) _a : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _a : Any = CLIPTextModel(UpperCAmelCase__ ) _a : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _a : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def _lowercase ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=0 ) -> Optional[int]: if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : List[Any] = torch.manual_seed(UpperCAmelCase__ ) else: _a : Optional[int] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Optional[Any] = self.get_dummy_components() _a : List[Any] = LDMTextToImagePipeline(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : str = pipe(**UpperCAmelCase__ ).images _a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _a : List[str] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]: _a : Any = torch.manual_seed(UpperCAmelCase__ ) _a : Any = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) ) _a : Dict = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : Optional[int] ) -> List[str]: _a : List[Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : str = self.get_inputs(UpperCAmelCase__ ) _a : Optional[Any] = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _a : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _a : List[Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=torch.floataa , UpperCAmelCase__ : Optional[Any]=0 ) -> Union[str, Any]: _a : Optional[Any] = torch.manual_seed(UpperCAmelCase__ ) _a : Tuple = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) ) _a : Tuple = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Dict: _a : Optional[int] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = pipe(**UpperCAmelCase__ ).images[0] _a : Any = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) _a : Any = np.abs(expected_image - image ).max() assert max_diff < 1E-3
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "xlm-roberta-xl" def __init__( self : str , _UpperCamelCase : Union[str, Any]=2_5_0_8_8_0 , _UpperCamelCase : List[Any]=2_5_6_0 , _UpperCamelCase : Any=3_6 , _UpperCamelCase : Dict=3_2 , _UpperCamelCase : Optional[int]=1_0_2_4_0 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Union[str, Any]=5_1_4 , _UpperCamelCase : Dict=1 , _UpperCamelCase : int=0.02 , _UpperCamelCase : List[str]=1e-05 , _UpperCamelCase : Dict=1 , _UpperCamelCase : List[str]=0 , _UpperCamelCase : str=2 , _UpperCamelCase : Dict="absolute" , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Dict=None , **_UpperCamelCase : List[Any] , ) ->Union[str, Any]: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class snake_case_ ( __A ): '''simple docstring''' @property def snake_case__( self : List[str] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
8
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: List[Any] =[False] * len(__a ) lowerCamelCase__: Union[str, Any] =[-1] * len(__a ) def dfs(__a , __a ): lowerCamelCase__: List[Any] =True lowerCamelCase__: int =c for u in graph[v]: if not visited[u]: dfs(__a , 1 - c ) for i in range(len(__a ) ): if not visited[i]: dfs(__a , 0 ) for i in range(len(__a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
350
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0) ->None: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Any =row, column lowerCamelCase__: List[str] =[[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)] def __str__(self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowerCamelCase__: List[str] =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__: int =max(UpperCAmelCase_ , len(str(UpperCAmelCase_))) lowerCamelCase__: Any =F"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase_ : list[float]) -> str: nonlocal string_format_identifier lowerCamelCase__: Tuple ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array) return s def __repr__(self : Optional[int]) ->str: '''simple docstring''' return str(self) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : tuple[int, int]) ->bool: '''simple docstring''' if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : int , UpperCAmelCase_ : tuple[int, int]) ->Any: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) return self.array[loc[0]][loc[1]] def __setitem__(self : Optional[Any] , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float) ->None: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) lowerCamelCase__: str =value def __add__(self : Dict , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__: Dict =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: List[str] =self[r, c] + another[r, c] return result def __neg__(self : str) ->Matrix: '''simple docstring''' lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =-self[r, c] return result def __sub__(self : str , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' return self + (-another) def __mul__(self : List[str] , UpperCAmelCase_ : int | float | Matrix) ->Matrix: '''simple docstring''' if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication assert self.column == another.row lowerCamelCase__: Dict =Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__: int =F"""Unsupported type given for another ({type(UpperCAmelCase_)})""" raise TypeError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Matrix: '''simple docstring''' lowerCamelCase__: Optional[Any] =Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Optional[int] =self[r, c] return result def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix) ->Any: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__: Tuple =v.transpose() lowerCamelCase__: Optional[Any] =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: List[str] =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__: Union[str, Any] =1 print(F"""a^(-1) is {ainv}""" ) # u, v lowerCamelCase__: Optional[int] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =1, 2, -3 lowerCamelCase__: Optional[Any] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__a , __a )}""" ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
273
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) A_ :int = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Tuple = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys A_ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
226
0
class A_ ( SCREAMING_SNAKE_CASE ): pass class A_ ( SCREAMING_SNAKE_CASE ): pass class A_ : def __init__( self : Optional[int]): __lowerCamelCase : List[str] = [ [], [], [], ] def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): try: if len(self.queues[priority]) >= 1_0_0: raise OverflowError('Maximum queue size is 100') self.queues[priority].append(SCREAMING_SNAKE_CASE__) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2') def lowerCAmelCase ( self : str): for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError('All queues are empty') def __str__( self : List[str]): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues)) class A_ : def __init__( self : List[str]): __lowerCamelCase : Any = [] def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int): if len(self.queue) == 1_0_0: raise OverFlowError('Maximum queue size is 100') self.queue.append(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Any): if not self.queue: raise UnderFlowError('The queue is empty') else: __lowerCamelCase : Optional[Any] = min(self.queue) self.queue.remove(SCREAMING_SNAKE_CASE__) return data def __str__( self : Any): return str(self.queue) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: __lowerCamelCase : Dict = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(lowerCamelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: __lowerCamelCase : Optional[int] = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(lowerCamelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
113
