code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Optional[Any] ={
'''configuration_mobilebert''': [
'''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileBertConfig''',
'''MobileBertOnnxConfig''',
],
'''tokenization_mobilebert''': ['''MobileBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any =['''MobileBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict =[
'''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileBertForMaskedLM''',
'''MobileBertForMultipleChoice''',
'''MobileBertForNextSentencePrediction''',
'''MobileBertForPreTraining''',
'''MobileBertForQuestionAnswering''',
'''MobileBertForSequenceClassification''',
'''MobileBertForTokenClassification''',
'''MobileBertLayer''',
'''MobileBertModel''',
'''MobileBertPreTrainedModel''',
'''load_tf_weights_in_mobilebert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] =[
'''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileBertForMaskedLM''',
'''TFMobileBertForMultipleChoice''',
'''TFMobileBertForNextSentencePrediction''',
'''TFMobileBertForPreTraining''',
'''TFMobileBertForQuestionAnswering''',
'''TFMobileBertForSequenceClassification''',
'''TFMobileBertForTokenClassification''',
'''TFMobileBertMainLayer''',
'''TFMobileBertModel''',
'''TFMobileBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
a__ : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 53 |
'''simple docstring'''
from __future__ import annotations
class snake_case :
"""simple docstring"""
def __init__( self : Optional[int] , __A : list[list[int]] ):
__UpperCamelCase = TypeError(
'Matrices must be formed from a list of zero or more lists containing at '
'least one and the same number of values, each of which must be of type '
'int or float.' )
if len(__A ) != 0:
__UpperCamelCase = len(rows[0] )
if cols == 0:
raise error
for row in rows:
if len(__A ) != cols:
raise error
for value in row:
if not isinstance(__A , (int, float) ):
raise error
__UpperCamelCase = rows
else:
__UpperCamelCase = []
def _lowerCamelCase ( self : int ):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )]
@property
def _lowerCamelCase ( self : str ):
return len(self.rows )
@property
def _lowerCamelCase ( self : Any ):
return len(self.rows[0] )
@property
def _lowerCamelCase ( self : Optional[Any] ):
return (self.num_rows, self.num_columns)
@property
def _lowerCamelCase ( self : Dict ):
return self.order[0] == self.order[1]
def _lowerCamelCase ( self : Any ):
__UpperCamelCase = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows )]
for row_num in range(self.num_rows )
]
return Matrix(__A )
def _lowerCamelCase ( self : Any ):
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0] )
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]) )
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns ) )
def _lowerCamelCase ( self : List[str] ):
return bool(self.determinant() )
def _lowerCamelCase ( self : Dict , __A : int , __A : int ):
__UpperCamelCase = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns )
if other_column != column
]
for other_row in range(self.num_rows )
if other_row != row
]
return Matrix(__A ).determinant()
def _lowerCamelCase ( self : Dict , __A : int , __A : int ):
if (row + column) % 2 == 0:
return self.get_minor(__A , __A )
return -1 * self.get_minor(__A , __A )
def _lowerCamelCase ( self : List[str] ):
return Matrix(
[
[self.get_minor(__A , __A ) for column in range(self.num_columns )]
for row in range(self.num_rows )
] )
def _lowerCamelCase ( self : Union[str, Any] ):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns )
]
for row in range(self.minors().num_rows )
] )
def _lowerCamelCase ( self : List[str] ):
__UpperCamelCase = [
[self.cofactors().rows[column][row] for column in range(self.num_columns )]
for row in range(self.num_rows )
]
return Matrix(__A )
def _lowerCamelCase ( self : Dict ):
__UpperCamelCase = self.determinant()
if not determinant:
raise TypeError('Only matrices with a non-zero determinant have an inverse' )
return self.adjugate() * (1 / determinant)
def __repr__( self : Optional[Any] ):
return str(self.rows )
def __str__( self : Union[str, Any] ):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0] ) ) + "]]"
return (
"["
+ "\n ".join(
[
'[' + '. '.join([str(__A ) for value in row] ) + '.]'
for row in self.rows
] )
+ "]"
)
def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ):
__UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' )
if not isinstance(__A , __A ):
raise type_error
for value in row:
if not isinstance(__A , (int, float) ):
raise type_error
if len(__A ) != self.num_columns:
raise ValueError(
'Row must be equal in length to the other rows in the matrix' )
if position is None:
self.rows.append(__A )
else:
__UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:]
def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ):
__UpperCamelCase = TypeError(
'Column must be a list containing all ints and/or floats' )
if not isinstance(__A , __A ):
raise type_error
for value in column:
if not isinstance(__A , (int, float) ):
raise type_error
if len(__A ) != self.num_rows:
raise ValueError(
'Column must be equal in length to the other columns in the matrix' )
if position is None:
__UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )]
else:
__UpperCamelCase = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows )
]
def __eq__( self : Tuple , __A : object ):
if not isinstance(__A , __A ):
return NotImplemented
return self.rows == other.rows
def __ne__( self : Any , __A : object ):
return not self == other
def __neg__( self : List[Any] ):
return self * -1
def __add__( self : List[str] , __A : Matrix ):
if self.order != other.order:
raise ValueError('Addition requires matrices of the same order' )
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __sub__( self : str , __A : Matrix ):
if self.order != other.order:
raise ValueError('Subtraction requires matrices of the same order' )
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __mul__( self : str , __A : Matrix | int | float ):
if isinstance(__A , (int, float) ):
return Matrix(
[[int(element * other ) for element in row] for row in self.rows] )
elif isinstance(__A , __A ):
if self.num_columns != other.num_rows:
raise ValueError(
'The number of columns in the first matrix must '
'be equal to the number of rows in the second' )
return Matrix(
[
[Matrix.dot_product(__A , __A ) for column in other.columns()]
for row in self.rows
] )
else:
raise TypeError(
'A Matrix can only be multiplied by an int, float, or another matrix' )
def __pow__( self : Union[str, Any] , __A : int ):
if not isinstance(__A , __A ):
raise TypeError('A Matrix can only be raised to the power of an int' )
if not self.is_square:
raise ValueError('Only square matrices can be raised to a power' )
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
'Only invertable matrices can be raised to a negative power' )
__UpperCamelCase = self
for _ in range(other - 1 ):
result *= self
return result
@classmethod
def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ):
return sum(row[i] * column[i] for i in range(len(__A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 53 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ):
__a : Tuple = SwinvaConfig()
__a : Union[str, Any] = swinva_name.split('_' )
__a : Tuple = name_split[1]
if "to" in name_split[3]:
__a : List[str] = int(name_split[3][-3:] )
else:
__a : Union[str, Any] = int(name_split[3] )
if "to" in name_split[2]:
__a : Optional[int] = int(name_split[2][-2:] )
else:
__a : int = int(name_split[2][6:] )
if model_size == "tiny":
__a : Optional[Any] = 96
__a : Union[str, Any] = (2, 2, 6, 2)
__a : Union[str, Any] = (3, 6, 12, 24)
elif model_size == "small":
__a : str = 96
__a : Dict = (2, 2, 18, 2)
__a : Union[str, Any] = (3, 6, 12, 24)
elif model_size == "base":
__a : Any = 128
__a : Any = (2, 2, 18, 2)
__a : List[str] = (4, 8, 16, 32)
else:
__a : Optional[Any] = 192
__a : str = (2, 2, 18, 2)
__a : Dict = (6, 12, 24, 48)
if "to" in swinva_name:
__a : Any = (12, 12, 12, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__a : Tuple = 21_841
__a : Optional[int] = 'huggingface/label-files'
__a : List[Any] = 'imagenet-22k-id2label.json'
__a : Any = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__a : Dict = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__a : str = idalabel
__a : List[str] = {v: k for k, v in idalabel.items()}
else:
__a : List[str] = 1_000
__a : Tuple = 'huggingface/label-files'
__a : Union[str, Any] = 'imagenet-1k-id2label.json'
__a : Optional[int] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__a : Optional[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__a : Union[str, Any] = idalabel
__a : List[str] = {v: k for k, v in idalabel.items()}
__a : Union[str, Any] = img_size
__a : str = num_classes
__a : List[Any] = embed_dim
__a : str = depths
__a : Optional[int] = num_heads
__a : Optional[Any] = window_size
return config
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ):
if "patch_embed.proj" in name:
__a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__a : Any = 'encoder.' + name
if "attn.proj" in name:
__a : str = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
__a : Optional[int] = name.replace('attn' , 'attention.self' )
if "norm1" in name:
__a : Optional[int] = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__a : int = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
__a : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__a : Dict = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
__a : Union[str, Any] = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
__a : str = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
__a : Dict = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
__a : Dict = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if name == "norm.weight":
__a : str = 'layernorm.weight'
if name == "norm.bias":
__a : List[Any] = 'layernorm.bias'
if "head" in name:
__a : str = name.replace('head' , 'classifier' )
else:
__a : Optional[Any] = 'swinv2.' + name
return name
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any ):
for key in orig_state_dict.copy().keys():
__a : List[Any] = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
__a : Any = key.split('.' )
__a : Union[str, Any] = int(key_split[1] )
__a : int = int(key_split[3] )
__a : Dict = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__a : Optional[int] = val[:dim, :]
__a : Tuple = val[dim : dim * 2, :]
__a : str = val[-dim:, :]
else:
__a : int = val[:dim]
__a : List[str] = val[
dim : dim * 2
]
__a : Any = val[-dim:]
else:
__a : str = val
return orig_state_dict
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ):
__a : Optional[int] = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
__a : Optional[int] = get_swinva_config(_SCREAMING_SNAKE_CASE )
__a : Tuple = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE )
model.eval()
__a : Any = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
__a : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__a : Any = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) )
__a : Optional[int] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
__a : Dict = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
__a : List[str] = timm_model(inputs['pixel_values'] )
__a : int = model(**_SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
model.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization='nandwalritik' , commit_message='Add model' , )
if __name__ == "__main__":
__lowercase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swinv2_name',
default='swinv2_tiny_patch4_window8_256',
type=str,
help='Name of the Swinv2 timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__lowercase : Any = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 294 |
'''simple docstring'''
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class __UpperCamelCase :
A_ = 42
A_ = None
A_ = None
def lowerCamelCase (_SCREAMING_SNAKE_CASE : TreeNode | None ):
# Validation
def is_valid_tree(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> bool:
if node is None:
return True
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(_SCREAMING_SNAKE_CASE ):
raise ValueError(
'Each node should be type of TreeNode and data should be float.' )
def is_binary_search_tree_recursive_check(
_SCREAMING_SNAKE_CASE : TreeNode | None , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , _SCREAMING_SNAKE_CASE , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , _SCREAMING_SNAKE_CASE )
)
return is_binary_search_tree_recursive_check(_SCREAMING_SNAKE_CASE , -float('inf' ) , float('inf' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 294 | 1 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger()
@dataclass
class lowerCamelCase_ :
'''simple docstring'''
__UpperCamelCase: nn.Module
__UpperCamelCase: List[nn.Module] = field(default_factory=snake_case__ )
__UpperCamelCase: list = field(default_factory=snake_case__ )
def _A ( self : List[str] , A : Optional[int] , A : Tensor , A : Tensor ):
_UpperCAmelCase : Union[str, Any] = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad )
if has_not_submodules:
self.traced.append(A )
def __call__( self : Any , A : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(A )
[x.remove() for x in self.handles]
return self
@property
def _A ( self : List[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class lowerCamelCase_ :
'''simple docstring'''
__UpperCamelCase: nn.Module
__UpperCamelCase: nn.Module
__UpperCamelCase: int = 0
__UpperCamelCase: List = field(default_factory=snake_case__ )
__UpperCamelCase: List = field(default_factory=snake_case__ )
def __call__( self : Optional[Any] , A : Tensor ):
_UpperCAmelCase : Optional[Any] = Tracker(self.dest )(A ).parametrized
_UpperCAmelCase : List[Any] = Tracker(self.src )(A ).parametrized
_UpperCAmelCase : str = list(filter(lambda A : type(A ) not in self.src_skip , A ) )
_UpperCAmelCase : int = list(filter(lambda A : type(A ) not in self.dest_skip , A ) )
if len(A ) != len(A ):
raise Exception(
F"""Numbers of operations are different. Source module has {len(A )} operations while"""
F""" destination module has {len(A )}.""" )
for dest_m, src_m in zip(A , A ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : ResNetConfig , _UpperCAmelCase : Path , _UpperCAmelCase : bool = True ) -> str:
"""simple docstring"""
print(F"""Converting {name}...""" )
with torch.no_grad():
_UpperCAmelCase : Any = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval()
_UpperCAmelCase : Union[str, Any] = ResNetForImageClassification(_UpperCAmelCase ).eval()
_UpperCAmelCase : Optional[int] = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase )
_UpperCAmelCase : List[Any] = torch.randn((1, 3, 224, 224) )
module_transfer(_UpperCAmelCase )
assert torch.allclose(from_model(_UpperCAmelCase ) , our_model(_UpperCAmelCase ).logits ), "The model logits don't match the original one."
_UpperCAmelCase : Tuple = F"""resnet{'-'.join(name.split('resnet' ) )}"""
print(_UpperCAmelCase )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_UpperCAmelCase , )
# we can use the convnext one
_UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_UpperCAmelCase , )
print(F"""Pushed {checkpoint_name}""" )
def UpperCamelCase_ ( _UpperCAmelCase : Path , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = True ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Dict = "imagenet-1k-id2label.json"
_UpperCAmelCase : Optional[int] = 1_000
_UpperCAmelCase : Optional[int] = (1, num_labels)
_UpperCAmelCase : Union[str, Any] = "huggingface/label-files"
_UpperCAmelCase : int = num_labels
_UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) )
_UpperCAmelCase : Optional[int] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
_UpperCAmelCase : str = idalabel
_UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
_UpperCAmelCase : Union[str, Any] = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase )
_UpperCAmelCase : Optional[int] = {
"resnet18": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ),
"resnet26": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet34": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ),
"resnet50": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet101": ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet152": ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
}
if model_name:
convert_weight_and_push(_UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, expected_shape
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported resnet* architecture,"""
""" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
__SCREAMING_SNAKE_CASE : Tuple = parser.parse_args()
__SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 31 | import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
_UpperCAmelCase = None
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
_UpperCAmelCase = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
_UpperCAmelCase = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
_UpperCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class UpperCAmelCase ( __A ):
'''simple docstring'''
lowerCamelCase_ = VOCAB_FILES_NAMES
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ = ['''input_ids''', '''attention_mask''']
lowerCamelCase_ = MBartTokenizer
lowerCamelCase_ = []
lowerCamelCase_ = []
def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ):
"""simple docstring"""
A_ : List[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token
super().__init__(
vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , )
A_ : Union[str, Any] = vocab_file
A_ : Optional[int] = False if not self.vocab_file else True
A_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
A_ : Tuple = {
lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
A_ : Dict = src_lang if src_lang is not None else 'en_XX'
A_ : Dict = self.convert_tokens_to_ids(self._src_lang )
A_ : Optional[int] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowerCAmelCase_ ( self , lowercase , lowercase = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowerCAmelCase_ ( self , lowercase , lowercase = None ):
"""simple docstring"""
A_ : List[Any] = [self.sep_token_id]
A_ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
A_ : int = src_lang
A_ : Optional[int] = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase )
A_ : Optional[Any] = self.convert_tokens_to_ids(lowercase )
A_ : Dict = tgt_lang_id
return inputs
def lowerCAmelCase_ ( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ):
"""simple docstring"""
A_ : Union[str, Any] = src_lang
A_ : Dict = tgt_lang
return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : Any = self.convert_tokens_to_ids(lowercase )
A_ : Optional[Any] = []
A_ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
A_ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens )
A_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
A_ : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : Union[str, Any] = self.convert_tokens_to_ids(lowercase )
A_ : List[Any] = []
A_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
A_ : Any = self.convert_ids_to_tokens(self.prefix_tokens )
A_ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens )
A_ : Union[str, Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowerCAmelCase_ ( self , lowercase , lowercase = None ):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(lowercase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' )
return
A_ : Dict = os.path.join(
lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ):
copyfile(self.vocab_file , lowercase )
return (out_vocab_file,)
| 140 | 0 |
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _a :
def __init__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any]=13 , _SCREAMING_SNAKE_CASE : Optional[int]=30 , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[Any]=3 , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=32 , _SCREAMING_SNAKE_CASE : Optional[int]=5 , _SCREAMING_SNAKE_CASE : Optional[int]=4 , _SCREAMING_SNAKE_CASE : Optional[int]=37 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : int=0.1 , _SCREAMING_SNAKE_CASE : Dict=10 , _SCREAMING_SNAKE_CASE : int=0.02 , _SCREAMING_SNAKE_CASE : Any=3 , _SCREAMING_SNAKE_CASE : Dict=0.6 , _SCREAMING_SNAKE_CASE : List[str]=None , )-> int:
lowerCAmelCase__ : Optional[int] = parent
lowerCAmelCase__ : Tuple = batch_size
lowerCAmelCase__ : List[str] = image_size
lowerCAmelCase__ : Dict = patch_size
lowerCAmelCase__ : Any = num_channels
lowerCAmelCase__ : List[str] = is_training
lowerCAmelCase__ : List[Any] = use_labels
lowerCAmelCase__ : Tuple = hidden_size
lowerCAmelCase__ : Optional[Any] = num_hidden_layers
lowerCAmelCase__ : List[str] = num_attention_heads
lowerCAmelCase__ : Optional[Any] = intermediate_size
lowerCAmelCase__ : Tuple = hidden_act
lowerCAmelCase__ : Any = hidden_dropout_prob
lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob
lowerCAmelCase__ : int = type_sequence_label_size
lowerCAmelCase__ : Optional[Any] = initializer_range
lowerCAmelCase__ : List[Any] = mask_ratio
lowerCAmelCase__ : Dict = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCAmelCase__ : List[str] = (image_size // patch_size) ** 2
lowerCAmelCase__ : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCAmelCase__( self : Optional[int] )-> str:
lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ : List[Any] = None
if self.use_labels:
lowerCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__( self : Optional[Any] )-> Any:
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> Optional[Any]:
lowerCAmelCase__ : Optional[Any] = ViTMAEModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Any:
lowerCAmelCase__ : Dict = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase__ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : int = (self.image_size // self.patch_size) ** 2
lowerCAmelCase__ : int = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCAmelCase__ : Dict = 1
lowerCAmelCase__ : Optional[int] = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Optional[int] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCAmelCase__( self : List[Any] )-> Union[str, Any]:
lowerCAmelCase__ : int = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = config_and_inputs
lowerCAmelCase__ : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase):
_a : List[str] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
_a : Optional[int] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
_a : List[str] = False
_a : Optional[int] = False
_a : int = False
_a : Any = False
def UpperCAmelCase__( self : Tuple )-> int:
lowerCAmelCase__ : Tuple = ViTMAEModelTester(self )
lowerCAmelCase__ : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 )
def UpperCAmelCase__( self : Optional[Any] )-> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def UpperCAmelCase__( self : str )-> List[str]:
pass
def UpperCAmelCase__( self : Union[str, Any] )-> Any:
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ : int = model_class(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase__ : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) )
def UpperCAmelCase__( self : Tuple )-> Optional[int]:
lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ : Optional[int] = model_class(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ : List[Any] = [*signature.parameters.keys()]
lowerCAmelCase__ : Optional[int] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__( self : List[Any] )-> List[str]:
lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__( self : Optional[int] )-> Optional[int]:
lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )-> Any:
# make masks reproducible
np.random.seed(2 )
lowerCAmelCase__ : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
lowerCAmelCase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCAmelCase__ : Optional[int] = torch.from_numpy(_SCREAMING_SNAKE_CASE )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCAmelCase__ : str = pt_noise
super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__( self : Optional[int] )-> Dict:
lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ : int = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowerCAmelCase__ : List[str] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
lowerCAmelCase__ : Optional[int] = outputs[0].cpu().numpy()
lowerCAmelCase__ : Optional[Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : int = model_class.from_pretrained(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowerCAmelCase__ : List[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
# Make sure we don't have nans
lowerCAmelCase__ : Dict = after_outputs[0].cpu().numpy()
lowerCAmelCase__ : Optional[Any] = 0
lowerCAmelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' )
def UpperCAmelCase__( self : List[str] )-> Any:
pass
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' )
def UpperCAmelCase__( self : Dict )-> Optional[int]:
pass
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' )
def UpperCAmelCase__( self : str )-> List[Any]:
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def UpperCAmelCase__( self : Dict )-> Optional[Any]:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase__( self : Optional[int] )-> str:
pass
@slow
def UpperCAmelCase__( self : str )-> Union[str, Any]:
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ : List[Any] = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
def lowerCamelCase_ ( ):
"""simple docstring"""
lowerCAmelCase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase):
@cached_property
def UpperCAmelCase__( self : Any )-> Any:
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def UpperCAmelCase__( self : str )-> List[str]:
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowerCAmelCase__ : int = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Tuple = self.default_image_processor
lowerCAmelCase__ : List[str] = prepare_img()
lowerCAmelCase__ : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCAmelCase__ : Tuple = ViTMAEConfig()
lowerCAmelCase__ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCAmelCase__ : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
lowerCAmelCase__ : List[str] = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) )
# verify the logits
lowerCAmelCase__ : Dict = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : List[Any] = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
| 366 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'''
),
}
class _a ( _lowercase):
_a : List[Any] = '''dpr'''
def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : List[str]=3_0522 , _SCREAMING_SNAKE_CASE : Optional[int]=768 , _SCREAMING_SNAKE_CASE : List[str]=12 , _SCREAMING_SNAKE_CASE : Tuple=12 , _SCREAMING_SNAKE_CASE : str=3072 , _SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , _SCREAMING_SNAKE_CASE : Dict=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : List[str]=512 , _SCREAMING_SNAKE_CASE : int=2 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , _SCREAMING_SNAKE_CASE : Tuple=1E-12 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0 , _SCREAMING_SNAKE_CASE : List[str]="absolute" , _SCREAMING_SNAKE_CASE : int = 0 , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> Optional[int]:
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Union[str, Any] = vocab_size
lowerCAmelCase__ : Tuple = hidden_size
lowerCAmelCase__ : Union[str, Any] = num_hidden_layers