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> None: __lowerCamelCase : int = len(lowerCamelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCamelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCamelCase__ , lowerCamelCase__ , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: __lowerCamelCase : list[list[str]] = [] depth_first_search([] , [] , [] , lowerCamelCase__ , lowerCamelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCamelCase__ ) print('' ) print(len(lowerCamelCase__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
113
1
import argparse import os import re lowercase__ : int = "src/diffusers" # Pattern that looks at the indentation in a line. lowercase__ : int = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : Union[str, Any] = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : Optional[int] = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : Any = re.compile(R"\[([^\]]+)\]") def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def lowerCamelCase__ ( _A , _A="" , _A=None , _A=None ): '''simple docstring''' snake_case_ = 0 snake_case_ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 snake_case_ = ["\n".join(lines[:index] )] else: snake_case_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case_ = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(A__ ) ) if index < len(A__ ) - 1: snake_case_ = [lines[index + 1]] index += 1 else: snake_case_ = [] else: blocks.append("\n".join(A__ ) ) snake_case_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append("\n".join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append("\n".join(lines[index:] ) ) return blocks def lowerCamelCase__ ( _A ): '''simple docstring''' def _inner(_A ): return key(A__ ).lower().replace("_" , "" ) return _inner def lowerCamelCase__ ( _A , _A=None ): '''simple docstring''' def noop(_A ): return x if key is None: snake_case_ = noop # Constants are all uppercase, they go first. snake_case_ = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case_ = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. snake_case_ = [obj for obj in objects if not key(A__ )[0].isupper()] snake_case_ = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def lowerCamelCase__ ( _A ): '''simple docstring''' def _replace(_A ): snake_case_ = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case_ = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(A__ )] ) + "]" snake_case_ = import_statement.split("\n" ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case_ = 2 if lines[1].strip() == "[" else 1 snake_case_ = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case_ = sort_objects(A__ , key=lambda _A : x[1] ) snake_case_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case_ = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case_ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ = keys[:-1] snake_case_ = get_indent(lines[1] ) + ", ".join([f"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line snake_case_ = _re_bracket_content.sub(_replace , A__ ) return import_statement def lowerCamelCase__ ( _A , _A=True ): '''simple docstring''' with open(A__ , "r" ) as f: snake_case_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case_ = split_code_in_indented_blocks( A__ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case_ = main_blocks[block_idx] snake_case_ = block.split("\n" ) # Get to the start of the imports. snake_case_ = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case_ = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. snake_case_ = "\n".join(block_lines[line_idx:-1] ) snake_case_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case_ = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case_ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case_ = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case_ = [(i, key) for i, key in enumerate(A__ ) if key is not None] snake_case_ = [x[0] for x in sorted(A__ , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case_ = 0 snake_case_ = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: snake_case_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. snake_case_ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(f"Overwriting {file}." ) with open(A__ , "w" ) as f: f.write("\n".join(A__ ) ) def lowerCamelCase__ ( _A=True ): '''simple docstring''' snake_case_ = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: snake_case_ = sort_imports(os.path.join(A__ , "__init__.py" ) , check_only=A__ ) if result: snake_case_ = [os.path.join(A__ , "__init__.py" )] if len(A__ ) > 0: raise ValueError(f"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowercase__ : Tuple = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
187
"""simple docstring""" def snake_case ( A__ ,A__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) UpperCAmelCase_ : Dict = (boundary[1] - boundary[0]) / steps UpperCAmelCase_ : Optional[int] = boundary[0] UpperCAmelCase_ : str = boundary[1] UpperCAmelCase_ : Tuple = make_points(A__ ,A__ ,A__ ) UpperCAmelCase_ : List[str] = 0.0 y += (h / 2.0) * f(A__ ) for i in x_i: # print(i) y += h * f(A__ ) y += (h / 2.0) * f(A__ ) return y def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = a + h while x < (b - h): yield x UpperCAmelCase_ : Optional[Any] = x + h def snake_case ( A__ ): # enter your function here UpperCAmelCase_ : Dict = (x - 0) * (x - 0) return y def snake_case ( ): UpperCAmelCase_ : Dict = 0.0 # Lower bound of integration UpperCAmelCase_ : Optional[int] = 1.0 # Upper bound of integration UpperCAmelCase_ : Dict = 10.0 # define number of steps or resolution UpperCAmelCase_ : List[Any] = [a, b] # define boundary of integration UpperCAmelCase_ : Union[str, Any] = method_a(A__ ,A__ ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
268
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _snake_case ( _snake_case : str , _snake_case : str , **_snake_case : List[Any] ): lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_config(_snake_case ) model.save_pretrained(_snake_case ) AutoTokenizer.from_pretrained(_snake_case ).save_pretrained(_snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" from __future__ import annotations import pandas as pd def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : list[int] ,_lowerCamelCase : int ) -> list[int]: _lowerCAmelCase : Tuple = [0] * no_of_processes _lowerCAmelCase : Optional[int] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_lowerCamelCase ): _lowerCAmelCase : List[Any] = burst_time[i] _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Any = 0 _lowerCAmelCase : Dict = 999999999 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : int = False # Process until all processes are completed while complete != no_of_processes: for j in range(_lowerCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _lowerCAmelCase : Optional[int] = remaining_time[j] _lowerCAmelCase : Tuple = j _lowerCAmelCase : Optional[Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _lowerCAmelCase : Optional[int] = remaining_time[short] if minm == 0: _lowerCAmelCase : str = 999999999 if remaining_time[short] == 0: complete += 1 _lowerCAmelCase : Union[str, Any] = False # Find finish time of current process _lowerCAmelCase : str = increment_time + 1 # Calculate waiting time _lowerCAmelCase : Union[str, Any] = finish_time - arrival_time[short] _lowerCAmelCase : str = finar - burst_time[short] if waiting_time[short] < 0: _lowerCAmelCase : Optional[Any] = 0 # Increment time increment_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ,_lowerCamelCase : list[int] ) -> list[int]: _lowerCAmelCase : Dict = [0] * no_of_processes for i in range(_lowerCamelCase ): _lowerCAmelCase : str = burst_time[i] + waiting_time[i] return turn_around_time def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : list[int] ,_lowerCamelCase : int ) -> None: _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = 0 for i in range(_lowerCamelCase ): _lowerCAmelCase : Any = total_waiting_time + waiting_time[i] _lowerCAmelCase : Any = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print("""Average turn around time =""" ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') _a : str = int(input()) _a : Optional[int] = [0] * no_of_processes _a : List[Any] = [0] * no_of_processes _a : Dict = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) _a : Dict = map(int, input().split()) _a : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _a : int = burst_time _a : List[str] = no_of_processes _a : int = waiting_time _a : Any = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _a : Optional[Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
44
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str: '''simple docstring''' if not batched: _UpperCamelCase = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): _UpperCamelCase , _UpperCamelCase = image.size else: _UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2] if w < h: _UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = self.size['''shortest_edge'''] else: _UpperCamelCase = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) _UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' pass def snake_case__ ( self : int ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''image_id''': 39769, '''annotations''': target} # encode them _UpperCamelCase = DeformableDetrImageProcessor() _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) ) @slow def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} _UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify masks _UpperCamelCase = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
324
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED lowerCAmelCase_ = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowerCAmelCase_ = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( )-> Any: _snake_case : Dict = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case : Optional[int] = bs[:] _snake_case : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 _snake_case : Optional[int] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> List[Any]: _snake_case : Dict = set() _snake_case : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case : str = char return pairs class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : int =PRETRAINED_VOCAB_FILES_MAP a_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Dict =["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any]="replace" , UpperCamelCase : Optional[Any]="<s>" , UpperCamelCase : Tuple="</s>" , UpperCamelCase : List[str]="</s>" , UpperCamelCase : str="<s>" , UpperCamelCase : Optional[Any]="<unk>" , UpperCamelCase : Union[str, Any]="<pad>" , UpperCamelCase : List[Any]="<mask>" , UpperCamelCase : List[Any]=False , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' _snake_case : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else bos_token _snake_case : Optional[int] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token _snake_case : Optional[int] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else sep_token _snake_case : int = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else cls_token _snake_case : int = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else unk_token _snake_case : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , **UpperCamelCase , ) with open(UpperCamelCase , encoding='utf-8' ) as vocab_handle: _snake_case : Optional[int] = json.load(UpperCamelCase ) _snake_case : Dict = {v: k for k, v in self.encoder.items()} _snake_case : Dict = errors # how to handle errors in decoding _snake_case : int = bytes_to_unicode() _snake_case : Any = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase , encoding='utf-8' ) as merges_handle: _snake_case : str = merges_handle.read().split('\n' )[1:-1] _snake_case : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] _snake_case : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : int = {} _snake_case : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case : str = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] _snake_case : Union[str, Any] = tuple(UpperCamelCase ) _snake_case : List[Any] = get_pairs(UpperCamelCase ) if not pairs: return token while True: _snake_case : Optional[Any] = min(UpperCamelCase , key=lambda UpperCamelCase : self.bpe_ranks.get(UpperCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case : Any = bigram _snake_case : List[str] = [] _snake_case : Any = 0 while i < len(UpperCamelCase ): try: _snake_case : Optional[int] = word.index(UpperCamelCase , UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case : List[str] = j if word[i] == first and i < len(UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case : List[str] = tuple(UpperCamelCase ) _snake_case : str = new_word if len(UpperCamelCase ) == 1: break else: _snake_case : Optional[Any] = get_pairs(UpperCamelCase ) _snake_case : Tuple = ' '.join(UpperCamelCase ) _snake_case : Dict = word return word def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Tuple = [] for token in re.findall(self.pat , UpperCamelCase ): _snake_case : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase ).split(' ' ) ) return bpe_tokens def UpperCamelCase_ ( self : int , UpperCamelCase : Tuple ): '''simple docstring''' return self.encoder.get(UpperCamelCase , self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Optional[int] = ''.join(UpperCamelCase ) _snake_case : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case : Any = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Tuple = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase , ensure_ascii=UpperCamelCase ) + '\n' ) _snake_case : int = 0 with open(UpperCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _snake_case : Any = token_index writer.write(' '.join(UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : Any = [self.cls_token_id] _snake_case : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] def UpperCamelCase_ ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase ) > 0 and not text[0].isspace()): _snake_case : List[str] = ' ' + text return (text, kwargs) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase : Optional[int] = None , UpperCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , ): '''simple docstring''' _snake_case : Optional[int] = super()._pad( encoded_inputs=UpperCamelCase , max_length=UpperCamelCase , padding_strategy=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: _snake_case : Tuple = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _snake_case : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _snake_case : Optional[Any] = len(encoded_inputs['global_attention_mask'] ) != len(UpperCamelCase ) if needs_to_be_padded: _snake_case : int = len(UpperCamelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _snake_case : Union[str, Any] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _snake_case : Union[str, Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
260
import qiskit def lowerCamelCase_ ( lowerCAmelCase: int = 2 )-> qiskit.result.counts.Counts: _snake_case : Dict = qubits # Using Aer's simulator _snake_case : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register _snake_case : Tuple = qiskit.QuantumCircuit(lowerCAmelCase , lowerCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCAmelCase ) ) , list(range(lowerCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _snake_case : Any = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=10_00 ) return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
260