lowerCAmelCase__ : List[Any] = num_attention_heads
lowerCAmelCase__ : Optional[int] = hidden_act
lowerCAmelCase__ : Optional[Any] = intermediate_size
lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase__ : int = attention_probs_dropout_prob
lowerCAmelCase__ : str = max_position_embeddings
lowerCAmelCase__ : List[Any] = type_vocab_size
lowerCAmelCase__ : Optional[int] = initializer_range
lowerCAmelCase__ : List[str] = layer_norm_eps
lowerCAmelCase__ : Dict = projection_dim
lowerCAmelCase__ : int = position_embedding_type
| 211 | 0 |
from math import factorial
def lowerCAmelCase__ ( a__: int , a__: int , a__: float ) -> float:
'''simple docstring'''
if successes > trials:
raise ValueError('successes must be lower or equal to trials' )
if trials < 0 or successes < 0:
raise ValueError('the function is defined for non-negative integers' )
if not isinstance(A__ , A__ ) or not isinstance(A__ , A__ ):
raise ValueError('the function is defined for non-negative integers' )
if not 0 < prob < 1:
raise ValueError('prob has to be in range of 1 - 0' )
_UpperCAmelCase = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
_UpperCAmelCase = float(factorial(A__ ) )
coefficient /= factorial(A__ ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print('''Probability of 2 successes out of 4 trails''')
print('''with probability of 0.75 is:''', end=''' ''')
print(binomial_distribution(2, 4, 0.75))
| 329 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ):
def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> Dict:
'''simple docstring'''
_lowercase =feature_size
_lowercase =sampling_rate
_lowercase =padding_value
_lowercase =kwargs.pop('padding_side' , 'right' )
_lowercase =kwargs.pop('return_attention_mask' , lowerCAmelCase )
super().__init__(**lowerCAmelCase )
def A__ ( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> BatchFeature:
'''simple docstring'''
if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
_lowercase ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
F''' to this method that includes {self.model_input_names[0]}, but you provided'''
F''' {list(processed_features.keys() )}''' )
_lowercase =processed_features[self.model_input_names[0]]
_lowercase =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(lowerCAmelCase ) == 0:
if return_attention_mask:
_lowercase =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
_lowercase =required_input[0]
if isinstance(lowerCAmelCase , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
_lowercase =0
while len(required_input[index] ) == 0:
index += 1
if index < len(lowerCAmelCase ):
_lowercase =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(lowerCAmelCase ):
_lowercase ='tf'
elif is_torch_tensor(lowerCAmelCase ):
_lowercase ='pt'
elif isinstance(lowerCAmelCase , (int, float, list, tuple, np.ndarray) ):
_lowercase ='np'
else:
raise ValueError(
F'''type of {first_element} unknown: {type(lowerCAmelCase )}. '''
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
_lowercase =to_numpy(lowerCAmelCase )
else:
_lowercase =[to_numpy(lowerCAmelCase ) for v in value]
# Convert padding_strategy in PaddingStrategy
_lowercase =self._get_padding_strategies(padding=lowerCAmelCase , max_length=lowerCAmelCase )
_lowercase =processed_features[self.model_input_names[0]]
_lowercase =len(lowerCAmelCase )
if not all(len(lowerCAmelCase ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
_lowercase =[]
for i in range(lowerCAmelCase ):
_lowercase ={k: v[i] for k, v in processed_features.items()}
# truncation
_lowercase =self._truncate(
lowerCAmelCase , max_length=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , )
truncated_inputs.append(lowerCAmelCase )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
_lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
_lowercase =PaddingStrategy.MAX_LENGTH
_lowercase ={}
for i in range(lowerCAmelCase ):
# padding
_lowercase =self._pad(
truncated_inputs[i] , max_length=lowerCAmelCase , padding_strategy=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , )
for key, value in outputs.items():
if key not in batch_outputs:
_lowercase =[]
if value.dtype is np.dtype(np.floataa ):
_lowercase =value.astype(np.floataa )
batch_outputs[key].append(lowerCAmelCase )
return BatchFeature(lowerCAmelCase , tensor_type=lowerCAmelCase )
def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase = None , lowerCAmelCase = None , ) -> dict:
'''simple docstring'''
_lowercase =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
_lowercase =len(lowerCAmelCase )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
_lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
_lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
_lowercase =np.ones(len(lowerCAmelCase ) , dtype=np.intaa )
if needs_to_be_padded:
_lowercase =max_length - len(lowerCAmelCase )
if self.padding_side == "right":
if return_attention_mask:
_lowercase =np.pad(
processed_features['attention_mask'] , (0, difference) )
_lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
_lowercase =np.pad(
lowerCAmelCase , lowerCAmelCase , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
_lowercase =np.pad(
processed_features['attention_mask'] , (difference, 0) )
_lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
_lowercase =np.pad(
lowerCAmelCase , lowerCAmelCase , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> Any:
'''simple docstring'''
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
_lowercase =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
_lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
_lowercase =len(lowerCAmelCase ) > max_length
if needs_to_be_truncated:
_lowercase =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
_lowercase =processed_features['attention_mask'][:max_length]
return processed_features
def A__ ( self , lowerCAmelCase=False , lowerCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
if padding is not False:
if padding is True:
_lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(lowerCAmelCase , lowerCAmelCase ):
_lowercase =PaddingStrategy(lowerCAmelCase )
elif isinstance(lowerCAmelCase , lowerCAmelCase ):
_lowercase =padding
else:
_lowercase =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 205 | 0 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Tuple ,__UpperCamelCase : Any ,__UpperCamelCase : str ):
"""simple docstring"""
for param, grad_param in zip(model_a.parameters() ,model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad ,grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : int=True ):
"""simple docstring"""
model.train()
A_ = model(lowerCamelCase_ )
A_ = F.mse_loss(lowerCamelCase_ ,target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(lowerCamelCase_ )
def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple=False ):
"""simple docstring"""
set_seed(42 )
A_ = RegressionModel()
A_ = deepcopy(lowerCamelCase_ )
A_ = RegressionDataset(length=80 )
A_ = DataLoader(lowerCamelCase_ ,batch_size=16 )
model.to(accelerator.device )
if sched:
A_ = AdamW(params=model.parameters() ,lr=1E-3 )
A_ = AdamW(params=ddp_model.parameters() ,lr=1E-3 )
A_ = LambdaLR(lowerCamelCase_ ,lr_lambda=lambda __UpperCamelCase : epoch**0.65 )
A_ = LambdaLR(lowerCamelCase_ ,lr_lambda=lambda __UpperCamelCase : epoch**0.65 )
# Make a copy of `model`
if sched:
A_ = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
else:
A_ = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def __snake_case ( __UpperCamelCase : Tuple ):
"""simple docstring"""
A_ = get_training_setup(lowerCamelCase_ )
# Use a single batch
A_ = next(iter(lowerCamelCase_ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
A_ = accelerator.gather((ddp_input, ddp_target) )
A_ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(lowerCamelCase_ ):
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
else:
# Sync grads
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad ,ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
A_ = ddp_input[torch.randperm(len(lowerCamelCase_ ) )]
def __snake_case ( __UpperCamelCase : Tuple ):
"""simple docstring"""
A_ = get_training_setup(lowerCamelCase_ )
# Use a single batch
A_ = next(iter(lowerCamelCase_ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
A_ = accelerator.gather((ddp_input, ddp_target) )
A_ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(lowerCamelCase_ ):
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
else:
# Sync grads
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
A_ = ddp_input[torch.randperm(len(lowerCamelCase_ ) )]
def __snake_case ( __UpperCamelCase : Dict=False ,__UpperCamelCase : Any=False ):
"""simple docstring"""
A_ = Accelerator(
split_batches=lowerCamelCase_ ,dispatch_batches=lowerCamelCase_ ,gradient_accumulation_steps=2 )
# Test that context manager behaves properly
A_ = get_training_setup(lowerCamelCase_ )
for iteration, batch in enumerate(lowerCamelCase_ ):
A_ = batch.values()
# Gather the distributed inputs and targs for the base model
A_ = accelerator.gather((ddp_input, ddp_target) )
A_ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(lowerCamelCase_ ):
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase_ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
A_ = ddp_input[torch.randperm(len(lowerCamelCase_ ) )]
GradientState._reset_state()
def __snake_case ( __UpperCamelCase : int=False ,__UpperCamelCase : Optional[int]=False ):
"""simple docstring"""
A_ = Accelerator(
split_batches=lowerCamelCase_ ,dispatch_batches=lowerCamelCase_ ,gradient_accumulation_steps=2 )
# Test that context manager behaves properly
A_ = get_training_setup(lowerCamelCase_ ,lowerCamelCase_ )
for iteration, batch in enumerate(lowerCamelCase_ ):
A_ = batch.values()
# Gather the distributed inputs and targs for the base model
A_ = accelerator.gather((ddp_input, ddp_target) )
A_ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase_ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(lowerCamelCase_ ):
step_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
A_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase_ ))
if accelerator.num_processes > 1:
check_model_parameters(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def __snake_case ( ):
"""simple docstring"""
A_ = Accelerator()
A_ = RegressionDataset(length=80 )
A_ = DataLoader(lowerCamelCase_ ,batch_size=16 )
A_ = RegressionDataset(length=96 )
A_ = DataLoader(lowerCamelCase_ ,batch_size=16 )
A_ = accelerator.prepare(lowerCamelCase_ ,lowerCamelCase_ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(lowerCamelCase_ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase_ )
if iteration < len(lowerCamelCase_ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(lowerCamelCase_ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase_ )
if batch_num < len(lowerCamelCase_ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def __snake_case ( ):
"""simple docstring"""
A_ = Accelerator()
A_ = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(lowerCamelCase_ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(lowerCamelCase_ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " ,f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' ,)
test_gradient_accumulation(lowerCamelCase_ ,lowerCamelCase_ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" ,"2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " ,"`split_batches=False`, `dispatch_batches=False`**" ,)
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " ,f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' ,)
test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase_ ,lowerCamelCase_ )
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
main()
if __name__ == "__main__":
main() | 356 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase ) | 329 | 0 |
"""simple docstring"""
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
a : int = logging.getLogger(__name__)
class __UpperCamelCase ( a__ ):
lowerCamelCase : List[str] ="""token-classification"""
def __init__( self , lowerCAmelCase__ ) -> Dict:
if type(lowerCAmelCase__ ) == dict:
a : str = Namespace(**lowerCAmelCase__ )
a : List[str] = import_module("tasks" )
try:
a : Optional[Any] = getattr(lowerCAmelCase__ , hparams.task_type )
a : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
a : Any = self.token_classification_task.get_labels(hparams.labels )
a : Dict = CrossEntropyLoss().ignore_index
super().__init__(lowerCAmelCase__ , len(self.labels ) , self.mode )
def __a ( self , **lowerCAmelCase__ ) -> Tuple:
return self.model(**lowerCAmelCase__ )
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]:
a : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
a : str = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
a : Optional[int] = self(**lowerCAmelCase__ )
a : Optional[Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __a ( self ) -> Dict:
a : Optional[int] = self.hparams
for mode in ["train", "dev", "test"]:
a : Tuple = self._feature_file(lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowerCAmelCase__ )
a : int = torch.load(lowerCAmelCase__ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
a : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , lowerCAmelCase__ )
a : Dict = self.token_classification_task.convert_examples_to_features(
lowerCAmelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCAmelCase__ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowerCAmelCase__ )
torch.save(lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> DataLoader:
a : Dict = self._feature_file(lowerCAmelCase__ )
logger.info("Loading features from cached file %s" , lowerCAmelCase__ )
a : Union[str, Any] = torch.load(lowerCAmelCase__ )
a : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
a : Optional[int] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
a : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
a : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
a : Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , batch_size=lowerCAmelCase__ )
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
"""Compute validation""" ""
a : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
a : Union[str, Any] = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
a : Tuple = self(**lowerCAmelCase__ )
a, a : Optional[int] = outputs[:2]
a : Any = logits.detach().cpu().numpy()
a : Optional[Any] = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __a ( self , lowerCAmelCase__ ) -> int:
a : Optional[Any] = torch.stack([x["val_loss"] for x in outputs] ).mean()
a : Tuple = np.concatenate([x["pred"] for x in outputs] , axis=0 )
a : Any = np.argmax(lowerCAmelCase__ , axis=2 )
a : Any = np.concatenate([x["target"] for x in outputs] , axis=0 )
a : List[str] = dict(enumerate(self.labels ) )
a : str = [[] for _ in range(out_label_ids.shape[0] )]
a : Any = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
a : int = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowerCAmelCase__ , lowerCAmelCase__ ),
"precision": precision_score(lowerCAmelCase__ , lowerCAmelCase__ ),
"recall": recall_score(lowerCAmelCase__ , lowerCAmelCase__ ),
"f1": fa_score(lowerCAmelCase__ , lowerCAmelCase__ ),
}
a : List[str] = dict(results.items() )
a : str = results
return ret, preds_list, out_label_list
def __a ( self , lowerCAmelCase__ ) -> Optional[Any]:
# when stable
a, a, a : Dict = self._eval_end(lowerCAmelCase__ )
a : Union[str, Any] = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __a ( self , lowerCAmelCase__ ) -> Tuple:
# updating to test_epoch_end instead of deprecated test_end
a, a, a : List[Any] = self._eval_end(lowerCAmelCase__ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
a : Optional[Any] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __a ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ )
parser.add_argument(
"--task_type" , default="NER" , type=lowerCAmelCase__ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=128 , type=lowerCAmelCase__ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowerCAmelCase__ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowerCAmelCase__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
a : Optional[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd())
a : Tuple = parser.parse_args()
a : Optional[int] = NERTransformer(args)
a : Any = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
a : Any = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
a : Optional[int] = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 105 |
"""simple docstring"""
import torch
from transformers import AutoModel
class SCREAMING_SNAKE_CASE ( torch.nn.Module ):
"""simple docstring"""
def __init__( self : Tuple ,lowercase_ : Dict="sayef/fsner-bert-base-uncased" ):
super(lowercase_ ,self ).__init__()
lowerCAmelCase__ : int = AutoModel.from_pretrained(lowercase_ ,return_dict=lowercase_ )
lowerCAmelCase__ : Optional[int] = torch.nn.CosineSimilarity(3 ,1E-08 )
lowerCAmelCase__ : List[str] = torch.nn.Softmax(dim=1 )
def __lowerCAmelCase ( self : str ,**lowercase_ : int ):
return self.bert(**lowercase_ ).last_hidden_state
def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Optional[int] ):
return token_embeddings.sum(2 ,keepdim=lowercase_ )
def __lowerCAmelCase ( self : Dict ,lowercase_ : int ,lowercase_ : str ,lowercase_ : Tuple=1 ):
return self.softmax(T * self.cos(lowercase_ ,lowercase_ ) )
def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ,lowercase_ : Union[str, Any] ):
lowerCAmelCase__ : List[Any] = W_supports['''sizes'''].tolist()
lowerCAmelCase__ : Dict = W_supports['''start_token_id'''].item()
lowerCAmelCase__ : Union[str, Any] = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
lowerCAmelCase__ : Optional[Any] = self.BERT(**lowercase_ )
lowerCAmelCase__ : int = self.BERT(**lowercase_ )
lowerCAmelCase__ : List[str] = None
lowerCAmelCase__ : Union[str, Any] = None
lowerCAmelCase__ : int = W_supports['''input_ids'''] == start_token_id
lowerCAmelCase__ : Optional[Any] = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(lowercase_ ):
if i == 0:
lowerCAmelCase__ : str = 0
else:
lowerCAmelCase__ : List[Any] = support_sizes[i - 1]
lowerCAmelCase__ : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]]
lowerCAmelCase__ : List[Any] = S[s : s + size][end_token_masks[s : s + size]]
lowerCAmelCase__ : Union[str, Any] = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 )
lowerCAmelCase__ : Any = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
lowerCAmelCase__ : List[Any] = torch.vstack((p_starts, p_start) )
lowerCAmelCase__ : List[Any] = torch.vstack((p_ends, p_end) )
else:
lowerCAmelCase__ : Union[str, Any] = p_start
lowerCAmelCase__ : str = p_end
return p_starts, p_ends
| 106 | 0 |
"""simple docstring"""
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
_lowerCAmelCase : List[str] = '''bert-base-cased'''
_lowerCAmelCase : Any = '''fp16'''
_lowerCAmelCase : List[Any] = '''bf16'''
_lowerCAmelCase : Union[str, Any] = [FPaa, BFaa]
@require_fsdp
@require_cuda
class A_ ( _a ):
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
super().setUp()
_lowerCamelCase : Dict = dict(
ACCELERATE_USE_FSDP="true" ,MASTER_ADDR="localhost" ,MASTER_PORT="10999" ,RANK="0" ,LOCAL_RANK="0" ,WORLD_SIZE="1" ,)
def _lowercase ( self: int ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__lowerCAmelCase ):
_lowerCamelCase : Optional[Any] = self.dist_env.copy()
_lowerCamelCase : Any = F"""{i + 1}"""
_lowerCamelCase : str = strategy
with mockenv_context(**__lowerCAmelCase ):
_lowerCamelCase : Tuple = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = self.dist_env.copy()
_lowerCamelCase : List[Any] = prefetch_policy
with mockenv_context(**__lowerCAmelCase ):
_lowerCamelCase : List[Any] = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) )
def _lowercase ( self: List[str] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__lowerCAmelCase ):
_lowerCamelCase : Tuple = self.dist_env.copy()
_lowerCamelCase : int = state_dict_type
with mockenv_context(**__lowerCAmelCase ):
_lowerCamelCase : Dict = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = AutoModel.from_pretrained(__lowerCAmelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
_lowerCamelCase : Optional[int] = self.dist_env.copy()
_lowerCamelCase : Any = policy
if policy == "TRANSFORMER_BASED_WRAP":
_lowerCamelCase : List[str] = "BertLayer"
elif policy == "SIZE_BASED_WRAP":
_lowerCamelCase : Optional[int] = "2000"
with mockenv_context(**__lowerCAmelCase ):
_lowerCamelCase : str = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
_lowerCamelCase : Any = self.dist_env.copy()
_lowerCamelCase : List[str] = "TRANSFORMER_BASED_WRAP"
_lowerCamelCase : Optional[Any] = "T5Layer"
with mockenv_context(**__lowerCAmelCase ):
_lowerCamelCase : Tuple = FullyShardedDataParallelPlugin()
with self.assertRaises(__lowerCAmelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase )
self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) )
_lowerCamelCase : Any = self.dist_env.copy()
_lowerCamelCase : Union[str, Any] = "SIZE_BASED_WRAP"
_lowerCamelCase : Tuple = "0"
with mockenv_context(**__lowerCAmelCase ):
_lowerCamelCase : Any = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def _lowercase ( self: str ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
_lowerCamelCase : List[str] = self.dist_env.copy()
_lowerCamelCase : List[Any] = mp_dtype
with mockenv_context(**__lowerCAmelCase ):
_lowerCamelCase : Dict = Accelerator()
if mp_dtype == "fp16":
_lowerCamelCase : List[str] = torch.floataa
elif mp_dtype == "bf16":
_lowerCamelCase : Union[str, Any] = torch.bfloataa
_lowerCamelCase : int = MixedPrecision(param_dtype=__lowerCAmelCase ,reduce_dtype=__lowerCAmelCase ,buffer_dtype=__lowerCAmelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCAmelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler ,__lowerCAmelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
_lowerCamelCase : Dict = self.dist_env.copy()
_lowerCamelCase : Union[str, Any] = str(__lowerCAmelCase ).lower()
with mockenv_context(**__lowerCAmelCase ):
_lowerCamelCase : List[str] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCAmelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class A_ ( _a ):
def _lowercase ( self: List[Any] ):
'''simple docstring'''
super().setUp()
_lowerCamelCase : List[str] = 0.82
_lowerCamelCase : Union[str, Any] = [
"fsdp_shard_grad_op_transformer_based_wrap",
"fsdp_full_shard_transformer_based_wrap",
]
_lowerCamelCase : Optional[int] = {
"multi_gpu_fp16": 3_200,
"fsdp_shard_grad_op_transformer_based_wrap_fp16": 2_000,
"fsdp_full_shard_transformer_based_wrap_fp16": 1_900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
_lowerCamelCase : Tuple = 160
_lowerCamelCase : Optional[int] = 160
_lowerCamelCase : Any = inspect.getfile(accelerate.test_utils )
_lowerCamelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : str = os.path.join(self.test_scripts_folder ,"test_performance.py" )
_lowerCamelCase : List[Any] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"]
for config in self.performance_configs:
_lowerCamelCase : int = cmd.copy()
for i, strategy in enumerate(__lowerCAmelCase ):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "fp32" in config:
cmd_config.append("--mixed_precision=no" )
else:
cmd_config.append("--mixed_precision=fp16" )
if "cpu_offload" in config:
cmd_config.append("--fsdp_offload_params=True" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = os.path.join(self.test_scripts_folder ,"test_checkpointing.py" )
_lowerCamelCase : Tuple = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
"--use_fsdp",
"--mixed_precision=fp16",
"--fsdp_transformer_layer_cls_to_wrap=BertLayer",
]
for i, strategy in enumerate(__lowerCAmelCase ):
_lowerCamelCase : Tuple = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
if strategy != "FULL_SHARD":
continue
_lowerCamelCase : Dict = len(__lowerCAmelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
_lowerCamelCase : List[Any] = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
"--partial_train_epoch=1",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() )
_lowerCamelCase : int = cmd_config[:-1]
_lowerCamelCase : Optional[Any] = os.path.join(self.tmpdir ,"epoch_0" )
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = os.path.join(self.test_scripts_folder ,"test_peak_memory_usage.py" )
_lowerCamelCase : Union[str, Any] = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
_lowerCamelCase : Tuple = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["--mixed_precision=fp16"] )
else:
cmd_config.extend(["--mixed_precision=no"] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["--use_fsdp"] )
for i, strategy in enumerate(__lowerCAmelCase ):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "cpu_offload" in spec:
cmd_config.append("--fsdp_offload_params=True" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() ) | 340 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__'''
_lowerCAmelCase : Dict = '''Dummy User'''
_lowerCAmelCase : Optional[int] = '''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'''
_lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co'''
_lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
_lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
_lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(_lowerCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
return HfApi(endpoint=_lowerCamelCase )
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = HfFolder.get_token()
HfFolder.save_token(_lowerCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(_lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
def _cleanup_repo(_lowerCamelCase ):
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
@contextmanager
def _temporary_repo(_lowerCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(_lowerCamelCase )
return _temporary_repo
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_ | 340 | 1 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
_snake_case = pytest.mark.integration
_snake_case = {'comet'}
_snake_case = importlib.util.find_spec('fairseq') is not None
_snake_case = {'code_eval'}
_snake_case = os.name == 'nt'
_snake_case = {'bertscore', 'frugalscore', 'perplexity'}
_snake_case = importlib.util.find_spec('transformers') is not None
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
@wraps(UpperCamelCase__ )
def wrapper(self , UpperCamelCase__ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("""\"test requires Fairseq\"""" )
else:
test_case(self , UpperCamelCase__ )
return wrapper
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
@wraps(UpperCamelCase__ )
def wrapper(self , UpperCamelCase__ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("""\"test requires transformers\"""" )
else:
test_case(self , UpperCamelCase__ )
return wrapper
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
@wraps(UpperCamelCase__ )
def wrapper(self , UpperCamelCase__ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("""\"test not supported on Windows\"""" )
else:
test_case(self , UpperCamelCase__ )
return wrapper
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Any = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
snake_case_ , snake_case_ , snake_case_ )
@local
class UpperCamelCase ( parameterized.TestCase ):
UpperCamelCase : Tuple = {}
UpperCamelCase : List[str] = None
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" )
def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Any ) -> Dict:
_a : Optional[Any] = """[...]"""