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} lowerCamelCase_ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } lowerCamelCase_ = { "abeja/gpt-neox-japanese-2.7b": 20_48, } def __magic_name__ ( __a : Union[str, Any] , __a : List[str] ): '''simple docstring''' with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase__ = json.loads(f.read() ) UpperCamelCase__ = collections.OrderedDict() UpperCamelCase__ = collections.OrderedDict() UpperCamelCase__ = collections.OrderedDict() with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(UpperCamelCase__ ): UpperCamelCase__ = b UpperCamelCase__ = idx for wd in b: UpperCamelCase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __A( a_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ["""input_ids""", """attention_mask"""] def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|startoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ): super().__init__( unk_token=_A , pad_token=_A , bos_token=_A , eos_token=_A , do_clean_text=_A , **_A , ) if not os.path.isfile(_A ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_A ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) UpperCamelCase__ = do_clean_text UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = load_vocab_and_emoji(_A , _A ) UpperCamelCase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCAmelCase_ (self ): return len(self.raw_vocab ) def UpperCAmelCase_ (self ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return self.subword_tokenizer.tokenize(_A , clean=self.do_clean_text ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return self.subword_tokenizer.convert_id_to_token(_A ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """""".join(_A ).strip() return out_string def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: UpperCamelCase__ = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase__ = 0 if os.path.isdir(_A ): UpperCamelCase__ = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: UpperCamelCase__ = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(_A , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) UpperCamelCase__ = token_index writer.write(""",""".join(_A ) + """\n""" ) index += 1 with open(_A , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , _A ) return vocab_file, emoji_file class __A( a_ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = vocab # same as swe UpperCamelCase__ = ids_to_tokens # same as bpe UpperCamelCase__ = emoji UpperCamelCase__ = np.max([len(_A ) for w in self.vocab.keys()] ) UpperCamelCase__ = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) UpperCamelCase__ = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) UpperCamelCase__ = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) UpperCamelCase__ = re.compile( r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) UpperCamelCase__ = re.compile( r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) UpperCamelCase__ = re.compile( r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) UpperCamelCase__ = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" UpperCamelCase__ = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" UpperCamelCase__ = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__(self ): return len(self.ids_to_tokens ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.content_repattera.sub("""<URL>""" , _A ) UpperCamelCase__ = self.content_repattera.sub("""<EMAIL>""" , _A ) UpperCamelCase__ = self.content_repattera.sub("""<TEL>""" , _A ) UpperCamelCase__ = self.content_repattera.sub("""<DATE>""" , _A ) UpperCamelCase__ = self.content_repattera.sub("""<DATE>""" , _A ) UpperCamelCase__ = self.content_repattera.sub("""<PRICE>""" , _A ) UpperCamelCase__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCamelCase__ = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase__ = text.replace(""" """ , """<SP>""" ) UpperCamelCase__ = text.replace(""" """ , """<SP>""" ) UpperCamelCase__ = text.replace("""\r\n""" , """<BR>""" ) UpperCamelCase__ = text.replace("""\n""" , """<BR>""" ) UpperCamelCase__ = text.replace("""\r""" , """<BR>""" ) UpperCamelCase__ = text.replace("""\t""" , """<TAB>""" ) UpperCamelCase__ = text.replace("""—""" , """ー""" ) UpperCamelCase__ = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCamelCase__ = text.replace(_A , _A ) if clean: UpperCamelCase__ = self.clean_text(_A ) def check_simbol(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = x.encode() if len(_A ) == 1 and len(_A ) == 2: UpperCamelCase__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = x.encode() if len(_A ) == 1 and len(_A ) == 3: UpperCamelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False UpperCamelCase__ = 0 UpperCamelCase__ = [] while pos < len(_A ): UpperCamelCase__ = min(len(_A ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 UpperCamelCase__ = [] # (token_id, token, pos) for e in range(_A , _A , -1 ): UpperCamelCase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_A ) > 2: UpperCamelCase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_A ) > 0: # the smallest token_id is adopted UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = sorted(_A , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )[0] result.append(_A ) UpperCamelCase__ = e else: UpperCamelCase__ = pos + 1 UpperCamelCase__ = text[pos:end] if check_simbol(_A ): result.append("""<KIGOU>""" ) elif checkuae(_A ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) UpperCamelCase__ = end return result def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="\n" ): UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_A ) > 0: words.append(bytearray(_A ).decode("""utf-8""" , errors="""replace""" ) ) UpperCamelCase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_A ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_A ) if len(_A ) > 0: words.append(bytearray(_A ).decode("""utf-8""" , errors="""replace""" ) ) UpperCamelCase__ = """""".join(_A ) return text
244
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A : Dict = logging.get_logger(__name__) __A : str = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class A_ (a_ ): UpperCAmelCase__ = '''longformer''' def __init__( self , _A = 5_1_2 , _A = 2 , _A = 1 , _A = 0 , _A = 2 , _A = 3_0_5_2_2 , _A = 7_6_8 , _A = 1_2 , _A = 1_2 , _A = 3_0_7_2 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 5_1_2 , _A = 2 , _A = 0.02 , _A = 1E-12 , _A = False , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase = attention_window UpperCAmelCase = sep_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = onnx_export class A_ (a_ ): def __init__( self , _A , _A = "default" , _A = None ): '''simple docstring''' super().__init__(_A , _A , _A ) UpperCAmelCase = True @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = super().outputs if self.task == "default": UpperCAmelCase = {0: '''batch'''} return outputs @property def _lowercase ( self ): '''simple docstring''' return 1E-4 @property def _lowercase ( self ): '''simple docstring''' return max(super().default_onnx_opset , 1_4 ) def _lowercase ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): '''simple docstring''' UpperCAmelCase = super().generate_dummy_inputs( preprocessor=_A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global UpperCAmelCase = 1 return inputs
273
0