_a : Optional[Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase__ ) ).module_path )
_a : List[str] = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase__ )
# check parameters
_a : Optional[Any] = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(UpperCAmelCase__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
_a : Any = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def _lowercase ( self : List[str] , UpperCAmelCase__ : Optional[int] ) -> int:
_a : Optional[int] = """[...]"""
_a : List[str] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase__ ) ).module_path )
# run doctest
with self.use_local_metrics():
_a : List[str] = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ) -> Union[str, Any]:
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase__ ):
yield
else:
yield
@contextmanager
def _lowercase ( self : Tuple ) -> Optional[int]:
def load_local_metric(UpperCAmelCase__ : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Tuple ):
return load_metric(os.path.join("""metrics""" , UpperCAmelCase__ ) , *UpperCAmelCase__ , **UpperCAmelCase__ )
with patch("""datasets.load_metric""" ) as mock_load_metric:
_a : Optional[int] = load_local_metric
yield
@classmethod
def _lowercase ( cls : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> List[str]:
def wrapper(UpperCAmelCase__ : str ):
_a : int = contextmanager(UpperCAmelCase__ )
_a : Tuple = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("""bleurt""" )
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags
class UpperCamelCase ( snake_case_ ):
def _lowercase ( self : str , UpperCAmelCase__ : List[str] ) -> int:
assert len(input_dict["""input_ids"""] ) == 2
return np.array([1.0_3, 1.0_4] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor:
_a : int = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("""bertscore""" )
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
import torch
def bert_cos_score_idf(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase__ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("""bert_score.scorer.get_model""" ), patch(
"""bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf:
_a : List[str] = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("""comet""" )
def lowerCAmelCase__ ( UpperCamelCase__ ):
'''simple docstring'''
def load_from_checkpoint(UpperCamelCase__ ):
class UpperCamelCase :
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[int] ) -> int:
assert len(UpperCAmelCase__ ) == 2
_a : str = [0.1_9, 0.9_2]
return scores, sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("""comet.download_model""" ) as mock_download_model:
_a : str = None
with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint:
_a : str = load_from_checkpoint
yield
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Optional[Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) )
_a : Union[str, Any] = """ERROR"""
_a : Union[str, Any] = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ):
metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase__ )
| 294 |
"""simple docstring"""
import cva
import numpy as np
class UpperCamelCase :
def __init__( self : Optional[int] , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> Dict:
if k in (0.0_4, 0.0_6):
_a : List[str] = k
_a : List[Any] = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self : Dict ) -> str:
return str(self.k )
def _lowercase ( self : int , UpperCAmelCase__ : str ) -> tuple[cva.Mat, list[list[int]]]:
_a : Dict = cva.imread(UpperCAmelCase__ , 0 )
_a , _a : List[Any] = img.shape
_a : list[list[int]] = []
_a : List[Any] = img.copy()
_a : int = cva.cvtColor(UpperCAmelCase__ , cva.COLOR_GRAY2RGB )
_a , _a : Any = np.gradient(UpperCAmelCase__ )
_a : Tuple = dx**2
_a : Union[str, Any] = dy**2
_a : Union[str, Any] = dx * dy
_a : int = 0.0_4
_a : List[str] = self.window_size // 2
for y in range(UpperCAmelCase__ , h - offset ):
for x in range(UpperCAmelCase__ , w - offset ):
_a : str = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_a : List[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_a : Tuple = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_a : Any = (wxx * wyy) - (wxy**2)
_a : Tuple = wxx + wyy
_a : Any = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
_snake_case = HarrisCorner(0.04, 3)
_snake_case , _snake_case = edge_detect.detect('path_to_image')
cva.imwrite('detect.png', color_img)
| 294 | 1 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"huggingface/time-series-transformer-tourism-monthly": (
"https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''time_series_transformer'''
__snake_case = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : str , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : str = "student_t" , __UpperCAmelCase : str = "nll" , __UpperCAmelCase : int = 1 , __UpperCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __UpperCAmelCase : Optional[Union[str, bool]] = "mean" , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : int = 64 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : List[Any]=True , **__UpperCAmelCase : Dict , ) ->int:
"""simple docstring"""
a = prediction_length
a = context_length or prediction_length
a = distribution_output
a = loss
a = input_size
a = num_time_features
a = lags_sequence
a = scaling
a = num_dynamic_real_features
a = num_static_real_features
a = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(__UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
a = cardinality
else:
a = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(__UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
a = embedding_dimension
else:
a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
a = num_parallel_samples
# Transformer architecture configuration
a = input_size * len(__UpperCAmelCase ) + self._number_of_features
a = d_model
a = encoder_attention_heads
a = decoder_attention_heads
a = encoder_ffn_dim
a = decoder_ffn_dim
a = encoder_layers
a = decoder_layers
a = dropout
a = attention_dropout
a = activation_dropout
a = encoder_layerdrop
a = decoder_layerdrop
a = activation_function
a = init_std
a = use_cache
super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 367 |
def _a ( a :list ) -> list:
if len(a ) <= 1:
return lst
a = 1
while i < len(a ):
if lst[i - 1] <= lst[i]:
i += 1
else:
a , a = lst[i], lst[i - 1]
i -= 1
if i == 0:
a = 1
return lst
if __name__ == "__main__":
UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip()
UpperCAmelCase__ = [int(item) for item in user_input.split(",")]
print(gnome_sort(unsorted))
| 26 | 0 |
lowercase : Union[str, Any] = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
def A_ ( A__ , A__ , A__ ) -> list[str]:
a__ : List[str] = set()
# keep track of all the paths to be checked
a__ : Union[str, Any] = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
a__ : Tuple = queue.pop(0 )
# get the last node from the path
a__ : Optional[int] = path[-1]
if node not in explored:
a__ : List[str] = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
a__ : Optional[Any] = list(A__ )
new_path.append(A__ )
queue.append(A__ )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(A__ )
# in case there's no path between the 2 nodes
return []
def A_ ( A__ , A__ , A__ ) -> int:
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
a__ : Tuple = [start]
a__ : Union[str, Any] = set(A__ )
# Keep tab on distances from `start` node.
a__ : Optional[Any] = {start: 0, target: -1}
while queue:
a__ : str = queue.pop(0 )
if node == target:
a__ : List[Any] = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(A__ )
queue.append(A__ )
a__ : int = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
| 99 |
'''simple docstring'''
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def lowerCAmelCase (__A , __A , __A , __A):
"""simple docstring"""
if isinstance(__A , __A):
_a = np.full((len(__A), sequence_length, 2) , __A)
else:
_a = np.full((len(__A), sequence_length) , __A)
for i, tensor in enumerate(__A):
if padding_side == "right":
if isinstance(__A , __A):
_a = tensor[:sequence_length]
else:
_a = tensor[:sequence_length]
else:
if isinstance(__A , __A):
_a = tensor[:sequence_length]
else:
_a = tensor[:sequence_length]
return out_tensor.tolist()
def lowerCAmelCase (__A):
"""simple docstring"""
_a = ord(__A)
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
_a = unicodedata.category(__A)
if cat.startswith('''P'''):
return True
return False
@dataclass
class __A ( A ):
'''simple docstring'''
__lowerCamelCase : PreTrainedTokenizerBase
__lowerCamelCase : Union[bool, str, PaddingStrategy] = True
__lowerCamelCase : Optional[int] = None
__lowerCamelCase : Optional[int] = None
__lowerCamelCase : int = -100
__lowerCamelCase : str = "pt"
def a__ (self , A ) -> List[str]:
"""simple docstring"""
import torch
_a = '''label''' if '''label''' in features[0].keys() else '''labels'''
_a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
_a = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , )
if labels is None:
return batch
_a = torch.tensor(batch['''entity_ids'''] ).shape[1]
_a = self.tokenizer.padding_side
if padding_side == "right":
_a = [
list(A ) + [self.label_pad_token_id] * (sequence_length - len(A )) for label in labels
]
else:
_a = [
[self.label_pad_token_id] * (sequence_length - len(A )) + list(A ) for label in labels
]
_a = [feature['''ner_tags'''] for feature in features]
_a = padding_tensor(A , -1 , A , A )
_a = [feature['''original_entity_spans'''] for feature in features]
_a = padding_tensor(A , (-1, -1) , A , A )
_a = {k: torch.tensor(A , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 211 | 0 |
def lowerCAmelCase_ ( _snake_case : str ) -> int:
'''simple docstring'''
assert column_title.isupper()
__magic_name__ : List[Any] = 0
__magic_name__ : Optional[int] = len(_snake_case ) - 1
__magic_name__ : Optional[Any] = 0
while index >= 0:
__magic_name__ : List[str] = (ord(column_title[index] ) - 64) * pow(26 , _snake_case )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 41 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _snake_case ( snake_case ):
UpperCamelCase__ = ['image_processor', 'tokenizer']
UpperCamelCase__ = 'BridgeTowerImageProcessor'
UpperCamelCase__ = ('RobertaTokenizer', 'RobertaTokenizerFast')
def __init__( self , _a , _a ):
super().__init__(_a , _a )
def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ):
__magic_name__ : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel_values + pixel_mask
__magic_name__ : List[str] = self.image_processor(
_a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a )
encoding.update(_a )
return encoding
def SCREAMING_SNAKE_CASE ( self , *_a , **_a ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE ( self , *_a , **_a ):
return self.tokenizer.decode(*_a , **_a )
@property
def SCREAMING_SNAKE_CASE ( self ):
__magic_name__ : Dict = self.tokenizer.model_input_names
__magic_name__ : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 41 | 1 |
"""simple docstring"""
from __future__ import annotations
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : List[Any] = []
__lowerCAmelCase , __lowerCAmelCase : Tuple = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__lowerCAmelCase : Union[str, Any] = result + left + right
return input_list
def __lowerCAmelCase (_UpperCamelCase ):
if len(_UpperCamelCase ) <= 1:
return input_list
__lowerCAmelCase : List[str] = list(_UpperCamelCase )
# iteration for two-way merging
__lowerCAmelCase : Optional[int] = 2
while p <= len(_UpperCamelCase ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ):
__lowerCAmelCase : Optional[Any] = i
__lowerCAmelCase : Optional[int] = i + p - 1
__lowerCAmelCase : Tuple = (low + high + 1) // 2
__lowerCAmelCase : Union[str, Any] = merge(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# final merge of last two parts
if p * 2 >= len(_UpperCamelCase ):
__lowerCAmelCase : Dict = i
__lowerCAmelCase : Tuple = merge(_UpperCamelCase , 0 , _UpperCamelCase , len(_UpperCamelCase ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase__ = []
else:
lowerCamelCase__ = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted)) | 86 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20}
_UpperCAmelCase = do_thumbnail
_UpperCAmelCase = do_align_axis
_UpperCAmelCase = do_pad
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 329 | 0 |
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def a_ ( self) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def a_ ( self) -> Tuple:
snake_case_ = 1
snake_case_ = 3
snake_case_ = (32, 32)
snake_case_ = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCAmelCase__)
return image
@property
def a_ ( self) -> Union[str, Any]:
torch.manual_seed(0)
snake_case_ = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, )
return model
@property
def a_ ( self) -> Any:
torch.manual_seed(0)
snake_case_ = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, )
return model
@property
def a_ ( self) -> Dict:
torch.manual_seed(0)
snake_case_ = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowerCAmelCase__)
@property
def a_ ( self) -> Optional[Any]:
def extract(*lowerCAmelCase__, **lowerCAmelCase__):
class UpperCamelCase :
def __init__( self) -> List[Any]:
snake_case_ = torch.ones([0])
def a_ ( self, lowerCAmelCase__) -> Optional[int]:
self.pixel_values.to(lowerCAmelCase__)
return self
return Out()
return extract
def a_ ( self) -> Optional[int]:
snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.dummy_cond_unet
snake_case_ = DDIMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase__, set_alpha_to_one=lowerCAmelCase__, )
snake_case_ = self.dummy_vae
snake_case_ = self.dummy_text_encoder
snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
snake_case_ = StableDiffusionPipeline(
unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, vae=lowerCAmelCase__, text_encoder=lowerCAmelCase__, tokenizer=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=self.dummy_extractor, )
snake_case_ = sd_pipe.to(lowerCAmelCase__)
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = 'A painting of a squirrel eating a burger'
snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(0)
snake_case_ = sd_pipe([prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type='np')
snake_case_ = output.images
snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(0)
snake_case_ = sd_pipe(
[prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type='np', return_dict=lowerCAmelCase__, )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def a_ ( self) -> List[str]:
snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.dummy_cond_unet
snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__)
snake_case_ = self.dummy_vae
snake_case_ = self.dummy_text_encoder
snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
snake_case_ = StableDiffusionPipeline(
unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, vae=lowerCAmelCase__, text_encoder=lowerCAmelCase__, tokenizer=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=self.dummy_extractor, )
snake_case_ = sd_pipe.to(lowerCAmelCase__)
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = 'A painting of a squirrel eating a burger'
snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(0)
snake_case_ = sd_pipe([prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type='np')
snake_case_ = output.images
snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(0)
snake_case_ = sd_pipe(
[prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type='np', return_dict=lowerCAmelCase__, )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def a_ ( self) -> Optional[Any]:
snake_case_ = StableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-lms-pipe', safety_checker=lowerCAmelCase__)
assert isinstance(lowerCAmelCase__, lowerCAmelCase__)
assert isinstance(pipe.scheduler, lowerCAmelCase__)
assert pipe.safety_checker is None
snake_case_ = pipe('example prompt', num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase__)
snake_case_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
snake_case_ = pipe('example prompt', num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU')
def a_ ( self) -> List[str]:
snake_case_ = self.dummy_cond_unet
snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__)
snake_case_ = self.dummy_vae
snake_case_ = self.dummy_text_encoder
snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# put models in fp16
snake_case_ = unet.half()
snake_case_ = vae.half()
snake_case_ = bert.half()
# make sure here that pndm scheduler skips prk
snake_case_ = StableDiffusionPipeline(
unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, vae=lowerCAmelCase__, text_encoder=lowerCAmelCase__, tokenizer=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=self.dummy_extractor, )
snake_case_ = sd_pipe.to(lowerCAmelCase__)
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = 'A painting of a squirrel eating a burger'
snake_case_ = sd_pipe([prompt], num_inference_steps=2, output_type='np').images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def a_ ( self) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self) -> Union[str, Any]:
snake_case_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', safety_checker=lowerCAmelCase__)
snake_case_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
snake_case_ = sd_pipe.to(lowerCAmelCase__)
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = (
'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'
' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'
' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'
' children from bahnhof zoo, detailed '
)
snake_case_ = 40_0366_0346
snake_case_ = 7
# without safety guidance (sld_guidance_scale = 0)
snake_case_ = torch.manual_seed(lowerCAmelCase__)
snake_case_ = sd_pipe(
[prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# without safety guidance (strong configuration)
snake_case_ = torch.manual_seed(lowerCAmelCase__)
snake_case_ = sd_pipe(
[prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def a_ ( self) -> Tuple:
snake_case_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', safety_checker=lowerCAmelCase__)
snake_case_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
snake_case_ = sd_pipe.to(lowerCAmelCase__)
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = 'padme amidala taking a bath artwork, safe for work, no nudity'
snake_case_ = 27_3497_1755
snake_case_ = 7
snake_case_ = torch.manual_seed(lowerCAmelCase__)
snake_case_ = sd_pipe(
[prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
snake_case_ = torch.manual_seed(lowerCAmelCase__)
snake_case_ = sd_pipe(
[prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def a_ ( self) -> List[str]:
snake_case_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5')
snake_case_ = sd_pipe.to(lowerCAmelCase__)
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = (
'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'
' leyendecker'
)
snake_case_ = 10_4435_5234
snake_case_ = 12
snake_case_ = torch.manual_seed(lowerCAmelCase__)
snake_case_ = sd_pipe(
[prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=0, )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
snake_case_ = torch.manual_seed(lowerCAmelCase__)
snake_case_ = sd_pipe(
[prompt], generator=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, num_inference_steps=50, output_type='np', width=512, height=512, sld_guidance_scale=2000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 312 | """simple docstring"""
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def a_ ( self, lowerCAmelCase__=0) -> List[Any]:
snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__))
snake_case_ = np.random.RandomState(lowerCAmelCase__)
snake_case_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def a_ ( self) -> Optional[Any]:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def a_ ( self) -> List[str]:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def a_ ( self) -> str:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
# warmup pass to apply optimizations
snake_case_ = pipe(**self.get_dummy_inputs())
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def a_ ( self) -> int:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def a_ ( self) -> Dict:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def a_ ( self) -> Dict:
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = self.get_dummy_inputs()
snake_case_ = pipe(**lowerCAmelCase__).images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
@property
def a_ ( self) -> int:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a_ ( self) -> str:
snake_case_ = ort.SessionOptions()
snake_case_ = False
return options
def a_ ( self) -> Any:
snake_case_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
snake_case_ = init_image.resize((768, 512))
# using the PNDM scheduler by default
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = 'A fantasy landscape, trending on artstation'
snake_case_ = np.random.RandomState(0)
snake_case_ = pipe(
prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', )
snake_case_ = output.images
snake_case_ = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def a_ ( self) -> List[Any]:
snake_case_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
snake_case_ = init_image.resize((768, 512))
snake_case_ = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx')
snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowerCAmelCase__)
snake_case_ = 'A fantasy landscape, trending on artstation'
snake_case_ = np.random.RandomState(0)
snake_case_ = pipe(
prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', )
snake_case_ = output.images
snake_case_ = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 312 | 1 |
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = [False] * len(UpperCamelCase_ )
lowerCAmelCase__ = []
queue.append(UpperCamelCase_ )
lowerCAmelCase__ = True
while queue:
lowerCAmelCase__ = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(UpperCamelCase_ )
lowerCAmelCase__ = True
lowerCAmelCase__ = u
return visited[t]
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = [-1] * (len(UpperCamelCase_ ))
lowerCAmelCase__ = 0
while bfs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase__ = float("Inf" )
lowerCAmelCase__ = sink
while s != source:
# Find the minimum value in select path
lowerCAmelCase__ = min(UpperCamelCase_ , graph[parent[s]][s] )
lowerCAmelCase__ = parent[s]
max_flow += path_flow
lowerCAmelCase__ = sink
while v != source:
lowerCAmelCase__ = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
lowerCAmelCase__ = parent[v]
return max_flow
a_ = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
a_, a_ = 0, 5
print(ford_fulkerson(graph, source, sink))
| 340 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a_ = (3, 9, -11, 0, 7, 5, 1, -1)
a_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class lowercase__ :
a_ =42
a_ =42
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = None
for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ):
lowerCAmelCase__ = Node(__UpperCAmelCase , self.head )
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
lowerCAmelCase__ = self.head
while node:
yield node.data
lowerCAmelCase__ = node.next_node
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self )-> str:
'''simple docstring'''
return " -> ".join([str(__UpperCAmelCase ) for node in self] )
def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 340 | 1 |
from pathlib import Path
import numpy as np
from PIL import Image
def lowerCAmelCase_ ( __lowerCAmelCase )-> np.ndarray:
'''simple docstring'''
UpperCAmelCase : List[Any] =rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2989 * r + 0.5870 * g + 0.1140 * b
def lowerCAmelCase_ ( __lowerCAmelCase )-> np.ndarray:
'''simple docstring'''
return (gray > 1_27) & (gray <= 2_55)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> np.ndarray:
'''simple docstring'''
UpperCAmelCase : Tuple =np.zeros_like(__lowerCAmelCase )
UpperCAmelCase : List[Any] =np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
UpperCAmelCase : List[str] =image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
UpperCAmelCase : Dict =(
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
UpperCAmelCase : Dict =int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
__snake_case = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg'''
__snake_case = np.array(Image.open(lena_path))
# kernel to be applied
__snake_case = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
__snake_case = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
__snake_case = Image.fromarray(output).convert('''RGB''')
pil_img.save('''result_dilation.png''')
| 353 | import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.json'''}
__snake_case = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
__snake_case = {'''mgp-str''': 27}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
__lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , snake_case__ , snake_case__="[GO]" , snake_case__="[GO]" , snake_case__="[s]" , snake_case__="[GO]" , **snake_case__ ) -> Any:
'''simple docstring'''
super().__init__(
unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , **snake_case__ , )
with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle:
UpperCAmelCase : int =json.load(snake_case__ )
UpperCAmelCase : List[str] ={v: k for k, v in self.vocab.items()}
@property
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
return len(self.vocab )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =[]
for s in text:
char_tokens.extend(snake_case__ )
return char_tokens
def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]:
'''simple docstring'''
return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]:
'''simple docstring'''
return self.decoder.get(snake_case__ )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(snake_case__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(snake_case__ ) )
return
UpperCAmelCase : List[Any] =os.path.join(
snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' )
return (vocab_file,)
| 78 | 0 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
a_ = 16
a_ = 32
def lowerCamelCase__ ( _a):
return int(x / 2**20)
class _UpperCamelCase :
'''simple docstring'''
def __enter__( self : Tuple ) -> Any:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
SCREAMING_SNAKE_CASE : Any = torch.cuda.memory_allocated()
return self
def __exit__( self : List[str] , *a : int ) -> List[str]:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.memory_allocated()
SCREAMING_SNAKE_CASE : Dict = torch.cuda.max_memory_allocated()
SCREAMING_SNAKE_CASE : str = bamb(self.end - self.begin )
SCREAMING_SNAKE_CASE : Any = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def lowerCamelCase__ ( _a , _a = 16 , _a = "bert-base-cased" , _a = 320 , _a = 160 , ):
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(snake_case_)
SCREAMING_SNAKE_CASE : List[str] = load_dataset(
"glue" , "mrpc" , split={"train": f"train[:{n_train}]", "validation": f"validation[:{n_val}]"})
def tokenize_function(_a):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case_ , max_length=snake_case_)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE : List[Any] = datasets.map(
snake_case_ , batched=snake_case_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=snake_case_)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column("label" , "labels")
def collate_fn(_a):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case_ , padding="max_length" , max_length=128 , return_tensors="pt")
return tokenizer.pad(snake_case_ , padding="longest" , return_tensors="pt")
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE : Dict = DataLoader(
tokenized_datasets["train"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_)
SCREAMING_SNAKE_CASE : int = DataLoader(
tokenized_datasets["validation"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_)
return train_dataloader, eval_dataloader
def lowerCamelCase__ ( _a , _a):
# Initialize accelerator
SCREAMING_SNAKE_CASE : Tuple = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE : Optional[int] = config["""lr"""]
SCREAMING_SNAKE_CASE : Tuple = int(config["num_epochs"])
SCREAMING_SNAKE_CASE : Any = int(config["seed"])
SCREAMING_SNAKE_CASE : Tuple = int(config["batch_size"])
SCREAMING_SNAKE_CASE : Any = args.model_name_or_path
set_seed(snake_case_)
SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataloaders(snake_case_ , snake_case_ , snake_case_ , args.n_train , args.n_val)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_)
# Instantiate optimizer
SCREAMING_SNAKE_CASE : Optional[Any] = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
SCREAMING_SNAKE_CASE : Tuple = optimizer_cls(params=model.parameters() , lr=snake_case_)
if accelerator.state.deepspeed_plugin is not None:
SCREAMING_SNAKE_CASE : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
SCREAMING_SNAKE_CASE : int = 1
SCREAMING_SNAKE_CASE : str = (len(snake_case_) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
SCREAMING_SNAKE_CASE : str = get_linear_schedule_with_warmup(
optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_)
# We need to keep track of how many total steps we have iterated over
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
SCREAMING_SNAKE_CASE : Optional[Any] = 0
# Now we train the model
SCREAMING_SNAKE_CASE : Optional[Any] = {}
for epoch in range(snake_case_ , snake_case_):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(snake_case_):
SCREAMING_SNAKE_CASE : Dict = model(**snake_case_)
SCREAMING_SNAKE_CASE : Dict = outputs.loss
SCREAMING_SNAKE_CASE : Dict = loss / gradient_accumulation_steps
accelerator.backward(snake_case_)
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin)))
accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used))
accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked))
accelerator.print(
"Total Peak Memory consumed during the train (max): {}".format(
tracemalloc.peaked + bamb(tracemalloc.begin)))
SCREAMING_SNAKE_CASE : List[str] = tracemalloc.peaked + bamb(tracemalloc.begin)
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , "peak_memory_utilization.json") , "w") as f:
json.dump(snake_case_ , snake_case_)
def lowerCamelCase__ ( ):
SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.")
parser.add_argument(
"--model_name_or_path" , type=snake_case_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , )
parser.add_argument(
"--output_dir" , type=snake_case_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--peak_memory_upper_bound" , type=snake_case_ , default=snake_case_ , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , )
parser.add_argument(
"--n_train" , type=snake_case_ , default=320 , help="Number of training examples to use." , )
parser.add_argument(
"--n_val" , type=snake_case_ , default=160 , help="Number of validation examples to use." , )
parser.add_argument(
"--num_epochs" , type=snake_case_ , default=1 , help="Number of train epochs." , )
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
SCREAMING_SNAKE_CASE : Optional[int] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(snake_case_ , snake_case_)
if __name__ == "__main__":
main() | 76 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
_snake_case = getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,):
_A : Dict = str(snake_case_ )
assert local_rank is not None
torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ )
_A : Tuple = Path(snake_case_ )
_A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(snake_case_ )
_A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda()
if fpaa:
_A : Any = model.half()
# determine if we need to increase num_beams
use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params
_A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
_A : int = num_return_sequences
_A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
_A : Optional[int] = tokenizer.model_max_length
if prefix is None:
_A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """"""
_A : Optional[int] = SeqaSeqDataset(
snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,)
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
_A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ )
_A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn )
_A : Optional[Any] = []
for batch in tqdm(snake_case_ ):
_A : Tuple = model.generate(
input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,)
_A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ )
_A : Dict = batch["""ids"""]
if num_return_sequences > 1:
_A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(snake_case_ ):
results.append({"""pred""": pred, """id""": ids[i].item()} )
save_json(snake_case_,snake_case_ )
return results, sampler.num_replicas
def lowerCAmelCase_ ( ):
_A : Tuple = argparse.ArgumentParser(
epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" )
parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" )
parser.add_argument(
"""--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",)
parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" )
parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ )
parser.add_argument(
"""--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" )
parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" )
parser.add_argument(
"""--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" )
parser.add_argument(
"""--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" )
parser.add_argument(
"""--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" )
parser.add_argument(
"""--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",)
parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument(
"""--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" )
parser.add_argument("""--fp16""",action="""store_true""" )
parser.add_argument("""--debug""",action="""store_true""" )
_A : Union[str, Any] = time.time()
_A , _A : List[str] = parser.parse_known_args()
_A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ )
if generate_kwargs and args.local_rank <= 0:
print(f'''parsed the following generate kwargs: {generate_kwargs}''' )
_A : Dict = Path(args.save_dir + """_tmp""" )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking.
_A : int = list(json_save_dir.glob("""rank_*.json""" ) )
if intermediate_files:
raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
_A : Any = {}
if args.src_lang is not None:
_A : int = args.src_lang
if args.tgt_lang is not None:
_A : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=snake_case_ )
_A , _A : str = eval_data_dir(
args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,)
if args.local_rank <= 0:
_A : List[Any] = Path(args.save_dir )
save_dir.mkdir(exist_ok=snake_case_ )
_A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout )
_A : Optional[int] = combine_partial_results(snake_case_ )
if args.num_return_sequences > 1:
_A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" )
print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(snake_case_,snake_case_ )
return
_A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" )
with open(snake_case_ ) as f:
_A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )]
# Calculate metrics, save metrics, and save _generations.txt
_A : Dict = """translation""" in args.task
_A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge
_A : Tuple = """bleu""" if calc_bleu else """rouge"""
_A : Dict = score_fn(snake_case_,snake_case_ )
_A : List[Any] = len(snake_case_ )
_A : Optional[int] = time.time() - start_time
_A : Dict = round(runtime / metrics["""n_obs"""],4 )
_A : Dict = num_replicas
# TODO(@stas00): add whatever metadata to metrics
_A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' )
save_json(snake_case_,snake_case_,indent=snake_case_ )
print(snake_case_ )
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) )
else:
shutil.rmtree(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Dict = []
for partial_result in partial_results:
records.extend(snake_case_ )
_A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] )
_A : List[str] = [x["""pred"""] for x in records]
return preds
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# WAIT FOR lots of .json files
_A : Optional[Any] = time.time()
logger.info("""waiting for all nodes to finish""" )
_A : List[str] = None
while (time.time() - start_wait) < timeout:
_A : str = list(save_dir.glob("""rank_*.json""" ) )
if len(snake_case_ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
_A : List[str] = lmap(snake_case_,snake_case_ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("""Rank 0 gave up on waiting for other processes""" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 26 | 0 |
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
_SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
class A__ ( snake_case__ ):
"""simple docstring"""
__magic_name__ = CLIPConfig
__magic_name__ = ['CLIPEncoderLayer']
def __init__( self , __snake_case ):
super().__init__(__snake_case )
snake_case = CLIPVisionModelWithProjection(config.vision_config )
snake_case = nn.Linear(config.vision_config.projection_dim , 1 )
snake_case = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def a_ ( self , __snake_case , __snake_case , __snake_case=0.5 , __snake_case=0.5 ):
snake_case = self.vision_model(__snake_case )[0]
snake_case = self.p_head(__snake_case )
snake_case = nsfw_detected.flatten()
snake_case = nsfw_detected > p_threshold
snake_case = nsfw_detected.tolist()
if any(__snake_case ):
logger.warning(
'''Potential NSFW content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, nsfw_detected_ in enumerate(__snake_case ):
if nsfw_detected_:
snake_case = np.zeros(images[idx].shape )
snake_case = self.w_head(__snake_case )
snake_case = watermark_detected.flatten()
snake_case = watermark_detected > w_threshold
snake_case = watermark_detected.tolist()
if any(__snake_case ):
logger.warning(
'''Potential watermarked content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, watermark_detected_ in enumerate(__snake_case ):
if watermark_detected_:
snake_case = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 213 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE : Dict = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Dict = [
"VAN_PRETRAINED_MODEL_ARCHIVE_LIST",
"VanForImageClassification",
"VanModel",
"VanPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 213 | 1 |
'''simple docstring'''
import unittest
import numpy as np
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , ) -> np.ndarray:
lowerCamelCase__ : Tuple = np.shape(UpperCamelCase )
lowerCamelCase__ : Optional[int] = np.shape(UpperCamelCase )
lowerCamelCase__ : List[Any] = np.shape(UpperCamelCase )
if shape_a[0] != shape_b[0]:
lowerCamelCase__ : List[str] = (
"""Expected the same number of rows for A and B. """
f'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCamelCase )
if shape_b[1] != shape_c[1]:
lowerCamelCase__ : Tuple = (
"""Expected the same number of columns for B and C. """
f'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCamelCase )
lowerCamelCase__ : Optional[Any] = pseudo_inv
if a_inv is None:
try:
lowerCamelCase__ : str = np.linalg.inv(UpperCamelCase )
except np.linalg.LinAlgError:
raise ValueError(
"""Input matrix A is not invertible. Cannot compute Schur complement.""" )
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowercase ( unittest.TestCase ):
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCamelCase__ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCamelCase__ : Optional[Any] = np.array([[2, 1], [6, 3]] )
lowerCamelCase__ : Dict = schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Any = np.block([[a, b], [b.T, c]] )
lowerCamelCase__ : List[Any] = np.linalg.det(UpperCamelCase__ )
lowerCamelCase__ : List[Any] = np.linalg.det(UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = np.linalg.det(UpperCamelCase__ )
self.assertAlmostEqual(UpperCamelCase__ , det_a * det_s )
def lowerCamelCase_ ( self: Optional[Any] ):
lowerCamelCase__ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCamelCase__ : Tuple = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCamelCase__ : str = np.array([[2, 1], [6, 3]] )
with self.assertRaises(UpperCamelCase__ ):
schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCamelCase__ : int = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCamelCase__ : List[str] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(UpperCamelCase__ ):
schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 41 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int:
return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase )
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y
return abs(UpperCamelCase )
def SCREAMING_SNAKE_CASE_ () -> Tuple:
try:
lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" )
lowerCamelCase__ : Any = int(nums[0] )
lowerCamelCase__ : Optional[Any] = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print("""Wrong input""" )
if __name__ == "__main__":
main()
| 41 | 1 |
from math import factorial, pi
def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple = 30 )-> List[str]:
if not isinstance(_A , (int, float) ):
raise ValueError('maclaurin_sin() requires either an int or float for theta' )
if not isinstance(_A , _A ) or accuracy <= 0:
raise ValueError('maclaurin_sin() requires a positive int for accuracy' )
_snake_case : Dict = float(_A )
_snake_case : List[Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_A ) )
def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str = 30 )-> List[str]:
if not isinstance(_A , (int, float) ):
raise ValueError('maclaurin_cos() requires either an int or float for theta' )
if not isinstance(_A , _A ) or accuracy <= 0:
raise ValueError('maclaurin_cos() requires a positive int for accuracy' )
_snake_case : int = float(_A )
_snake_case : str = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 358 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowerCamelCase_ ( lowerCAmelCase: Features )-> Optional[int]:
_snake_case : str = np.inf
def set_batch_size(lowerCAmelCase: FeatureType ) -> None:
nonlocal batch_size
if isinstance(lowerCAmelCase , lowerCAmelCase ):
_snake_case : List[str] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(lowerCAmelCase , lowerCAmelCase ):
_snake_case : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(lowerCAmelCase , lowerCAmelCase ) and feature.dtype == "binary":
_snake_case : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(lowerCAmelCase , lowerCAmelCase )
return None if batch_size is np.inf else batch_size
class _lowerCAmelCase ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , UpperCamelCase : NestedDataStructureLike[PathLike] , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : Optional[Features] = None , UpperCamelCase : str = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(
UpperCamelCase , split=UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase , streaming=UpperCamelCase , num_proc=UpperCamelCase , **UpperCamelCase , )
_snake_case : Tuple = path_or_paths if isinstance(UpperCamelCase , UpperCamelCase ) else {self.split: path_or_paths}
_snake_case : List[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1]
_snake_case : Optional[Any] = Parquet(
cache_dir=UpperCamelCase , data_files=UpperCamelCase , features=UpperCamelCase , hash=UpperCamelCase , **UpperCamelCase , )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if self.streaming:
_snake_case : Optional[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_snake_case : Dict = None
_snake_case : Union[str, Any] = None
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = None
self.builder.download_and_prepare(
download_config=UpperCamelCase , download_mode=UpperCamelCase , verification_mode=UpperCamelCase , base_path=UpperCamelCase , num_proc=self.num_proc , )
_snake_case : Optional[int] = self.builder.as_dataset(
split=self.split , verification_mode=UpperCamelCase , in_memory=self.keep_in_memory )
return dataset
class _lowerCAmelCase :
'''simple docstring'''
def __init__( self : int , UpperCamelCase : Dataset , UpperCamelCase : Union[PathLike, BinaryIO] , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Dict , ):
'''simple docstring'''
_snake_case : Tuple = dataset
_snake_case : Union[str, Any] = path_or_buf
_snake_case : List[Any] = batch_size or get_writer_batch_size(dataset.features )
_snake_case : Optional[Any] = parquet_writer_kwargs
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
_snake_case : str = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , 'wb+' ) as buffer:
_snake_case : Any = self._write(file_obj=UpperCamelCase , batch_size=UpperCamelCase , **self.parquet_writer_kwargs )
else:
_snake_case : Tuple = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase , **self.parquet_writer_kwargs )
return written
def UpperCamelCase_ ( self : Dict , UpperCamelCase : BinaryIO , UpperCamelCase : int , **UpperCamelCase : List[str] ):
'''simple docstring'''
_snake_case : List[str] = 0
_snake_case : Dict = parquet_writer_kwargs.pop('path_or_buf' , UpperCamelCase )
_snake_case : Optional[Any] = self.dataset.features.arrow_schema
_snake_case : str = pq.ParquetWriter(UpperCamelCase , schema=UpperCamelCase , **UpperCamelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCamelCase ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ):
_snake_case : Tuple = query_table(
table=self.dataset._data , key=slice(UpperCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCamelCase )
written += batch.nbytes
writer.close()
return written
| 260 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__a :Any = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Dict = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :List[Any] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__a :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 312 |
def __snake_case ( __UpperCamelCase : int = 1000 ):
"""simple docstring"""
return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) )
if __name__ == "__main__":
print(solution()) | 312 | 1 |
"""simple docstring"""
import argparse
from collections import defaultdict
def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ):
UpperCAmelCase_ : Optional[Any] = F"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(A__ ,"r" ) as f:
UpperCAmelCase_ : Any = f.readlines()
UpperCAmelCase_ : List[str] = F"""class {class_name}("""
UpperCAmelCase_ : List[Any] = F"""{4 * ' '}def {test_name}("""
UpperCAmelCase_ : List[str] = F"""{8 * ' '}{correct_line.split()[0]}"""
UpperCAmelCase_ : Tuple = F"""{16 * ' '}{correct_line.split()[0]}"""
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : str = False
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : Optional[Any] = 0
UpperCAmelCase_ : List[str] = 0
UpperCAmelCase_ : int = []
for line in lines:
if line.startswith(A__ ):
UpperCAmelCase_ : List[str] = True
elif in_class and line.startswith(A__ ):
UpperCAmelCase_ : Optional[Any] = True
elif in_class and in_func and (line.startswith(A__ ) or line.startswith(A__ )):
UpperCAmelCase_ : Any = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
UpperCAmelCase_ : str = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
UpperCAmelCase_ : str = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"""{spaces * ' '}{correct_line}""" )
UpperCAmelCase_ : Tuple = False
else:
new_lines.append(A__ )
with open(A__ ,"w" ) as f:
for line in new_lines:
f.write(A__ )
def snake_case ( A__ ,A__=None ):
if fail is not None:
with open(A__ ,"r" ) as f:
UpperCAmelCase_ : List[Any] = {l.strip() for l in f.readlines()}
else:
UpperCAmelCase_ : Dict = None
with open(A__ ,"r" ) as f:
UpperCAmelCase_ : Tuple = f.readlines()
UpperCAmelCase_ : Dict = defaultdict(A__ )
for line in correct_lines:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = line.split(";" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(A__ ,A__ ,A__ ,A__ ,A__ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
lowerCamelCase_ = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 253 |
"""simple docstring"""
from math import factorial
def snake_case ( A__ = 1_00 ):
return sum(int(A__ ) for x in str(factorial(A__ ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 253 | 1 |
"""simple docstring"""
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
SCREAMING_SNAKE_CASE : Optional[int] = [
"""kernels/rwkv/wkv_cuda.cu""",
"""kernels/rwkv/wkv_op.cpp""",
"""kernels/deformable_detr/ms_deform_attn.h""",
"""kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""",
"""models/graphormer/algos_graphormer.pyx""",
]
def lowercase ( _snake_case : Optional[int] ) ->int:
"""simple docstring"""
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""")
SCREAMING_SNAKE_CASE : List[str] = parser.parse_args()
if args.check_lib:
SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module("""transformers""")
SCREAMING_SNAKE_CASE : Union[str, Any] = Path(transformers_module.__file__).parent
else:
SCREAMING_SNAKE_CASE : List[Any] = Path.cwd() / """build/lib/transformers"""
if not test_custom_files_are_present(transformers_path):
raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
| 102 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
snake_case_ = logging.get_logger(__name__)
class A_ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__UpperCamelCase = ["""pixel_values"""]
def __init__( self :int , lowercase_ :bool = True , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :bool = True , lowercase_ :Union[int, float] = 1 / 2_55 , lowercase_ :bool = True , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :bool = True , **lowercase_ :Union[str, Any] , ) -> None:
super().__init__(**lowercase_ )
UpperCAmelCase = size if size is not None else {'height': 3_84, 'width': 3_84}
UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCAmelCase = do_convert_rgb
def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :np.ndarray , lowercase_ :Dict[str, int] , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Any , ) -> np.ndarray:
UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
UpperCAmelCase = (size['height'], size['width'])
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :np.ndarray , lowercase_ :Union[int, float] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[int] , ) -> int:
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCAmelCase__ ( self :Any , lowercase_ :np.ndarray , lowercase_ :Union[float, List[float]] , lowercase_ :Union[float, List[float]] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[Any] , ) -> np.ndarray:
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def UpperCAmelCase__ ( self :List[Any] , lowercase_ :ImageInput , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Dict[str, int]] = None , lowercase_ :PILImageResampling = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[float] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[str, TensorType]] = None , lowercase_ :bool = None , lowercase_ :ChannelDimension = ChannelDimension.FIRST , **lowercase_ :Tuple , ) -> PIL.Image.Image:
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ )
UpperCAmelCase = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCAmelCase = [convert_to_rgb(lowercase_ ) for image in images]
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
UpperCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase_ )
return encoded_outputs
| 78 | 0 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _A ( unittest.TestCase ):
"""simple docstring"""
def __a ( self : int ) -> Optional[int]:
"""simple docstring"""
lowercase : Union[str, Any] = inspect.getfile(accelerate.test_utils )
lowercase : str = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
lowercase : Optional[int] = test_metrics
@require_cpu
def __a ( self : int ) -> int:
"""simple docstring"""
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def __a ( self : str ) -> List[Any]:
"""simple docstring"""
debug_launcher(self.test_metrics.main )
@require_single_gpu
def __a ( self : List[str] ) -> Tuple:
"""simple docstring"""
self.test_metrics.main()
@require_multi_gpu
def __a ( self : str ) -> Tuple:
"""simple docstring"""
print(f"""Found {torch.cuda.device_count()} devices.""" )
lowercase : Any = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A , env=os.environ.copy() ) | 351 |
import os
from collections.abc import Iterator
def snake_case( __magic_name__ = "." ) -> Iterator[str]:
'''simple docstring'''
for dir_path, dir_names, filenames in os.walk(__magic_name__ ):
lowercase : Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._''']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(__magic_name__ )[1] in (".py", ".ipynb"):
yield os.path.join(__magic_name__ , __magic_name__ ).lstrip('''./''' )
def snake_case( __magic_name__ ) -> Dict:
'''simple docstring'''
return F"""{i * ' '}*""" if i else "\n##"
def snake_case( __magic_name__ , __magic_name__ ) -> str:
'''simple docstring'''
lowercase : Dict = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(__magic_name__ ) or old_parts[i] != new_part) and new_part:
print(F"""{md_prefix(__magic_name__ )} {new_part.replace('_' , ' ' ).title()}""" )
return new_path
def snake_case( __magic_name__ = "." ) -> None:
'''simple docstring'''
lowercase : str = ''''''
for filepath in sorted(good_file_paths(__magic_name__ ) ):
lowercase , lowercase : Optional[int] = os.path.split(__magic_name__ )
if filepath != old_path:
lowercase : str = print_path(__magic_name__ , __magic_name__ )
lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0
lowercase : Optional[Any] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' )
lowercase : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0]
print(F"""{md_prefix(__magic_name__ )} [{filename}]({url})""" )
if __name__ == "__main__":
print_directory_md('.') | 116 | 0 |
"""simple docstring"""
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class UpperCamelCase ( yaml.SafeLoader ):
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ : str = [self.constructed_objects[key_node] for key_node, _ in node.value]
lowercase_ : str = [tuple(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else key for key in keys]
lowercase_ : List[Any] = Counter(__UpperCamelCase )
lowercase_ : str = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ) -> List[Any]:
'''simple docstring'''
lowercase_ : Optional[int] = super().construct_mapping(__UpperCamelCase ,deep=__UpperCamelCase )
self._check_no_duplicates_on_constructed_node(__UpperCamelCase )
return mapping
def lowercase__( __SCREAMING_SNAKE_CASE : str ):
lowercase_ : Tuple = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
lowercase_ : Dict = full_content[1:].index('---' ) + 1
lowercase_ : Optional[int] = '\n'.join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(__SCREAMING_SNAKE_CASE )
class UpperCamelCase ( lowercase_ ):
# class attributes
lowercase = {'train_eval_index'} # train-eval-index in the YAML metadata
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata":
'''simple docstring'''
with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file:
lowercase_ , lowercase_ : Optional[int] = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(__UpperCamelCase )
else:
return cls()
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]:
'''simple docstring'''
if path.exists():
with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file:
lowercase_ : Dict = readme_file.read()
else:
lowercase_ : int = None
lowercase_ : Any = self._to_readme(__UpperCamelCase )
with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as readme_file:
readme_file.write(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase = None ) -> str:
'''simple docstring'''
if readme_content is not None:
lowercase_ , lowercase_ : Optional[Any] = _split_yaml_from_readme(__UpperCamelCase )
lowercase_ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content
else:
lowercase_ : Tuple = '---\n' + self.to_yaml_string() + '---\n'
return full_content
@classmethod
def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata":
'''simple docstring'''
lowercase_ : List[str] = yaml.load(__UpperCamelCase ,Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
lowercase_ : Dict = {
(key.replace('-' ,'_' ) if key.replace('-' ,'_' ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**__UpperCamelCase )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return yaml.safe_dump(
{
(key.replace('_' ,'-' ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} ,sort_keys=__UpperCamelCase ,allow_unicode=__UpperCamelCase ,encoding='utf-8' ,).decode('utf-8' )
__SCREAMING_SNAKE_CASE ={
"image-classification": [],
"translation": [],
"image-segmentation": [],
"fill-mask": [],
"automatic-speech-recognition": [],
"token-classification": [],
"sentence-similarity": [],
"audio-classification": [],
"question-answering": [],
"summarization": [],
"zero-shot-classification": [],
"table-to-text": [],
"feature-extraction": [],
"other": [],
"multiple-choice": [],
"text-classification": [],
"text-to-image": [],
"text2text-generation": [],
"zero-shot-image-classification": [],
"tabular-classification": [],
"tabular-regression": [],
"image-to-image": [],
"tabular-to-text": [],
"unconditional-image-generation": [],
"text-retrieval": [],
"text-to-speech": [],
"object-detection": [],
"audio-to-audio": [],
"text-generation": [],
"conversational": [],
"table-question-answering": [],
"visual-question-answering": [],
"image-to-text": [],
"reinforcement-learning": [],
"voice-activity-detection": [],
"time-series-forecasting": [],
"document-question-answering": [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
__SCREAMING_SNAKE_CASE =ArgumentParser(usage="Validate the yaml metadata block of a README.md file.")
ap.add_argument("readme_filepath")
__SCREAMING_SNAKE_CASE =ap.parse_args()
__SCREAMING_SNAKE_CASE =Path(args.readme_filepath)
__SCREAMING_SNAKE_CASE =DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 213 | """simple docstring"""
import argparse
import struct
import unittest
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> None:
'''simple docstring'''
lowercase_ : str = data
# Initialize hash values
lowercase_ : Optional[int] = [
0X6_A_0_9_E_6_6_7,
0XB_B_6_7_A_E_8_5,
0X3_C_6_E_F_3_7_2,
0XA_5_4_F_F_5_3_A,
0X5_1_0_E_5_2_7_F,
0X9_B_0_5_6_8_8_C,
0X1_F_8_3_D_9_A_B,
0X5_B_E_0_C_D_1_9,
]
# Initialize round constants
lowercase_ : Tuple = [
0X4_2_8_A_2_F_9_8,
0X7_1_3_7_4_4_9_1,
0XB_5_C_0_F_B_C_F,
0XE_9_B_5_D_B_A_5,
0X3_9_5_6_C_2_5_B,
0X5_9_F_1_1_1_F_1,
0X9_2_3_F_8_2_A_4,
0XA_B_1_C_5_E_D_5,
0XD_8_0_7_A_A_9_8,
0X1_2_8_3_5_B_0_1,
0X2_4_3_1_8_5_B_E,
0X5_5_0_C_7_D_C_3,
0X7_2_B_E_5_D_7_4,
0X8_0_D_E_B_1_F_E,
0X9_B_D_C_0_6_A_7,
0XC_1_9_B_F_1_7_4,
0XE_4_9_B_6_9_C_1,
0XE_F_B_E_4_7_8_6,
0X0_F_C_1_9_D_C_6,
0X2_4_0_C_A_1_C_C,
0X2_D_E_9_2_C_6_F,
0X4_A_7_4_8_4_A_A,
0X5_C_B_0_A_9_D_C,
0X7_6_F_9_8_8_D_A,
0X9_8_3_E_5_1_5_2,
0XA_8_3_1_C_6_6_D,
0XB_0_0_3_2_7_C_8,
0XB_F_5_9_7_F_C_7,
0XC_6_E_0_0_B_F_3,
0XD_5_A_7_9_1_4_7,
0X0_6_C_A_6_3_5_1,
0X1_4_2_9_2_9_6_7,
0X2_7_B_7_0_A_8_5,
0X2_E_1_B_2_1_3_8,
0X4_D_2_C_6_D_F_C,
0X5_3_3_8_0_D_1_3,
0X6_5_0_A_7_3_5_4,
0X7_6_6_A_0_A_B_B,
0X8_1_C_2_C_9_2_E,
0X9_2_7_2_2_C_8_5,
0XA_2_B_F_E_8_A_1,
0XA_8_1_A_6_6_4_B,
0XC_2_4_B_8_B_7_0,
0XC_7_6_C_5_1_A_3,
0XD_1_9_2_E_8_1_9,
0XD_6_9_9_0_6_2_4,
0XF_4_0_E_3_5_8_5,
0X1_0_6_A_A_0_7_0,
0X1_9_A_4_C_1_1_6,
0X1_E_3_7_6_C_0_8,
0X2_7_4_8_7_7_4_C,
0X3_4_B_0_B_C_B_5,
0X3_9_1_C_0_C_B_3,
0X4_E_D_8_A_A_4_A,
0X5_B_9_C_C_A_4_F,
0X6_8_2_E_6_F_F_3,
0X7_4_8_F_8_2_E_E,
0X7_8_A_5_6_3_6_F,
0X8_4_C_8_7_8_1_4,
0X8_C_C_7_0_2_0_8,
0X9_0_B_E_F_F_F_A,
0XA_4_5_0_6_C_E_B,
0XB_E_F_9_A_3_F_7,
0XC_6_7_1_7_8_F_2,
]
lowercase_ : Tuple = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _UpperCAmelCase ( __UpperCamelCase ) -> bytes:
'''simple docstring'''
lowercase_ : str = B'\x80' + (B'\x00' * (63 - (len(__UpperCamelCase ) + 8) % 64))
lowercase_ : str = struct.pack('>Q' ,(len(__UpperCamelCase ) * 8) )
return data + padding + big_endian_integer
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
lowercase_ : Optional[Any] = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowercase_ : Any = list(struct.unpack('>16L' ,__UpperCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowercase_ : str = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
lowercase_ : int = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
lowercase_ : Optional[Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X1_0_0_0_0_0_0_0_0
# Compression
lowercase_ : Tuple = self.ror(__UpperCamelCase ,6 ) ^ self.ror(__UpperCamelCase ,11 ) ^ self.ror(__UpperCamelCase ,25 )
lowercase_ : Union[str, Any] = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g)
lowercase_ : str = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_0_0_0_0_0_0_0_0
lowercase_ : Optional[int] = self.ror(__UpperCamelCase ,2 ) ^ self.ror(__UpperCamelCase ,13 ) ^ self.ror(__UpperCamelCase ,22 )
lowercase_ : Optional[Any] = (a & b) ^ (a & c) ^ (b & c)
lowercase_ : Any = (sa + maj) % 0X1_0_0_0_0_0_0_0_0
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = (
g,
f,
e,
((d + tempa) % 0X1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0),
)
lowercase_ : str = [a, b, c, d, e, f, g, h]
# Modify final values
lowercase_ : Dict = [
((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
lowercase_ : Any = ''.join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int:
'''simple docstring'''
return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class UpperCamelCase ( unittest.TestCase ):
def _UpperCAmelCase ( self ) -> None:
'''simple docstring'''
import hashlib
lowercase_ : Union[str, Any] = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(__UpperCamelCase ).hash ,hashlib.shaaaa(__UpperCamelCase ).hexdigest() )
def lowercase__( ):
import doctest
doctest.testmod()
lowercase_ : Tuple = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
lowercase_ : Any = parser.parse_args()
lowercase_ : int = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowercase_ : str = f.read()
else:
lowercase_ : Optional[int] = bytes(__SCREAMING_SNAKE_CASE , 'utf-8' )
print(SHAaaa(__SCREAMING_SNAKE_CASE ).hash )
if __name__ == "__main__":
main()
| 213 | 1 |
"""simple docstring"""
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowercase__ ( snake_case__ ):
_UpperCAmelCase :jnp.ndarray
_UpperCAmelCase :jnp.ndarray
class lowercase__ ( nn.Module ):
_UpperCAmelCase :int
_UpperCAmelCase :Tuple[int] = (16, 32, 96, 256)
_UpperCAmelCase :jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : int ):
lowerCamelCase_ : Optional[Any] =nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
lowerCamelCase_ : Optional[int] =[]
for i in range(len(self.block_out_channels ) - 1 ):
lowerCamelCase_ : Dict =self.block_out_channels[i]
lowerCamelCase_ : Union[str, Any] =self.block_out_channels[i + 1]
lowerCamelCase_ : Any =nn.Conv(
snake_case__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(snake_case__ )
lowerCamelCase_ : List[Any] =nn.Conv(
snake_case__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(snake_case__ )
lowerCamelCase_ : Union[str, Any] =blocks
lowerCamelCase_ : List[str] =nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : int , snake_case__ : List[str] ):
lowerCamelCase_ : Union[str, Any] =self.conv_in(snake_case__ )