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Optional[int]=None , lowerCamelCase : Optional[int]=None ): return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class UpperCAmelCase_ : lowerCamelCase : List[str] = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) lowerCamelCase : List[int] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) lowerCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) lowerCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) lowerCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) lowerCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Benchmark training of model'''} ) lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Verbose memory tracing'''} ) lowerCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) lowerCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Trace memory line by line'''} ) lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save result to a CSV file'''} ) lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save all print statements in a log file'''} ) lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to print environment information'''} ) lowerCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) lowerCamelCase : str = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) lowerCamelCase : str = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) lowerCamelCase : str = field( default=f"""train_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) lowerCamelCase : str = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) lowerCamelCase : str = field( default=f"""env_info_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) lowerCamelCase : str = field( default=f"""log_{round(time() )}.csv""" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) lowerCamelCase : int = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) lowerCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def __UpperCAmelCase ( self : int ) -> Any: warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , __UpperCAmelCase , ) def __UpperCAmelCase ( self : Any ) -> List[str]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __UpperCAmelCase ( self : Tuple ) -> List[str]: if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def __UpperCAmelCase ( self : str ) -> Optional[int]: if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
366
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=9_9 , UpperCAmelCase__ : Any=3_6 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=1_0_0_0 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = text_seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = coordinate_size lowerCAmelCase = shape_size lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase = text_seq_length lowerCAmelCase = (image_size // patch_size) ** 2 + 1 lowerCAmelCase = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self : str ) -> Dict: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> str: lowerCAmelCase = LayoutLMvaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # text + image lowerCAmelCase = model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase = model(pixel_values=UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = False lowerCamelCase : Tuple = False lowerCamelCase : int = False lowerCamelCase : Optional[int] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : int = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=False ) -> Optional[int]: lowerCAmelCase = copy.deepcopy(UpperCAmelCase__ ) if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) return inputs_dict def __UpperCAmelCase ( self : Tuple ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Any ) -> Any: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = LayoutLMvaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> str: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : int ) -> Any: lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[1, 2]] ) lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase = model( input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , ) # verify the logits lowerCAmelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
113
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __UpperCamelCase = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> int: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) SCREAMING_SNAKE_CASE = os.path.abspath('examples' ) for item in os.listdir(lowerCAmelCase__ ): if item not in EXCLUDE_EXAMPLES: SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase__ , feature_script=lowerCAmelCase__ , tested_section='main()' if parser_only else 'training_function()' , ): SCREAMING_SNAKE_CASE = compare_against_test( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = '\n'.join(lowerCAmelCase__ ) if special_strings is not None: for string in special_strings: SCREAMING_SNAKE_CASE = diff.replace(lowerCAmelCase__ , '' ) self.assertEqual(lowerCAmelCase__ , '' ) def __A ( self ) -> Optional[int]: self.one_complete_example('complete_nlp_example.py' , lowerCAmelCase__ ) self.one_complete_example('complete_nlp_example.py' , lowerCAmelCase__ ) def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) SCREAMING_SNAKE_CASE = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.one_complete_example('complete_cv_example.py' , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = False @classmethod def __A ( cls ) -> List[str]: super().setUpClass() SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) SCREAMING_SNAKE_CASE = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def __A ( cls ) -> Dict: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ ) self.assertNotIn('epoch 0:' , lowerCAmelCase__ ) self.assertIn('epoch 1:' , lowerCAmelCase__ ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ ) if torch.cuda.is_available(): SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , lowerCAmelCase__ ) self.assertIn('epoch 1:' , lowerCAmelCase__ ) else: self.assertIn('epoch 0:' , lowerCAmelCase__ ) self.assertIn('epoch 1:' , lowerCAmelCase__ ) @slow def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = re.findall('({.+})' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [r for r in results if 'accuracy' in r][-1] SCREAMING_SNAKE_CASE = ast.literal_eval(lowerCAmelCase__ ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __A ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: SCREAMING_SNAKE_CASE = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , 'tracking' ) ) ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
113
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ): """simple docstring""" A_ = [] for _ in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ): """simple docstring""" A_ = [] for step in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase ,"schedule.bin" ) torch.save(scheduler.state_dict() ,__UpperCamelCase ) A_ = torch.load(__UpperCamelCase ) scheduler.load_state_dict(__UpperCamelCase ) return lrs @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self : Dict ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , ) for _ in range(1000 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None _lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _lowerCamelCase : Any = 1_0 def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A_ , A_ = data A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A_ = unwrap_schedule(UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[str] ): A_ = fn def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ): return self.fn(*UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = list(map(self , scheduler.lr_lambdas ) )
329
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=False , A=True , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> Optional[Any]: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : int = min_resolution UpperCAmelCase : int = max_resolution UpperCAmelCase : str = do_resize UpperCAmelCase : Tuple = size if size is not None else {"""height""": 18, """width""": 20} UpperCAmelCase : int = do_thumbnail UpperCAmelCase : List[Any] = do_align_axis UpperCAmelCase : Tuple = do_pad UpperCAmelCase : Union[str, Any] = do_normalize UpperCAmelCase : Any = image_mean UpperCAmelCase : str = image_std def _lowercase( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase_ ( A__ , unittest.TestCase ): lowercase = DonutImageProcessor if is_vision_available() else None def _lowercase( self ) -> Tuple: UpperCAmelCase : int = DonutImageProcessingTester(self ) @property def _lowercase( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_thumbnail""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_align_long_axis""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_pad""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def _lowercase( self ) -> List[str]: pass @is_flaky() def _lowercase( self ) -> Dict: # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCAmelCase : str = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def _lowercase( self ) -> str: # Initialize image_processing UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCAmelCase : Optional[int] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def _lowercase( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCAmelCase : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