lowerCamelCase_ : Tuple =nn.silu(snake_case__ )
for block in self.blocks:
lowerCamelCase_ : int =block(snake_case__ )
lowerCamelCase_ : str =nn.silu(snake_case__ )
lowerCamelCase_ : str =self.conv_out(snake_case__ )
return embedding
@flax_register_to_config
class lowercase__ ( nn.Module, snake_case__, snake_case__ ):
_UpperCAmelCase :int = 32
_UpperCAmelCase :int = 4
_UpperCAmelCase :Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_UpperCAmelCase :Union[bool, Tuple[bool]] = False
_UpperCAmelCase :Tuple[int] = (320, 640, 1280, 1280)
_UpperCAmelCase :int = 2
_UpperCAmelCase :Union[int, Tuple[int]] = 8
_UpperCAmelCase :Optional[Union[int, Tuple[int]]] = None
_UpperCAmelCase :int = 1280
_UpperCAmelCase :float = 0.0
_UpperCAmelCase :bool = False
_UpperCAmelCase :jnp.dtype = jnp.floataa
_UpperCAmelCase :bool = True
_UpperCAmelCase :int = 0
_UpperCAmelCase :str = "rgb"
_UpperCAmelCase :Tuple[int] = (16, 32, 96, 256)
def UpperCAmelCase__ ( self : int , snake_case__ : jax.random.KeyArray ):
# init input tensors
lowerCamelCase_ : Tuple =(1, self.in_channels, self.sample_size, self.sample_size)
lowerCamelCase_ : Optional[Any] =jnp.zeros(snake_case__ , dtype=jnp.floataa )
lowerCamelCase_ : Any =jnp.ones((1,) , dtype=jnp.intaa )
lowerCamelCase_ : int =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
lowerCamelCase_ : Any =(1, 3, self.sample_size * 8, self.sample_size * 8)
lowerCamelCase_ : str =jnp.zeros(snake_case__ , dtype=jnp.floataa )
lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =jax.random.split(snake_case__ )
lowerCamelCase_ : Any ={"params": params_rng, "dropout": dropout_rng}
return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"]
def UpperCAmelCase__ ( self : Union[str, Any] ):
lowerCamelCase_ : Optional[Any] =self.block_out_channels
lowerCamelCase_ : Union[str, Any] =block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
lowerCamelCase_ : Union[str, Any] =self.num_attention_heads or self.attention_head_dim
# input
lowerCamelCase_ : Dict =nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
lowerCamelCase_ : Tuple =FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
lowerCamelCase_ : Any =FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype )
lowerCamelCase_ : List[Any] =FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
lowerCamelCase_ : Tuple =self.only_cross_attention
if isinstance(snake_case__ , snake_case__ ):
lowerCamelCase_ : Dict =(only_cross_attention,) * len(self.down_block_types )
if isinstance(snake_case__ , snake_case__ ):
lowerCamelCase_ : str =(num_attention_heads,) * len(self.down_block_types )
# down
lowerCamelCase_ : List[Any] =[]
lowerCamelCase_ : List[str] =[]
lowerCamelCase_ : Optional[int] =block_out_channels[0]
lowerCamelCase_ : Tuple =nn.Conv(
snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(snake_case__ )
for i, down_block_type in enumerate(self.down_block_types ):
lowerCamelCase_ : Optional[Any] =output_channel
lowerCamelCase_ : List[str] =block_out_channels[i]
lowerCamelCase_ : List[Any] =i == len(snake_case__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
lowerCamelCase_ : Dict =FlaxCrossAttnDownBlockaD(
in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
lowerCamelCase_ : List[Any] =FlaxDownBlockaD(
in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(snake_case__ )
for _ in range(self.layers_per_block ):
lowerCamelCase_ : Tuple =nn.Conv(
snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(snake_case__ )
if not is_final_block:
lowerCamelCase_ : List[Any] =nn.Conv(
snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(snake_case__ )
lowerCamelCase_ : str =down_blocks
lowerCamelCase_ : List[Any] =controlnet_down_blocks
# mid
lowerCamelCase_ : Dict =block_out_channels[-1]
lowerCamelCase_ : str =FlaxUNetMidBlockaDCrossAttn(
in_channels=snake_case__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
lowerCamelCase_ : List[str] =nn.Conv(
snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : float = 1.0 , snake_case__ : bool = True , snake_case__ : bool = False , ):
lowerCamelCase_ : Any =self.controlnet_conditioning_channel_order
if channel_order == "bgr":
lowerCamelCase_ : List[Any] =jnp.flip(snake_case__ , axis=1 )
# 1. time
if not isinstance(snake_case__ , jnp.ndarray ):
lowerCamelCase_ : Dict =jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
lowerCamelCase_ : Any =timesteps.astype(dtype=jnp.floataa )
lowerCamelCase_ : Dict =jnp.expand_dims(snake_case__ , 0 )
lowerCamelCase_ : Optional[Any] =self.time_proj(snake_case__ )
lowerCamelCase_ : Optional[int] =self.time_embedding(snake_case__ )
# 2. pre-process
lowerCamelCase_ : Optional[Any] =jnp.transpose(snake_case__ , (0, 2, 3, 1) )
lowerCamelCase_ : str =self.conv_in(snake_case__ )
lowerCamelCase_ : Any =jnp.transpose(snake_case__ , (0, 2, 3, 1) )
lowerCamelCase_ : Any =self.controlnet_cond_embedding(snake_case__ )
sample += controlnet_cond
# 3. down
lowerCamelCase_ : Tuple =(sample,)
for down_block in self.down_blocks:
if isinstance(snake_case__ , snake_case__ ):
lowerCamelCase_ , lowerCamelCase_ : Tuple =down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train )
else:
lowerCamelCase_ , lowerCamelCase_ : int =down_block(snake_case__ , snake_case__ , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
lowerCamelCase_ : Any =self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train )
# 5. contronet blocks
lowerCamelCase_ : Dict =()
for down_block_res_sample, controlnet_block in zip(snake_case__ , self.controlnet_down_blocks ):
lowerCamelCase_ : Optional[Any] =controlnet_block(snake_case__ )
controlnet_down_block_res_samples += (down_block_res_sample,)
lowerCamelCase_ : Any =controlnet_down_block_res_samples
lowerCamelCase_ : List[str] =self.controlnet_mid_block(snake_case__ )
# 6. scaling
lowerCamelCase_ : Any =[sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=snake_case__ , mid_block_res_sample=snake_case__ )
| 209 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
A__ : List[str] = datasets.utils.logging.get_logger(__name__)
@dataclass
class lowercase__ ( datasets.BuilderConfig ):
_UpperCAmelCase :int = 10000
_UpperCAmelCase :Optional[List[str]] = None
_UpperCAmelCase :Optional[datasets.Features] = None
class lowercase__ ( datasets.ArrowBasedBuilder ):
_UpperCAmelCase :Optional[int] = ParquetConfig
def UpperCAmelCase__ ( self : Optional[int] ):
return datasets.DatasetInfo(features=self.config.features )
def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[Any] ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
lowerCamelCase_ : str =dl_manager.download_and_extract(self.config.data_files )
if isinstance(snake_case__ , (str, list, tuple) ):
lowerCamelCase_ : Dict =data_files
if isinstance(snake_case__ , snake_case__ ):
lowerCamelCase_ : List[Any] =[files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCamelCase_ : Any =[dl_manager.iter_files(snake_case__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
lowerCamelCase_ : Optional[int] =[]
for split_name, files in data_files.items():
if isinstance(snake_case__ , snake_case__ ):
lowerCamelCase_ : Optional[int] =[files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCamelCase_ : int =[dl_manager.iter_files(snake_case__ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(snake_case__ ):
with open(snake_case__ , "rb" ) as f:
lowerCamelCase_ : List[Any] =datasets.Features.from_arrow_schema(pq.read_schema(snake_case__ ) )
break
splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"files": files} ) )
return splits
def UpperCAmelCase__ ( self : int , snake_case__ : pa.Table ):
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCamelCase_ : List[str] =table_cast(snake_case__ , self.info.features.arrow_schema )
return pa_table
def UpperCAmelCase__ ( self : int , snake_case__ : Optional[Any] ):
lowerCamelCase_ : Tuple =self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" )
for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ):
with open(snake_case__ , "rb" ) as f:
lowerCamelCase_ : List[str] =pq.ParquetFile(snake_case__ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
lowerCamelCase_ : Union[str, Any] =pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield F"""{file_idx}_{batch_idx}""", self._cast_table(snake_case__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" )
raise
| 209 | 1 |
'''simple docstring'''
def __lowerCamelCase ( lowerCAmelCase_ ) -> int:
_a : Optional[int] = hex_num.strip()
if not hex_num:
raise ValueError('No value was passed to the function' )
_a : Dict = hex_num[0] == '-'
if is_negative:
_a : Optional[int] = hex_num[1:]
try:
_a : Optional[Any] = int(lowerCAmelCase_ , 16 )
except ValueError:
raise ValueError('Invalid value was passed to the function' )
_a : int = ''
while int_num > 0:
_a : Union[str, Any] = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(('-' + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 89 |
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = " " ):
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = 0
for index, char in enumerate(_SCREAMING_SNAKE_CASE ):
if char == separator:
split_words.append(string[last_index:index] )
_UpperCAmelCase = index + 1
elif index + 1 == len(_SCREAMING_SNAKE_CASE ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 260 | 0 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class A__ :
"""simple docstring"""
def __init__( self , __snake_case , __snake_case=9_9 , __snake_case=1_3 , __snake_case=7 , __snake_case=9 , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=3_2 , __snake_case=5 , __snake_case=4 , __snake_case=3_7 , __snake_case=8 , __snake_case=0.1 , __snake_case=0.002 , __snake_case=1 , __snake_case=0 , __snake_case=0 , __snake_case=None , __snake_case=None , ):
snake_case = parent
snake_case = batch_size
snake_case = encoder_seq_length
snake_case = decoder_seq_length
# For common tests
snake_case = self.decoder_seq_length
snake_case = is_training
snake_case = use_attention_mask
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = d_ff
snake_case = relative_attention_num_buckets
snake_case = dropout_rate
snake_case = initializer_factor
snake_case = eos_token_id
snake_case = pad_token_id
snake_case = decoder_start_token_id
snake_case = None
snake_case = decoder_layers
def a_ ( self ):
return TaConfig.from_pretrained('''google/umt5-base''' )
def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , ):
if attention_mask is None:
snake_case = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
snake_case = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
snake_case = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__snake_case )
if decoder_head_mask is None:
snake_case = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__snake_case )
if cross_attn_head_mask is None:
snake_case = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__snake_case )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def a_ ( self ):
snake_case = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
snake_case = input_ids.clamp(self.pad_token_id + 1 )
snake_case = decoder_input_ids.clamp(self.pad_token_id + 1 )
snake_case = self.get_config()
snake_case = config.num_attention_heads
snake_case = self.prepare_inputs_dict(__snake_case , __snake_case , __snake_case )
return config, input_dict
def a_ ( self ):
snake_case , snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def a_ ( self ):
return TaConfig(
vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def a_ ( self ):
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ):
snake_case = UMTaModel(config=__snake_case )
model.to(__snake_case )
model.eval()
snake_case = model(
input_ids=__snake_case , decoder_input_ids=__snake_case , attention_mask=__snake_case , decoder_attention_mask=__snake_case , )
snake_case = model(input_ids=__snake_case , decoder_input_ids=__snake_case )
snake_case = result.last_hidden_state
snake_case = result.past_key_values
snake_case = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__snake_case ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ):
snake_case = UMTaModel(config=__snake_case ).get_decoder().to(__snake_case ).eval()
# first forward pass
snake_case = model(__snake_case , use_cache=__snake_case )
snake_case = model(__snake_case )
snake_case = model(__snake_case , use_cache=__snake_case )
self.parent.assertTrue(len(__snake_case ) == len(__snake_case ) )
self.parent.assertTrue(len(__snake_case ) == len(__snake_case ) + 1 )
snake_case , snake_case = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
snake_case = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case = model(__snake_case )['''last_hidden_state''']
snake_case = model(__snake_case , past_key_values=__snake_case )['''last_hidden_state''']
# select random slice
snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case = output_from_no_past[:, -1, random_slice_idx].detach()
snake_case = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) )
def a_ ( self , __snake_case , __snake_case , ):
snake_case = UMTaModel(config=__snake_case ).to(__snake_case ).half().eval()
snake_case = model(**__snake_case )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__snake_case ).any().item() )
@require_torch
class A__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
__magic_name__ = (UMTaForConditionalGeneration,) if is_torch_available() else ()
__magic_name__ = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = True
__magic_name__ = True
# The small UMT5 model needs higher percentages for CPU/MP tests
__magic_name__ = [0.8, 0.9]
def a_ ( self ):
snake_case = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def a_ ( self ):
snake_case = self.model_tester.prepare_config_and_inputs()
snake_case = UMTaModel(config_and_inputs[0] ).to(__snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=__snake_case , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a_ ( self ):
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__snake_case )
def a_ ( self ):
snake_case = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
snake_case = self.model_tester.prepare_config_and_inputs()
snake_case = config_and_inputs[0]
snake_case = UMTaForConditionalGeneration(__snake_case ).eval()
model.to(__snake_case )
snake_case = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__snake_case ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__snake_case ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__snake_case ),
}
for attn_name, (name, mask) in zip(__snake_case , head_masking.items() ):
snake_case = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
snake_case = torch.ones(
config.num_decoder_layers , config.num_heads , device=__snake_case )
snake_case = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__snake_case , return_dict_in_generate=__snake_case , **__snake_case , )
# We check the state of decoder_attentions and cross_attentions just from the last step
snake_case = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def a_ ( self ):
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def a_ ( self ):
snake_case = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__snake_case ).to(__snake_case )
snake_case = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__snake_case , legacy=__snake_case )
snake_case = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
snake_case = tokenizer(__snake_case , return_tensors='''pt''' , padding=__snake_case ).input_ids
# fmt: off
snake_case = torch.tensor(
[
[ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1],
] )
# fmt: on
torch.testing.assert_allclose(__snake_case , __snake_case )
snake_case = model.generate(input_ids.to(__snake_case ) )
snake_case = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
snake_case = tokenizer.batch_decode(__snake_case )
self.assertEqual(__snake_case , __snake_case )
| 213 |
import math
class A__ :
"""simple docstring"""
def a_ ( self , __snake_case , __snake_case ):
snake_case = 0.0
snake_case = 0.0
for i in range(len(__snake_case ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ):
for i in range(len(__snake_case ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def UpperCAmelCase__ ():
"""simple docstring"""
snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
snake_case = SelfOrganizingMap()
snake_case = 3
snake_case = 0.5
for _ in range(UpperCamelCase_ ):
for j in range(len(UpperCamelCase_ ) ):
# training sample
snake_case = training_samples[j]
# Compute the winning vector
snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ )
# Update the winning vector
snake_case = self_organizing_map.update(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ )
# classify test sample
snake_case = [0, 0, 0, 1]
snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 213 | 1 |
class _A :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = data
SCREAMING_SNAKE_CASE_ : List[str] = previous
SCREAMING_SNAKE_CASE_ : List[Any] = next_node
def __str__( self ):
"""simple docstring"""
return f"{self.data}"
def UpperCAmelCase ( self ):
"""simple docstring"""
return self.data
def UpperCAmelCase ( self ):
"""simple docstring"""
return self.next
def UpperCAmelCase ( self ):
"""simple docstring"""
return self.previous
class _A :
def __init__( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = head
def __iter__( self ):
"""simple docstring"""
return self
def UpperCAmelCase ( self ):
"""simple docstring"""
if not self.current:
raise StopIteration
else:
SCREAMING_SNAKE_CASE_ : Tuple = self.current.get_data()
SCREAMING_SNAKE_CASE_ : List[str] = self.current.get_next()
return value
class _A :
def __init__( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # First node in list
SCREAMING_SNAKE_CASE_ : int = None # Last node in list
def __str__( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = self.head
SCREAMING_SNAKE_CASE_ : Any = []
while current is not None:
nodes.append(current.get_data() )
SCREAMING_SNAKE_CASE_ : Any = current.get_next()
return " ".join(str(_SCREAMING_SNAKE_CASE ) for node in nodes )
def __contains__( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = self.head
while current:
if current.get_data() == value:
return True
SCREAMING_SNAKE_CASE_ : int = current.get_next()
return False
def __iter__( self ):
"""simple docstring"""
return LinkedListIterator(self.head )
def UpperCAmelCase ( self ):
"""simple docstring"""
if self.head:
return self.head.get_data()
return None
def UpperCAmelCase ( self ):
"""simple docstring"""
if self.tail:
return self.tail.get_data()
return None
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if self.head is None:
SCREAMING_SNAKE_CASE_ : int = node
SCREAMING_SNAKE_CASE_ : Optional[int] = node
else:
self.insert_before_node(self.head , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if self.head is None:
self.set_head(_SCREAMING_SNAKE_CASE )
else:
self.insert_after_node(self.tail , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = Node(_SCREAMING_SNAKE_CASE )
if self.head is None:
self.set_head(_SCREAMING_SNAKE_CASE )
else:
self.set_tail(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = node
SCREAMING_SNAKE_CASE_ : Tuple = node.previous
if node.get_previous() is None:
SCREAMING_SNAKE_CASE_ : List[str] = node_to_insert
else:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node_to_insert
SCREAMING_SNAKE_CASE_ : Optional[int] = node_to_insert
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node
SCREAMING_SNAKE_CASE_ : Tuple = node.next
if node.get_next() is None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = node_to_insert
else:
SCREAMING_SNAKE_CASE_ : Dict = node_to_insert
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node_to_insert
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = 1
SCREAMING_SNAKE_CASE_ : List[Any] = Node(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return
current_position += 1
SCREAMING_SNAKE_CASE_ : int = node.next
self.insert_after_node(self.tail , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.head
while node:
if node.get_data() == item:
return node
SCREAMING_SNAKE_CASE_ : List[Any] = node.get_next()
raise Exception('Node not found' )
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if (node := self.get_node(_SCREAMING_SNAKE_CASE )) is not None:
if node == self.head:
SCREAMING_SNAKE_CASE_ : List[str] = self.head.get_next()
if node == self.tail:
SCREAMING_SNAKE_CASE_ : Optional[int] = self.tail.get_previous()
self.remove_node_pointers(_SCREAMING_SNAKE_CASE )
@staticmethod
def UpperCAmelCase ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if node.get_next():
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.previous
if node.get_previous():
SCREAMING_SNAKE_CASE_ : Optional[Any] = node.next
SCREAMING_SNAKE_CASE_ : Any = None
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
def UpperCAmelCase ( self ):
"""simple docstring"""
return self.head is None
def A_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 253 |
import os
from typing import Dict, List, Tuple, TypeVar, Union
lowerCAmelCase : str = TypeVar('T')
lowerCAmelCase : Optional[Any] = Union[List[T], Tuple[T, ...]]