265
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowerCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): __SCREAMING_SNAKE_CASE :List[Any] = ["""pixel_values"""] def __init__( self : Union[str, Any] , a__ : List[Any] = True , a__ : Tuple = None , a__ : str = PILImageResampling.BICUBIC , a__ : Optional[Any] = True , a__ : Union[str, Any] = None , a__ : Union[str, Any] = True , a__ : Dict = 1 / 255 , a__ : List[str] = True , a__ : Any = None , a__ : Union[str, Any] = None , a__ : Tuple = True , **a__ : str , ): super().__init__(**lowerCAmelCase__ ) __magic_name__ = size if size is not None else {'''shortest_edge''': 224} __magic_name__ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __magic_name__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __magic_name__ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name='''crop_size''' ) __magic_name__ = do_resize __magic_name__ = size __magic_name__ = resample __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __magic_name__ = image_std if image_std is not None else OPENAI_CLIP_STD __magic_name__ = do_convert_rgb def snake_case__ ( self : int , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Optional[int] = PILImageResampling.BICUBIC , a__ : Union[str, Any] = None , **a__ : Dict , ): __magic_name__ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __magic_name__ = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , a__ : Optional[int] , a__ : Any , a__ : Any = None , **a__ : Any , ): __magic_name__ = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : List[str] , a__ : Union[str, Any] , a__ : Optional[int] , a__ : Dict = None , **a__ : Tuple , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , a__ : Optional[Any] , a__ : Tuple , a__ : str , a__ : Dict = None , **a__ : Tuple , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : int , a__ : int , a__ : Optional[int] = None , a__ : List[Any] = None , a__ : List[Any] = None , a__ : int = None , a__ : Tuple = None , a__ : Optional[int] = None , a__ : Dict = None , a__ : List[str] = None , a__ : Any = None , a__ : List[Any] = None , a__ : Any = None , a__ : str = None , a__ : int = ChannelDimension.FIRST , **a__ : Tuple , ): __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = size if size is not None else self.size __magic_name__ = get_size_dict(lowerCAmelCase__ , param_name='''size''' , default_to_square=lowerCAmelCase__ ) __magic_name__ = resample if resample is not None else self.resample __magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ = crop_size if crop_size is not None else self.crop_size __magic_name__ = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' , default_to_square=lowerCAmelCase__ ) __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ = image_mean if image_mean is not None else self.image_mean __magic_name__ = image_std if image_std is not None else self.image_std __magic_name__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __magic_name__ = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __magic_name__ = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. __magic_name__ = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: __magic_name__ = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: __magic_name__ = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: __magic_name__ = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: __magic_name__ = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] __magic_name__ = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __magic_name__ = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
366
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self : str , a__ : Union[str, Any] , a__ : Dict=13 , a__ : List[str]=32 , a__ : List[Any]=2 , a__ : List[str]=3 , a__ : Union[str, Any]=16 , a__ : Dict=[1, 2, 1] , a__ : Optional[Any]=[2, 2, 4] , a__ : List[str]=2 , a__ : Optional[Any]=2.0 , a__ : Union[str, Any]=True , a__ : int=0.0 , a__ : int=0.0 , a__ : Tuple=0.1 , a__ : List[str]="gelu" , a__ : str=False , a__ : Optional[int]=True , a__ : List[Any]=0.02 , a__ : Any=1E-5 , a__ : int=True , a__ : List[Any]=None , a__ : Dict=True , a__ : Optional[int]=10 , a__ : Any=8 , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads __magic_name__ = window_size __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = use_absolute_embeddings __magic_name__ = patch_norm __magic_name__ = layer_norm_eps __magic_name__ = initializer_range __magic_name__ = is_training __magic_name__ = scope __magic_name__ = use_labels __magic_name__ = type_sequence_label_size __magic_name__ = encoder_stride def snake_case__ ( self : List[Any] ): __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Optional[int] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case__ ( self : Optional[int] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Optional[int] ): __magic_name__ = SwinvaModel(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ ) __magic_name__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case__ ( self : Optional[Any] , a__ : Optional[Any] , a__ : str , a__ : int ): __magic_name__ = SwinvaForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = SwinvaForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case__ ( self : List[str] , a__ : List[str] , a__ : List[Any] , a__ : Any ): __magic_name__ = self.type_sequence_label_size __magic_name__ = SwinvaForImageClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :int = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE :Tuple = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE :Union[str, Any] = False __SCREAMING_SNAKE_CASE :List[Any] = False __SCREAMING_SNAKE_CASE :Dict = False __SCREAMING_SNAKE_CASE :Union[str, Any] = False def snake_case__ ( self : str ): __magic_name__ = SwinvaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=a__ , embed_dim=37 ) def snake_case__ ( self : Tuple ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : List[Any] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def snake_case__ ( self : str ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def snake_case__ ( self : Union[str, Any] ): pass def snake_case__ ( self : Optional[int] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def snake_case__ ( self : Union[str, Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def snake_case__ ( self : int ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = True for model_class in self.all_model_classes: __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.attentions __magic_name__ = len(self.model_tester.depths ) self.assertEqual(len(a__ ) , a__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ = True __magic_name__ = config.window_size**2 __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __magic_name__ = len(a__ ) # Check attention is always last and order is fine __magic_name__ = True __magic_name__ = True __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): __magic_name__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __magic_name__ = 2 self.assertEqual(out_len + added_hidden_states , len(a__ ) ) __magic_name__ = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def snake_case__ ( self : Any , a__ : Dict , a__ : str , a__ : str , a__ : List[Any] ): __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.hidden_states __magic_name__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # Swinv2 has a different seq_length __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ = outputs.reshaped_hidden_states self.assertEqual(len(a__ ) , a__ ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = reshaped_hidden_states[0].shape __magic_name__ = ( reshaped_hidden_states[0].view(a__ , a__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case__ ( self : List[Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = 3 __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) def snake_case__ ( self : str ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def snake_case__ ( self : Dict ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def snake_case__ ( self : Any ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = SwinvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def snake_case__ ( self : List[str] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = _config_zero_init(a__ ) for model_class in self.all_model_classes: __magic_name__ = model_class(config=a__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def snake_case__ ( self : Optional[Any] ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def snake_case__ ( self : Optional[int] ): __magic_name__ = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( a__ ) __magic_name__ = self.default_image_processor __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __magic_name__ = model(**a__ ) # verify the logits __magic_name__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __magic_name__ = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
98
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' def merge(_SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_SCREAMING_SNAKE_CASE ) <= 1: return collection _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __A : int = input("Enter numbers separated by a comma:\n").strip() __A : Any = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
260
"""simple docstring""" import random def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = a[left_index] _UpperCAmelCase = left_index + 1 for j in range(left_index + 1 , _SCREAMING_SNAKE_CASE ): if a[j] < pivot: _UpperCAmelCase , _UpperCAmelCase = a[i], a[j] i += 1 _UpperCAmelCase , _UpperCAmelCase = a[i - 1], a[left_index] return i - 1 def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if left < right: _UpperCAmelCase = random.randint(_SCREAMING_SNAKE_CASE , right - 1 ) _UpperCAmelCase , _UpperCAmelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) quick_sort_random( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( _SCREAMING_SNAKE_CASE , pivot_index + 1 , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def lowercase ( ): '''simple docstring''' _UpperCAmelCase = input('''Enter numbers separated by a comma:\n''' ).strip() _UpperCAmelCase = [int(_SCREAMING_SNAKE_CASE ) for item in user_input.split(''',''' )] quick_sort_random(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
260
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a__ : Tuple = 2 class UpperCAmelCase__ : def __init__( self , *, # begin keyword-only arguments lowercase="<s>" , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase=None , ) -> List[str]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = bos, unk, pad, eos __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = {} __UpperCamelCase = self.add_symbol(lowercase ) __UpperCamelCase = self.add_symbol(lowercase ) __UpperCamelCase = self.add_symbol(lowercase ) __UpperCamelCase = self.add_symbol(lowercase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowercase ) __UpperCamelCase = len(self.symbols ) def __eq__( self , lowercase ) -> Optional[int]: return self.indices == other.indices def __getitem__( self , lowercase ) -> int: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> List[str]: return len(self.symbols ) def __contains__( self , lowercase ) -> Union[str, Any]: return sym in self.indices @classmethod def __lowerCamelCase ( cls , lowercase ) -> str: __UpperCamelCase = cls() d.add_from_file(lowercase ) return d def __lowerCamelCase ( self , lowercase , lowercase=1 , lowercase=False ) -> Any: if word in self.indices and not overwrite: __UpperCamelCase = self.indices[word] __UpperCamelCase = self.count[idx] + n return idx else: __UpperCamelCase = len(self.symbols ) __UpperCamelCase = idx self.symbols.append(lowercase ) self.count.append(lowercase ) return idx def __lowerCamelCase ( self , lowercase ) -> Union[str, Any]: return 0 def __lowerCamelCase ( self , lowercase ) -> List[str]: if isinstance(lowercase , lowercase ): try: with open(lowercase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowercase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(lowercase ) ) return __UpperCamelCase = f.readlines() __UpperCamelCase = self._load_meta(lowercase ) for line in lines[indices_start_line:]: try: __UpperCamelCase , __UpperCamelCase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __UpperCamelCase = True __UpperCamelCase , __UpperCamelCase = line.rsplit(""" """ , 1 ) else: __UpperCamelCase = False __UpperCamelCase = int(lowercase ) __UpperCamelCase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(lowercase ) ) self.add_symbol(lowercase , n=lowercase , overwrite=lowercase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = dict((re.sub(R"""@@$""" ,"""""" ,__A ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" ,"""</w>""" ,__A ), v) for k, v in d.items() ) __UpperCamelCase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] __UpperCamelCase = d[k] # restore return da def _lowercase ( __A ,__A ): '''simple docstring''' if not os.path.exists(__A ): raise ValueError(f"path {biogpt_checkpoint_path} does not exist!" ) os.makedirs(__A ,exist_ok=__A ) print(f"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models __UpperCamelCase = os.path.join(__A ,"""checkpoint.pt""" ) if not os.path.isfile(__A ): raise ValueError(f"path to the file {checkpoint_file} does not exist!" ) __UpperCamelCase = torch.load(__A ,map_location="""cpu""" ) __UpperCamelCase = chkpt["""cfg"""]["""model"""] # dicts __UpperCamelCase = os.path.join(__A ,"""dict.txt""" ) if not os.path.isfile(__A ): raise ValueError(f"path to the file {dict_file} does not exist!" ) __UpperCamelCase = Dictionary.load(__A ) __UpperCamelCase = rewrite_dict_keys(src_dict.indices ) __UpperCamelCase = len(__A ) __UpperCamelCase = os.path.join(__A ,VOCAB_FILES_NAMES["""vocab_file"""] ) print(f"Generating {src_vocab_file} of {src_vocab_size} records" ) with open(__A ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(__A ,ensure_ascii=__A ,indent=__A ) ) # merges_file (bpecodes) __UpperCamelCase = os.path.join(__A ,"""bpecodes""" ) if not os.path.isfile(__A ): raise ValueError(f"path to the file {bpecodes_file} does not exist!" ) __UpperCamelCase = os.path.join(__A ,VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(__A ,__A ) # model config __UpperCamelCase = os.path.join(__A ,"""config.json""" ) __UpperCamelCase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1E-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(f"Generating {biogpt_model_config_file}" ) with open(__A ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(__A ,ensure_ascii=__A ,indent=__A ) ) # tokenizer config __UpperCamelCase = os.path.join(__A ,__A ) __UpperCamelCase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(f"Generating {biogpt_tokenizer_config_file}" ) with open(__A ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(__A ,ensure_ascii=__A ,indent=__A ) ) # model __UpperCamelCase = chkpt["""model"""] # remove unneeded keys __UpperCamelCase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(__A ,__A ) __UpperCamelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __UpperCamelCase = model_state_dict.pop(__A ) else: __UpperCamelCase = model_state_dict.pop(__A ) __UpperCamelCase = BioGptConfig.from_pretrained(__A ) __UpperCamelCase = BioGptForCausalLM(__A ) # check that it loads ok model_new.load_state_dict(__A ) # save __UpperCamelCase = os.path.join(__A ,__A ) print(f"Generating {pytorch_weights_dump_path}" ) torch.save(__A ,__A ) print("""Conversion is done!""" ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__ : List[str] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