lowerCAmelCase : str = Union[T, List[T], Dict[str, T]]
lowerCAmelCase : Union[str, Any] = Union[str, bytes, os.PathLike]
| 253 | 1 |
'''simple docstring'''
import math
import sys
import cva
import numpy as np
def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : float ):
"""simple docstring"""
__magic_name__ : List[str] = math.sqrt(lowerCAmelCase )
__magic_name__ : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ):
"""simple docstring"""
__magic_name__ : List[Any] = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : float ):
"""simple docstring"""
__magic_name__ : Tuple = np.zeros((kernel_size, kernel_size) )
for i in range(0 , lowerCAmelCase ):
for j in range(0 , lowerCAmelCase ):
__magic_name__ : Optional[int] = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(lowerCAmelCase , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : int , ):
"""simple docstring"""
__magic_name__ : Any = np.zeros(img.shape )
__magic_name__ : Dict = get_gauss_kernel(lowerCAmelCase , lowerCAmelCase )
__magic_name__ , __magic_name__ : Tuple = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__magic_name__ : List[Any] = get_slice(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
__magic_name__ : int = img_s - img_s[kernel_size // 2, kernel_size // 2]
__magic_name__ : int = vec_gaussian(lowerCAmelCase , lowerCAmelCase )
__magic_name__ : Union[str, Any] = np.multiply(lowerCAmelCase , lowerCAmelCase )
__magic_name__ : int = np.multiply(lowerCAmelCase , lowerCAmelCase )
__magic_name__ : Optional[int] = np.sum(lowerCAmelCase ) / np.sum(lowerCAmelCase )
__magic_name__ : List[str] = val
return imga
def lowerCamelCase ( lowerCAmelCase : list ):
"""simple docstring"""
__magic_name__ : List[str] = args[1] if args[1:] else '../image_data/lena.jpg'
__magic_name__ : Tuple = float(args[2] ) if args[2:] else 1.0
__magic_name__ : str = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__magic_name__ : List[str] = int(args[4] )
__magic_name__ : Optional[int] = kernel_size + abs(kernel_size % 2 - 1 )
else:
__magic_name__ : str = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Union[str, Any] = parse_args(sys.argv)
lowerCAmelCase :int = cva.imread(filename, 0)
cva.imshow('''input image''', img)
lowerCAmelCase :Tuple = img / 2_5_5
lowerCAmelCase :Optional[int] = out.astype('''float32''')
lowerCAmelCase :List[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
lowerCAmelCase :Tuple = out * 2_5_5
lowerCAmelCase :Union[str, Any] = np.uinta(out)
cva.imshow('''output image''', out)
cva.waitKey(0)
cva.destroyAllWindows() | 275 |
'''simple docstring'''
import math
def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float ):
"""simple docstring"""
return math.pow(lowerCAmelCase , 2 ) - a
def lowerCamelCase ( lowerCAmelCase : float ):
"""simple docstring"""
return 2 * x
def lowerCamelCase ( lowerCAmelCase : float ):
"""simple docstring"""
__magic_name__ : List[Any] = 2.0
while start <= a:
__magic_name__ : List[str] = math.pow(lowerCAmelCase , 2 )
return start
def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int = 9999 , lowerCAmelCase : float = 0.00_0000_0000_0001 ):
"""simple docstring"""
if a < 0:
raise ValueError('math domain error' )
__magic_name__ : Any = get_initial_point(lowerCAmelCase )
for _ in range(lowerCAmelCase ):
__magic_name__ : List[str] = value
__magic_name__ : Optional[int] = value - fx(lowerCAmelCase , lowerCAmelCase ) / fx_derivative(lowerCAmelCase )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod() | 275 | 1 |
'''simple docstring'''
from math import factorial
def snake_case_ (_a : Union[str, Any] = 2_0 ):
UpperCAmelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase = n // 2
return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
A =int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 34 |
from manim import *
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def _lowerCAmelCase ( self ):
A : Union[str, Any] = Rectangle(height=0.5, width=0.5 )
A : Optional[int] = Rectangle(height=0.25, width=0.25 )
A : Optional[Any] = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 )
A : List[str] = [mem.copy() for i in range(6 )]
A : Any = [mem.copy() for i in range(6 )]
A : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : str = VGroup(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : List[Any] = Text("""CPU""", font_size=24 )
A : Optional[int] = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase__ )
A : List[Any] = [mem.copy() for i in range(4 )]
A : Optional[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : Dict = Text("""GPU""", font_size=24 )
A : Any = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ )
gpu.move_to([-1, -1, 0] )
self.add(lowerCamelCase__ )
A : Optional[int] = [mem.copy() for i in range(6 )]
A : List[str] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : Optional[int] = Text("""Model""", font_size=24 )
A : List[Any] = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ )
model.move_to([3, -1.0, 0] )
self.add(lowerCamelCase__ )
A : Tuple = []
A : Tuple = []
A : Any = []
for i, rect in enumerate(lowerCamelCase__ ):
rect.set_stroke(lowerCamelCase__ )
A : Any = Rectangle(height=0.46 / 4, width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__, opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=lowerCamelCase__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0], direction=lowerCamelCase__, buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1], direction=lowerCamelCase__, buff=0.0 )
self.add(lowerCamelCase__ )
model_cpu_arr.append(lowerCamelCase__ )
self.add(*lowerCamelCase__, *lowerCamelCase__, *lowerCamelCase__ )
A : int = [mem.copy() for i in range(6 )]
A : List[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : str = Text("""Loaded Checkpoint""", font_size=24 )
A : List[str] = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ )
checkpoint.move_to([3, 0.5, 0] )
self.add(lowerCamelCase__ )
A : Optional[int] = []
A : List[Any] = []
for i, rect in enumerate(lowerCamelCase__ ):
A : int = fill.copy().set_fill(lowerCamelCase__, opacity=0.7 )
target.move_to(lowerCamelCase__ )
ckpt_arr.append(lowerCamelCase__ )
A : List[Any] = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(lowerCamelCase__ )
self.add(*lowerCamelCase__, *lowerCamelCase__ )
A : str = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
A : List[Any] = MarkupText(
f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, )
key_text.move_to([-5, 2.4, 0] )
self.add(lowerCamelCase__, lowerCamelCase__ )
A : Union[str, Any] = MarkupText(
f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''', font_size=18, )
blue_text.next_to(lowerCamelCase__, DOWN * 2.4, aligned_edge=key_text.get_left() )
self.add(lowerCamelCase__ )
A : List[str] = MarkupText(
f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''', font_size=24, )
step_a.move_to([2, 2, 0] )
A : List[str] = [meta_mem.copy() for i in range(6 )]
A : List[Any] = [meta_mem.copy() for i in range(6 )]
A : List[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : List[str] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : Dict = VGroup(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0 )
A : Optional[Any] = Text("""Disk""", font_size=24 )
A : List[str] = Group(lowerCamelCase__, lowerCamelCase__ ).arrange(lowerCamelCase__, buff=0.5, aligned_edge=lowerCamelCase__ )
disk.move_to([-4.0, -1.25, 0] )
self.play(Write(lowerCamelCase__, run_time=3 ), Write(lowerCamelCase__, run_time=1 ), Create(lowerCamelCase__, run_time=1 ) )
A : str = []
for i, rect in enumerate(lowerCamelCase__ ):
A : Optional[Any] = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(lowerCamelCase__, run_time=1.5 ) )
self.play(*lowerCamelCase__ )
self.play(FadeOut(lowerCamelCase__ ) )
A : List[str] = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''', font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase__, run_time=3 ) )
self.play(
FadeOut(lowerCamelCase__, lowerCamelCase__, *lowerCamelCase__, *lowerCamelCase__ ), )
self.wait()
| 116 | 0 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
_A = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class _lowercase :
lowercase_ = PegasusConfig
lowercase_ = {}
lowercase_ = 'gelu'
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=7 , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_=99 , UpperCAmelCase_=32 , UpperCAmelCase_=5 , UpperCAmelCase_=4 , UpperCAmelCase_=37 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=20 , UpperCAmelCase_=2 , UpperCAmelCase_=1 , UpperCAmelCase_=0 , ) -> Any:
lowerCamelCase : Union[str, Any] = parent
lowerCamelCase : int = batch_size
lowerCamelCase : Optional[int] = seq_length
lowerCamelCase : Optional[int] = is_training
lowerCamelCase : int = use_labels
lowerCamelCase : Union[str, Any] = vocab_size
lowerCamelCase : List[str] = hidden_size
lowerCamelCase : Optional[Any] = num_hidden_layers
lowerCamelCase : str = num_attention_heads
lowerCamelCase : Optional[int] = intermediate_size
lowerCamelCase : List[Any] = hidden_dropout_prob
lowerCamelCase : int = attention_probs_dropout_prob
lowerCamelCase : int = max_position_embeddings
lowerCamelCase : Dict = eos_token_id
lowerCamelCase : Union[str, Any] = pad_token_id
lowerCamelCase : Dict = bos_token_id
def _UpperCamelCase ( self ) -> Any:
lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
lowerCamelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
lowerCamelCase : Optional[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase : List[str] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCamelCase : Tuple = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
return config, inputs_dict
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[Any]:
lowerCamelCase : Union[str, Any] = 20
lowerCamelCase : List[Any] = model_class_name(UpperCAmelCase_ )
lowerCamelCase : List[str] = model.encode(inputs_dict['input_ids'] )
lowerCamelCase , lowerCamelCase : str = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
lowerCamelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCamelCase : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
lowerCamelCase : List[str] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase : str = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
lowerCamelCase : Union[str, Any] = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase : List[str] = model.decode(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCamelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]:
lowerCamelCase : List[str] = 20
lowerCamelCase : List[str] = model_class_name(UpperCAmelCase_ )
lowerCamelCase : Optional[int] = model.encode(inputs_dict['input_ids'] )
lowerCamelCase , lowerCamelCase : int = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
lowerCamelCase : str = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowerCamelCase : List[str] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
lowerCamelCase : Union[str, Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase : Tuple = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
lowerCamelCase : str = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase : Tuple = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ )
lowerCamelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def UpperCAmelCase ( a_, a_, a_, a_=None, a_=None, ):
'''simple docstring'''
if attention_mask is None:
lowerCamelCase : int = np.not_equal(a_, config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowerCamelCase : str = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ),
], axis=-1, )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class _lowercase ( __UpperCAmelCase , unittest.TestCase ):
lowercase_ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowercase_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowercase_ = True
lowercase_ = False
lowercase_ = False
lowercase_ = False
def _UpperCamelCase ( self ) -> Dict:
lowerCamelCase : List[Any] = FlaxPegasusModelTester(self )
lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase_ )
def _UpperCamelCase ( self ) -> str:
self.config_tester.run_common_tests()
def _UpperCamelCase ( self ) -> List[str]:
lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def _UpperCamelCase ( self ) -> int:
lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def _UpperCamelCase ( self ) -> str:
lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCamelCase : Optional[int] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
lowerCamelCase : Optional[int] = model_class(UpperCAmelCase_ )
@jax.jit
def encode_jitted(UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )
with self.subTest('JIT Enabled' ):
lowerCamelCase : int = encode_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowerCamelCase : Union[str, Any] = encode_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def _UpperCamelCase ( self ) -> int:
lowerCamelCase , lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCamelCase : Optional[Any] = model_class(UpperCAmelCase_ )
lowerCamelCase : Dict = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
lowerCamelCase : int = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest('JIT Enabled' ):
lowerCamelCase : Optional[int] = decode_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowerCamelCase : List[Any] = decode_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _UpperCamelCase ( self ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
lowerCamelCase : Dict = model_class_name.from_pretrained('google/pegasus-large' , from_pt=UpperCAmelCase_ )
lowerCamelCase : Any = np.ones((1, 1) )
lowerCamelCase : Optional[Any] = model(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@slow
def _UpperCamelCase ( self ) -> Union[str, Any]:
lowerCamelCase : Optional[int] = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' )
lowerCamelCase : Dict = PegasusTokenizer.from_pretrained('google/pegasus-xsum' )
lowerCamelCase : List[Any] = [
' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.',
' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ',
]
lowerCamelCase : Union[str, Any] = [
'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.',
'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.',
]
lowerCamelCase : str = tokenizer(UpperCAmelCase_ , return_tensors='np' , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ )
lowerCamelCase : Optional[Any] = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences
lowerCamelCase : Any = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ )
assert tgt_text == decoded
| 205 |
"""simple docstring"""
def UpperCAmelCase ( ):
'''simple docstring'''
return 1
def UpperCAmelCase ( a_ ):
'''simple docstring'''
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def UpperCAmelCase ( a_ ):
'''simple docstring'''
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a_ )
def UpperCAmelCase ( a_ ):
'''simple docstring'''
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a_ )
def UpperCAmelCase ( a_ ):
'''simple docstring'''
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a_ )
def UpperCAmelCase ( a_ ):
'''simple docstring'''
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a_ )
def UpperCAmelCase ( a_ ):
'''simple docstring'''
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a_ )
def UpperCAmelCase ( a_ ):
'''simple docstring'''
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a_ )
def UpperCAmelCase ( a_ = 200 ):
'''simple docstring'''
return two_pound(a_ )
if __name__ == "__main__":
print(solution(int(input().strip())))
| 205 | 1 |
class __A :
'''simple docstring'''
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ):
'''simple docstring'''
lowerCamelCase__ = data
lowerCamelCase__ = previous
lowerCamelCase__ = next_node
def __str__( self ):
'''simple docstring'''
return F'{self.data}'
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.data
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.next
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.previous
class __A :
'''simple docstring'''
def __init__( self , __lowerCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = head
def __iter__( self ):
'''simple docstring'''
return self
def __lowerCamelCase ( self ):
'''simple docstring'''
if not self.current:
raise StopIteration
else:
lowerCamelCase__ = self.current.get_data()
lowerCamelCase__ = self.current.get_next()
return value
class __A :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
lowerCamelCase__ = None # First node in list
lowerCamelCase__ = None # Last node in list
def __str__( self ):
'''simple docstring'''
lowerCamelCase__ = self.head
lowerCamelCase__ = []
while current is not None:
nodes.append(current.get_data() )
lowerCamelCase__ = current.get_next()
return " ".join(str(__lowerCAmelCase ) for node in nodes )
def __contains__( self , __lowerCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = self.head
while current:
if current.get_data() == value:
return True
lowerCamelCase__ = current.get_next()
return False
def __iter__( self ):
'''simple docstring'''
return LinkedListIterator(self.head )
def __lowerCamelCase ( self ):
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def __lowerCamelCase ( self ):
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def __lowerCamelCase ( self , __lowerCAmelCase ):
'''simple docstring'''
if self.head is None:
lowerCamelCase__ = node
lowerCamelCase__ = node
else:
self.insert_before_node(self.head , __lowerCAmelCase )
def __lowerCamelCase ( self , __lowerCAmelCase ):
'''simple docstring'''
if self.head is None:
self.set_head(__lowerCAmelCase )
else:
self.insert_after_node(self.tail , __lowerCAmelCase )
def __lowerCamelCase ( self , __lowerCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = Node(__lowerCAmelCase )
if self.head is None:
self.set_head(__lowerCAmelCase )
else:
self.set_tail(__lowerCAmelCase )
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = node
lowerCamelCase__ = node.previous
if node.get_previous() is None:
lowerCamelCase__ = node_to_insert
else:
lowerCamelCase__ = node_to_insert
lowerCamelCase__ = node_to_insert
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = node
lowerCamelCase__ = node.next
if node.get_next() is None:
lowerCamelCase__ = node_to_insert
else:
lowerCamelCase__ = node_to_insert
lowerCamelCase__ = node_to_insert
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = 1
lowerCamelCase__ = Node(__lowerCAmelCase )
lowerCamelCase__ = self.head
while node:
if current_position == position:
self.insert_before_node(__lowerCAmelCase , __lowerCAmelCase )
return
current_position += 1
lowerCamelCase__ = node.next
self.insert_after_node(self.tail , __lowerCAmelCase )
def __lowerCamelCase ( self , __lowerCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = self.head
while node:
if node.get_data() == item:
return node
lowerCamelCase__ = node.get_next()
raise Exception('''Node not found''' )
def __lowerCamelCase ( self , __lowerCAmelCase ):
'''simple docstring'''
if (node := self.get_node(__lowerCAmelCase )) is not None:
if node == self.head:
lowerCamelCase__ = self.head.get_next()
if node == self.tail:
lowerCamelCase__ = self.tail.get_previous()
self.remove_node_pointers(__lowerCAmelCase )
@staticmethod
def __lowerCamelCase ( __lowerCAmelCase ):
'''simple docstring'''
if node.get_next():
lowerCamelCase__ = node.previous
if node.get_previous():
lowerCamelCase__ = node.next
lowerCamelCase__ = None
lowerCamelCase__ = None
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.head is None
def lowerCAmelCase__() -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 209 |
def lowerCAmelCase__(__snake_case ,__snake_case ) -> float:
'''simple docstring'''
if mass < 0:
raise ValueError('''The mass of a body cannot be negative''' )
return 0.5 * mass * abs(__snake_case ) * abs(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 209 | 1 |
"""simple docstring"""
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
_lowerCAmelCase : Any = TypeVar("T")
class UpperCAmelCase_ ( Generic[T] ):
def __init__( self : Dict , A : Union[str, Any] = True ):
_UpperCAmelCase : List[str] = {} # dictionary of lists
_UpperCAmelCase : Dict = directed
def snake_case_ ( self : Any , A : Dict , A : str ):
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_SCREAMING_SNAKE_CASE )
self.adj_list[destination_vertex].append(_SCREAMING_SNAKE_CASE )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Optional[int] = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase : List[Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
_UpperCAmelCase : Dict = [destination_vertex]
_UpperCAmelCase : str = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_SCREAMING_SNAKE_CASE )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Union[str, Any] = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
_UpperCAmelCase : Optional[int] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
_UpperCAmelCase : Optional[int] = [destination_vertex]
_UpperCAmelCase : Optional[int] = []
return self
def __repr__( self : Dict ):
return pformat(self.adj_list )
| 355 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase_ ( _UpperCamelCase , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Dict = GPTSanJapaneseTokenizer
__SCREAMING_SNAKE_CASE : Optional[int] = False
__SCREAMING_SNAKE_CASE : List[str] = {'do_clean_text': False, 'add_prefix_space': False}
def snake_case_ ( self : Any ):
super().setUp()
# fmt: off
_UpperCAmelCase : Any = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"]
# fmt: on
_UpperCAmelCase : Optional[int] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀
_UpperCAmelCase : List[Any] = {"unk_token": "<unk>"}
_UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.emoji_file , "w" ) as emoji_writer:
emoji_writer.write(json.dumps(A ) )
def snake_case_ ( self : int , **A : List[str] ):
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A )
def snake_case_ ( self : int , A : Any ):
_UpperCAmelCase : Optional[Any] = "こんにちは、世界。 \nこんばんは、㔺界。😀"
_UpperCAmelCase : List[Any] = "こんにちは、世界。 \nこんばんは、世界。😀"
return input_text, output_text
def snake_case_ ( self : Optional[Any] , A : str ):
_UpperCAmelCase , _UpperCAmelCase : str = self.get_input_output_texts(A )
_UpperCAmelCase : List[Any] = tokenizer.encode(A , add_special_tokens=A )
_UpperCAmelCase : Union[str, Any] = tokenizer.decode(A , clean_up_tokenization_spaces=A )
return text, ids
def snake_case_ ( self : Any ):
pass # TODO add if relevant
def snake_case_ ( self : Union[str, Any] ):
pass # TODO add if relevant
def snake_case_ ( self : int ):
pass # TODO add if relevant
def snake_case_ ( self : List[str] ):
_UpperCAmelCase : List[Any] = self.get_tokenizer()
# Testing tokenization
_UpperCAmelCase : Optional[int] = "こんにちは、世界。 こんばんは、㔺界。"
_UpperCAmelCase : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"]
_UpperCAmelCase : List[Any] = tokenizer.tokenize(A )
self.assertListEqual(A , A )
# Testing conversion to ids without special tokens
_UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
_UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(A , A )
# Testing conversion to ids with special tokens
_UpperCAmelCase : str = tokens + [tokenizer.unk_token]
_UpperCAmelCase : Any = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9]
_UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(A , A )
def snake_case_ ( self : Any ):
_UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
# Testing tokenization
_UpperCAmelCase : Dict = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"
_UpperCAmelCase : Tuple = "こんにちは、、、、世界。こんばんは、、、、世界。"
_UpperCAmelCase : int = tokenizer.encode(A )
_UpperCAmelCase : Optional[Any] = tokenizer.decode(A )
self.assertEqual(A , A )
@slow
def snake_case_ ( self : Dict ):
_UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" )
# Testing tokenization
_UpperCAmelCase : List[Any] = "こんにちは、世界。"
_UpperCAmelCase : List[str] = "こんばんは、㔺界。😀"
_UpperCAmelCase : Any = "こんにちは、世界。こんばんは、世界。😀"
_UpperCAmelCase : Union[str, Any] = tokenizer.encode(prefix_text + input_text )
_UpperCAmelCase : Tuple = tokenizer.encode("" , prefix_text=prefix_text + input_text )
_UpperCAmelCase : Optional[int] = tokenizer.encode(A , prefix_text=A )
_UpperCAmelCase : Tuple = tokenizer.decode(A )
_UpperCAmelCase : Optional[Any] = tokenizer.decode(A )
_UpperCAmelCase : Tuple = tokenizer.decode(A )
self.assertEqual(A , A )
self.assertEqual(A , A )
self.assertEqual(A , A )
@slow
def snake_case_ ( self : Optional[Any] ):
_UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" )
# Testing tokenization
_UpperCAmelCase : Any = "こんにちは、世界。"
_UpperCAmelCase : List[Any] = "こんばんは、㔺界。😀"
_UpperCAmelCase : Optional[Any] = len(tokenizer.encode(A ) ) - 2
_UpperCAmelCase : List[Any] = len(tokenizer.encode(A ) ) - 2
_UpperCAmelCase : List[str] = [1] + [0] * (len_prefix + len_text + 1)
_UpperCAmelCase : str = [1] * (len_prefix + len_text + 1) + [0]
_UpperCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
_UpperCAmelCase : Union[str, Any] = tokenizer(prefix_text + input_text ).token_type_ids
_UpperCAmelCase : Any = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids
_UpperCAmelCase : List[Any] = tokenizer(A , prefix_text=A ).token_type_ids
self.assertListEqual(A , A )
self.assertListEqual(A , A )
self.assertListEqual(A , A )
@slow
def snake_case_ ( self : List[str] ):
_UpperCAmelCase : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" )
_UpperCAmelCase : Dict = tokenizer.encode("あンいワ" )
_UpperCAmelCase : str = tokenizer.encode("" , prefix_text="あンいワ" )
_UpperCAmelCase : Dict = tokenizer.encode("いワ" , prefix_text="あン" )
self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) )
self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) )
self.assertNotEqual(A , A )
self.assertNotEqual(A , A )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def snake_case_ ( self : List[str] ):
_UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" )
_UpperCAmelCase : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]]
_UpperCAmelCase : Tuple = tokenizer(A , padding=A )
_UpperCAmelCase : str = tokenizer.batch_encode_plus(A , padding=A )
# fmt: off
_UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]]