371
'''simple docstring''' def _lowercase ( __A ): '''simple docstring''' if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
243
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowerCamelCase : int = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , *UpperCAmelCase__ : str , **UpperCAmelCase__ : int) ->None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__)
14
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BlenderbotSmallTokenizer _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() lowerCamelCase_ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] lowerCamelCase_ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = "adapt act apte" return input_text, output_text def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = ["adapt", "act", "ap@@", "te"] lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase_ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] lowerCamelCase_ = "I am a small frog." lowerCamelCase_ = tok([src_text] , padding=UpperCamelCase , truncation=UpperCamelCase )["input_ids"] lowerCamelCase_ = tok.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) lowerCamelCase_ = "I am a small frog ." lowerCamelCase_ = "." lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
55
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) def __lowerCAmelCase ( lowercase : Any ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Dict = ['''pixel_values'''] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : int = size if size is not None else {"shortest_edge": 256} snake_case : List[Any] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) snake_case : Dict = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case : Optional[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size" ) snake_case : str = do_resize snake_case : Union[str, Any] = size snake_case : int = do_center_crop snake_case : Optional[int] = crop_size snake_case : Union[str, Any] = resample snake_case : Tuple = do_rescale snake_case : str = rescale_factor snake_case : Tuple = offset snake_case : int = do_normalize snake_case : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' snake_case : Dict = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" in size: snake_case : Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size["shortest_edge"] , default_to_square=UpperCamelCase__ ) elif "height" in size and "width" in size: snake_case : Optional[Any] = (size["height"], size["width"]) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' snake_case : Optional[int] = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Any: '''simple docstring''' snake_case : List[str] = image.astype(np.floataa ) if offset: snake_case : Optional[int] = image - (scale / 2) return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. snake_case : Union[str, Any] = to_numpy_array(UpperCamelCase__ ) if do_resize: snake_case : Union[str, Any] = self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) if do_center_crop: snake_case : List[str] = self.center_crop(UpperCamelCase__ , size=UpperCamelCase__ ) if do_rescale: snake_case : int = self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ , offset=UpperCamelCase__ ) if do_normalize: snake_case : List[Any] = self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) snake_case : str = to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) return image def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> PIL.Image.Image: '''simple docstring''' snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Any = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Union[str, Any] = offset if offset is not None else self.offset snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : Optional[Any] = image_mean if image_mean is not None else self.image_mean snake_case : Any = image_std if image_std is not None else self.image_std snake_case : Any = size if size is not None else self.size snake_case : int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) snake_case : int = crop_size if crop_size is not None else self.crop_size snake_case : Optional[int] = get_size_dict(UpperCamelCase__ , param_name="crop_size" ) if not valid_images(UpperCamelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) snake_case : List[str] = make_batched(UpperCamelCase__ ) snake_case : Dict = [ [ self._preprocess_image( image=UpperCamelCase__ , do_resize=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , crop_size=UpperCamelCase__ , do_rescale=UpperCamelCase__ , rescale_factor=UpperCamelCase__ , offset=UpperCamelCase__ , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , data_format=UpperCamelCase__ , ) for img in video ] for video in videos ] snake_case : List[str] = {"pixel_values": videos} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
112
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def lowerCamelCase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : List[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case : int = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = object_detector(examples[0] , threshold=0.0 ) snake_case : str = len(UpperCamelCase__ ) self.assertGreater(UpperCamelCase__ , 0 ) self.assertEqual( UpperCamelCase__ , [ { "score": ANY(UpperCamelCase__ ), "label": ANY(UpperCamelCase__ ), "box": {"xmin": ANY(UpperCamelCase__ ), "ymin": ANY(UpperCamelCase__ ), "xmax": ANY(UpperCamelCase__ ), "ymax": ANY(UpperCamelCase__ )}, } for i in range(UpperCamelCase__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @require_torch def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Dict = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) snake_case : Dict = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Optional[int] = pipeline("zero-shot-object-detection" ) snake_case : Tuple = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) snake_case : List[Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass @require_torch @slow def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = 0.2 snake_case : List[str] = pipeline("zero-shot-object-detection" ) snake_case : List[Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = 2 snake_case : Optional[Any] = pipeline("zero-shot-object-detection" ) snake_case : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
112
1
import datasets lowerCAmelCase__ :int = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCAmelCase__ :Union[str, Any] = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCAmelCase__ :Optional[Any] = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def lowerCAmelCase__ ( a__: str , a__: Dict ) -> Any: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}
329
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : str = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 39769, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks _UpperCAmelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
329
1
'''simple docstring''' import os def __lowerCamelCase ( __lowerCAmelCase : str = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as in_file: snake_case = in_file.read() snake_case = [[int(__lowerCAmelCase ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] snake_case = [[0 for cell in row] for row in grid] snake_case = len(grid[0] ) snake_case = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] snake_case = grid[0][0] for i in range(1 , __lowerCAmelCase ): snake_case = grid[0][i] + dp[0][i - 1] for i in range(1 , __lowerCAmelCase ): snake_case = grid[i][0] + dp[i - 1][0] for i in range(1 , __lowerCAmelCase ): for j in range(1 , __lowerCAmelCase ): snake_case = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1