_UpperCAmelCase : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
_UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , A )
self.assertListEqual(x_token.token_type_ids , A )
self.assertListEqual(x_token.attention_mask , A )
self.assertListEqual(x_token_a.input_ids , A )
self.assertListEqual(x_token_a.token_type_ids , A )
self.assertListEqual(x_token_a.attention_mask , A )
def snake_case_ ( self : List[Any] ):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def snake_case_ ( self : int ):
# tokenizer has no padding token
pass
| 202 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class UpperCamelCase ( lowercase_ ):
lowercase = 'funnel'
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
}
def __init__( self ,__UpperCamelCase=3_0522 ,__UpperCamelCase=[4, 4, 4] ,__UpperCamelCase=None ,__UpperCamelCase=2 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=64 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu_new" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.1 ,__UpperCamelCase=None ,__UpperCamelCase=1e-9 ,__UpperCamelCase="mean" ,__UpperCamelCase="relative_shift" ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Dict:
'''simple docstring'''
lowercase_ : Union[str, Any] = vocab_size
lowercase_ : Optional[int] = block_sizes
lowercase_ : Any = [1] * len(__UpperCamelCase ) if block_repeats is None else block_repeats
assert len(__UpperCamelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
lowercase_ : Optional[Any] = num_decoder_layers
lowercase_ : List[Any] = d_model
lowercase_ : Any = n_head
lowercase_ : List[str] = d_head
lowercase_ : Any = d_inner
lowercase_ : Any = hidden_act
lowercase_ : Optional[int] = hidden_dropout
lowercase_ : Union[str, Any] = attention_dropout
lowercase_ : Optional[Any] = activation_dropout
lowercase_ : int = initializer_range
lowercase_ : Union[str, Any] = initializer_std
lowercase_ : Any = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
lowercase_ : int = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
lowercase_ : Tuple = attention_type
lowercase_ : List[str] = separate_cls
lowercase_ : Any = truncate_seq
lowercase_ : str = pool_q_only
super().__init__(**__UpperCamelCase )
@property
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return sum(self.block_sizes )
@num_hidden_layers.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' )
@property
def _UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return len(self.block_sizes )
@num_blocks.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
| 213 | """simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None ):
require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
| 213 | 1 |
from ..utils import DummyObject, requires_backends
class __lowercase ( metaclass=A ):
'''simple docstring'''
_A : Dict = ['''keras_nlp''']
def __init__( self : Optional[int] , *_a : Tuple , **_a : Optional[Any] ):
requires_backends(self , ['''keras_nlp'''] )
| 35 | from __future__ import annotations
lowercase = list[list[int]]
# assigning initial values to the grid
lowercase = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
lowercase = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def lowerCamelCase_ ( UpperCamelCase__ : Matrix, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ):
'''simple docstring'''
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def lowerCamelCase_ ( UpperCamelCase__ : Matrix ):
'''simple docstring'''
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def lowerCamelCase_ ( UpperCamelCase__ : Matrix ):
'''simple docstring'''
if location := find_empty_location(UpperCamelCase__ ):
UpperCamelCase__ , UpperCamelCase__ = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1, 10 ):
if is_safe(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ):
UpperCamelCase__ = digit
if sudoku(UpperCamelCase__ ) is not None:
return grid
UpperCamelCase__ = 0
return None
def lowerCamelCase_ ( UpperCamelCase__ : Matrix ):
'''simple docstring'''
for row in grid:
for cell in row:
print(UpperCamelCase__, end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 2_0)
print_solution(example_grid)
print("""\nExample grid solution:""")
lowercase = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 35 | 1 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
_UpperCamelCase = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class __lowercase (unittest.TestCase ):
def UpperCamelCase__ ( self , A_ , A_ , A_ = None , A_ = None ) ->int:
'''simple docstring'''
__lowerCAmelCase : Dict = None
__lowerCAmelCase : Any = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) )
__lowerCAmelCase : Optional[int] = os.path.abspath('''examples''' )
for item in os.listdir(A_ ):
if item not in EXCLUDE_EXAMPLES:
__lowerCAmelCase : int = os.path.join(A_ , A_ )
if os.path.isfile(A_ ) and ".py" in item_path:
with self.subTest(
tested_script=A_ , feature_script=A_ , tested_section='''main()''' if parser_only else '''training_function()''' , ):
__lowerCAmelCase : str = compare_against_test(
os.path.join(A_ , A_ ) , A_ , A_ , A_ )
__lowerCAmelCase : Union[str, Any] = '''\n'''.join(A_ )
if special_strings is not None:
for string in special_strings:
__lowerCAmelCase : Any = diff.replace(A_ , '''''' )
self.assertEqual(A_ , '''''' )
def UpperCamelCase__ ( self ) ->int:
'''simple docstring'''
self.one_complete_example('''complete_nlp_example.py''' , A_ )
self.one_complete_example('''complete_nlp_example.py''' , A_ )
def UpperCamelCase__ ( self ) ->Any:
'''simple docstring'''
__lowerCAmelCase : Tuple = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) )
__lowerCAmelCase : List[str] = [
''' ''' * 16 + '''{\n\n''',
''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''',
''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''',
''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''',
''' ''' * 20 + '''"epoch": epoch,\n\n''',
''' ''' * 16 + '''},\n\n''',
''' ''' * 16 + '''step=epoch,\n''',
''' ''' * 12,
''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''',
]
self.one_complete_example('''complete_cv_example.py''' , A_ , A_ , A_ )
self.one_complete_example('''complete_cv_example.py''' , A_ , A_ , A_ )
@mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} )
class __lowercase (_UpperCAmelCase ):
_UpperCamelCase = False
@classmethod
def UpperCamelCase__ ( cls ) ->Union[str, Any]:
'''simple docstring'''
super().setUpClass()
__lowerCAmelCase : Dict = tempfile.mkdtemp()
__lowerCAmelCase : Tuple = os.path.join(cls._tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
__lowerCAmelCase : Dict = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def UpperCamelCase__ ( cls ) ->List[str]:
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def UpperCamelCase__ ( self ) ->Dict:
'''simple docstring'''
__lowerCAmelCase : int = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) )
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
__lowerCAmelCase : Dict = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) )
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}
""".split()
__lowerCAmelCase : Any = run_command(self._launch_args + testargs , return_stdout=A_ )
self.assertNotIn('''epoch 0:''' , A_ )
self.assertIn('''epoch 1:''' , A_ )
def UpperCamelCase__ ( self ) ->int:
'''simple docstring'''
__lowerCAmelCase : Dict = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}
""".split()
__lowerCAmelCase : List[str] = run_command(self._launch_args + testargs , return_stdout=A_ )
if torch.cuda.is_available():
__lowerCAmelCase : List[Any] = torch.cuda.device_count()
else:
__lowerCAmelCase : Tuple = 1
if num_processes > 1:
self.assertNotIn('''epoch 0:''' , A_ )
self.assertIn('''epoch 1:''' , A_ )
else:
self.assertIn('''epoch 0:''' , A_ )
self.assertIn('''epoch 1:''' , A_ )
@slow
def UpperCamelCase__ ( self ) ->Tuple:
'''simple docstring'''
__lowerCAmelCase : Tuple = '''
examples/by_feature/cross_validation.py
--num_folds 2
'''.split()
with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ):
__lowerCAmelCase : List[Any] = run_command(self._launch_args + testargs , return_stdout=A_ )
__lowerCAmelCase : Tuple = re.findall('''({.+})''' , A_ )
__lowerCAmelCase : Tuple = [r for r in results if '''accuracy''' in r][-1]
__lowerCAmelCase : List[str] = ast.literal_eval(A_ )
self.assertGreaterEqual(results['''accuracy'''] , 0.75 )
def UpperCamelCase__ ( self ) ->int:
'''simple docstring'''
__lowerCAmelCase : Union[str, Any] = ['''examples/by_feature/multi_process_metrics.py''']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
__lowerCAmelCase : List[Any] = f"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(A_ , '''tracking''' ) ) )
def UpperCamelCase__ ( self ) ->Dict:
'''simple docstring'''
__lowerCAmelCase : Union[str, Any] = ['''examples/by_feature/gradient_accumulation.py''']
run_command(self._launch_args + testargs )
def UpperCamelCase__ ( self ) ->Union[str, Any]:
'''simple docstring'''
__lowerCAmelCase : Dict = ['''examples/by_feature/local_sgd.py''']
run_command(self._launch_args + testargs )
| 275 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {"vocab_file": "spiece.model"}
_UpperCamelCase = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
_UpperCamelCase = {
"AI-Sweden/gpt-sw3-126m": 2048,
"AI-Sweden/gpt-sw3-350m": 2048,
"AI-Sweden/gpt-sw3-1.6b": 2048,
"AI-Sweden/gpt-sw3-6.7b": 2048,
"AI-Sweden/gpt-sw3-20b": 2048,
}
class __lowercase (_UpperCAmelCase ):
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = ["""input_ids""", """attention_mask"""]
def __init__( self , A_ , A_=False , A_=False , A_=False , A_=None , A_=None , A_=None , A_=None , A_ = None , **A_ , ) ->None:
'''simple docstring'''
__lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
__lowerCAmelCase : int = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
__lowerCAmelCase : Union[str, Any] = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__lowerCAmelCase : str = '''<|endoftext|>''' if eos_token is None else eos_token
__lowerCAmelCase : Any = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__lowerCAmelCase : Dict = unk_token if pad_token is None else pad_token
__lowerCAmelCase : int = eos_token if bos_token is None else bos_token
else:
__lowerCAmelCase : Optional[int] = '''<pad>''' if pad_token is None else pad_token
__lowerCAmelCase : List[str] = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , )
__lowerCAmelCase : Union[str, Any] = do_lower_case
__lowerCAmelCase : Union[str, Any] = remove_space
__lowerCAmelCase : int = keep_accents
__lowerCAmelCase : Union[str, Any] = vocab_file
__lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A_ )
# Used for whitespace normalization in input texts
# fmt : off
__lowerCAmelCase : List[Any] = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__lowerCAmelCase : int = re.compile(
f"""[{"".join(map(A_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]""" )
def __getstate__( self ) ->Dict:
'''simple docstring'''
__lowerCAmelCase : Union[str, Any] = self.__dict__.copy()
__lowerCAmelCase : List[Any] = None
return state
def __setstate__( self , A_ ) ->Tuple:
'''simple docstring'''
__lowerCAmelCase : int = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__lowerCAmelCase : List[Any] = {}
__lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase__ ( self ) ->int:
'''simple docstring'''
return len(self.sp_model )
def UpperCamelCase__ ( self , A_ ) ->str:
'''simple docstring'''
__lowerCAmelCase : int = self.non_printing_characters_re.sub('''''' , A_ )
# Normalize whitespaces
__lowerCAmelCase : List[str] = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
__lowerCAmelCase : Tuple = unicodedata.normalize('''NFC''' , A_ )
return text
def UpperCamelCase__ ( self , A_ , **A_ ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : int = self.preprocess_text(A_ )
return self.sp_model.encode(A_ , out_type=A_ )
def UpperCamelCase__ ( self , A_ ) ->int:
'''simple docstring'''
return self.sp_model.PieceToId(A_ )
def UpperCamelCase__ ( self , A_ ) ->str:
'''simple docstring'''
return self.sp_model.IdToPiece(A_ )
@staticmethod
def UpperCamelCase__ ( A_ ) ->str:
'''simple docstring'''
return out_string
def UpperCamelCase__ ( self , A_ ) ->str:
'''simple docstring'''
__lowerCAmelCase : str = []
__lowerCAmelCase : Tuple = ''''''
__lowerCAmelCase : int = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A_ ) + token
__lowerCAmelCase : Optional[Any] = True
__lowerCAmelCase : Optional[int] = []
else:
current_sub_tokens.append(A_ )
__lowerCAmelCase : str = False
out_string += self.sp_model.decode(A_ )
return out_string
def UpperCamelCase__ ( self ) ->Dict[str, int]:
'''simple docstring'''
__lowerCAmelCase : str = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase__ ( self , A_ , A_ = None ) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCAmelCase : Any = os.path.join(
A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , A_ )
elif not os.path.isfile(self.vocab_file ):
with open(A_ , '''wb''' ) as fi:
__lowerCAmelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(A_ )
return (out_vocab_file,)
def UpperCamelCase__ ( self , A_ , A_ = False ) ->Union[List[int], List[List[int]], "torch.Tensor"]:
'''simple docstring'''
if isinstance(A_ , A_ ):
__lowerCAmelCase : Optional[Any] = self.preprocess_text(A_ )
__lowerCAmelCase : Dict = self.sp_model.encode(A_ )
else:
__lowerCAmelCase : Dict = [self.preprocess_text(A_ ) for t in text]
__lowerCAmelCase : Optional[int] = self.sp_model.encode(A_ )
if return_tensors is True or return_tensors == "pt":
__lowerCAmelCase : Tuple = torch.tensor(A_ )
return token_ids
def UpperCamelCase__ ( self , A_ ) ->str:
'''simple docstring'''
return self.sp_model.decode(A_ )
def UpperCamelCase__ ( self , A_ ) ->List[int]:
'''simple docstring'''
__lowerCAmelCase : int = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
__lowerCAmelCase : Any = (
f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(A_ ) + f"""{self.bos_token}Bot:"""
)
return self.encode(text=A_ )
| 275 | 1 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCamelCase ( __UpperCamelCase ):
lowerCAmelCase : str = ["""image_processor""", """tokenizer"""]
lowerCAmelCase : Optional[Any] = """LayoutLMv3ImageProcessor"""
lowerCAmelCase : Union[str, Any] = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""")
def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , **UpperCAmelCase__ ):
A__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase__ , )
A__ = kwargs.pop("feature_extractor" )
A__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase__ , UpperCAmelCase__ )
def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = 0 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = True , UpperCAmelCase__ = None , **UpperCAmelCase__ , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
# first, apply the image processor
A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
A__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
A__ = features['words']
A__ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , )
# add pixel values
A__ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
A__ = self.get_overflowing_images(UpperCAmelCase__ , encoded_inputs["overflow_to_sample_mapping"] )
A__ = images
return encoded_inputs
def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
A__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F""" {len(UpperCAmelCase__ )} and {len(UpperCAmelCase__ )}""" )
return images_with_overflow
def __A ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ):
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ )
def __A ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ):
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ )
@property
def __A ( self ):
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def __A ( self ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase__ , )
return self.image_processor_class
@property
def __A ( self ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase__ , )
return self.image_processor
| 351 |
import datasets
from .evaluate import evaluate
UpperCAmelCase_ : List[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n"
UpperCAmelCase_ : Any = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n"
UpperCAmelCase_ : Tuple = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase ( datasets.Metric ):
def __A ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , )
def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ):
A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
A__ = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
A__ = evaluate(dataset=UpperCAmelCase__ , predictions=UpperCAmelCase__ )
return score
| 198 | 0 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ):
_a = ["""image_processor""", """tokenizer"""]
_a = """BridgeTowerImageProcessor"""
_a = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]:
'''simple docstring'''
super().__init__(lowerCAmelCase , lowerCAmelCase )
def __call__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = True , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchEncoding:
'''simple docstring'''
_lowercase =self.tokenizer(
text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , )
# add pixel_values + pixel_mask
_lowercase =self.image_processor(
lowerCAmelCase , return_tensors=lowerCAmelCase , do_normalize=lowerCAmelCase , do_center_crop=lowerCAmelCase , **lowerCAmelCase )
encoding.update(lowerCAmelCase )
return encoding
def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase )
def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> List[str]:
'''simple docstring'''
return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase )
@property
def A__ ( self ) -> Optional[int]:
'''simple docstring'''
_lowercase =self.tokenizer.model_input_names
_lowercase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 205 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 205 | 1 |
'''simple docstring'''
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Optional[Any] , snake_case_ : int , snake_case_ : str=None , snake_case_ : Union[str, Any]=None ):
snake_case__ : List[str] = data
snake_case__ : int = previous
snake_case__ : Dict = next_node
def __str__( self : List[Any] ):
return f"{self.data}"
def lowerCamelCase ( self : Optional[int] ):
return self.data
def lowerCamelCase ( self : Any ):
return self.next
def lowerCamelCase ( self : Union[str, Any] ):
return self.previous
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : List[str] , snake_case_ : List[str] ):
snake_case__ : Any = head
def __iter__( self : int ):
return self
def lowerCamelCase ( self : Union[str, Any] ):
if not self.current:
raise StopIteration
else:
snake_case__ : str = self.current.get_data()
snake_case__ : str = self.current.get_next()
return value
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Optional[Any] ):
snake_case__ : Optional[Any] = None # First node in list
snake_case__ : Any = None # Last node in list
def __str__( self : Any ):
snake_case__ : Optional[int] = self.head
snake_case__ : int = []
while current is not None:
nodes.append(current.get_data() )
snake_case__ : List[str] = current.get_next()
return " ".join(str(snake_case_ ) for node in nodes )
def __contains__( self : Optional[Any] , snake_case_ : int ):
snake_case__ : int = self.head
while current:
if current.get_data() == value:
return True
snake_case__ : List[str] = current.get_next()
return False
def __iter__( self : str ):
return LinkedListIterator(self.head )
def lowerCamelCase ( self : List[Any] ):
if self.head:
return self.head.get_data()
return None
def lowerCamelCase ( self : Optional[int] ):
if self.tail:
return self.tail.get_data()
return None
def lowerCamelCase ( self : List[str] , snake_case_ : Node ):
if self.head is None:
snake_case__ : Tuple = node
snake_case__ : Tuple = node
else:
self.insert_before_node(self.head , snake_case_ )
def lowerCamelCase ( self : List[str] , snake_case_ : Node ):
if self.head is None:
self.set_head(snake_case_ )
else:
self.insert_after_node(self.tail , snake_case_ )
def lowerCamelCase ( self : Union[str, Any] , snake_case_ : int ):
snake_case__ : Dict = Node(snake_case_ )
if self.head is None:
self.set_head(snake_case_ )
else:
self.set_tail(snake_case_ )
def lowerCamelCase ( self : List[Any] , snake_case_ : Node , snake_case_ : Node ):
snake_case__ : Any = node
snake_case__ : Optional[int] = node.previous
if node.get_previous() is None:
snake_case__ : List[Any] = node_to_insert
else:
snake_case__ : List[Any] = node_to_insert
snake_case__ : List[Any] = node_to_insert
def lowerCamelCase ( self : str , snake_case_ : Node , snake_case_ : Node ):
snake_case__ : Dict = node
snake_case__ : Any = node.next
if node.get_next() is None:
snake_case__ : str = node_to_insert
else:
snake_case__ : Dict = node_to_insert
snake_case__ : Union[str, Any] = node_to_insert
def lowerCamelCase ( self : Dict , snake_case_ : int , snake_case_ : int ):
snake_case__ : str = 1
snake_case__ : Union[str, Any] = Node(snake_case_ )
snake_case__ : Union[str, Any] = self.head
while node:
if current_position == position:
self.insert_before_node(snake_case_ , snake_case_ )
return
current_position += 1
snake_case__ : Any = node.next
self.insert_after_node(self.tail , snake_case_ )
def lowerCamelCase ( self : Dict , snake_case_ : int ):
snake_case__ : Optional[Any] = self.head
while node:
if node.get_data() == item:
return node
snake_case__ : Any = node.get_next()
raise Exception("""Node not found""" )
def lowerCamelCase ( self : str , snake_case_ : str ):
if (node := self.get_node(snake_case_ )) is not None:
if node == self.head:
snake_case__ : List[str] = self.head.get_next()
if node == self.tail:
snake_case__ : List[Any] = self.tail.get_previous()
self.remove_node_pointers(snake_case_ )
@staticmethod
def lowerCamelCase ( snake_case_ : Node ):
if node.get_next():
snake_case__ : Tuple = node.previous
if node.get_previous():
snake_case__ : Any = node.next
snake_case__ : str = None
snake_case__ : Union[str, Any] = None
def lowerCamelCase ( self : Dict ):
return self.head is None
def __snake_case( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 353 |
'''simple docstring'''
import numpy as np
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1e-12 , _lowerCAmelCase = 100 , ) -> tuple[float, np.ndarray]:
assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[1]
# Ensure proper dimensionality.
assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(_lowerCAmelCase ) == np.iscomplexobj(_lowerCAmelCase )
snake_case__ : str = np.iscomplexobj(_lowerCAmelCase )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(_lowerCAmelCase , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
snake_case__ : Tuple = False
snake_case__ : Any = 0
snake_case__ : List[str] = 0
snake_case__ : Dict = 1e12
while not convergence:
# Multiple matrix by the vector.
snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , _lowerCAmelCase )
# Normalize the resulting output vector.
snake_case__ : Optional[Any] = w / np.linalg.norm(_lowerCAmelCase )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
snake_case__ : List[str] = vector.conj().T if is_complex else vector.T
snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , np.dot(_lowerCAmelCase , _lowerCAmelCase ) )
# Check convergence.
snake_case__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
snake_case__ : Dict = True
snake_case__ : Union[str, Any] = lambda_
if is_complex:
snake_case__ : int = np.real(lambda_ )
return lambda_, vector
def __snake_case( ) -> None:
snake_case__ : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
snake_case__ : Tuple = np.array([41, 4, 20] )
snake_case__ : Dict = real_input_matrix.astype(np.complexaaa )
snake_case__ : Optional[int] = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
snake_case__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
snake_case__ : Dict = real_input_matrix
snake_case__ : Optional[Any] = real_vector
elif problem_type == "complex":
snake_case__ : Optional[Any] = complex_input_matrix
snake_case__ : Optional[Any] = complex_vector
# Our implementation.
snake_case__ , snake_case__ : Tuple = power_iteration(_lowerCAmelCase , _lowerCAmelCase )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
snake_case__ , snake_case__ : Dict = np.linalg.eigh(_lowerCAmelCase )
# Last eigenvalue is the maximum one.
snake_case__ : Optional[int] = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
snake_case__ : Any = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1e-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(_lowerCAmelCase ) - np.abs(_lowerCAmelCase ) ) <= 1e-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 43 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json",
"google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 'mobilenet_v1'
def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ):
super().__init__(**_a )
if depth_multiplier <= 0:
raise ValueError('''depth_multiplier must be greater than zero.''' )
__a = num_channels
__a = image_size
__a = depth_multiplier
__a = min_depth
__a = hidden_act
__a = tf_padding
__a = classifier_dropout_prob
__a = initializer_range
__a = layer_norm_eps
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = version.parse('1.11' )
@property
def __UpperCAmelCase ( self ):
return OrderedDict([('''pixel_values''', {0: '''batch'''})] )
@property
def __UpperCAmelCase ( self ):
if self.task == "image-classification":
return OrderedDict([('''logits''', {0: '''batch'''})] )
else:
return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] )
@property
def __UpperCAmelCase ( self ):
return 1E-4
| 45 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..utils import cached_file
# docstyle-ignore
_A : Optional[int] = """
Human: <<task>>
Assistant: """
_A : List[Any] = """huggingface-tools/default-prompts"""
_A : Optional[int] = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""}
def __magic_name__ ( __snake_case : int , __snake_case : List[Any] , __snake_case : Dict="run" ) -> Union[str, Any]:
if prompt_or_repo_id is None:
lowercase : List[Any] = DEFAULT_PROMPTS_REPO
# prompt is considered a repo ID when it does not contain any kind of space
if re.search("\\s" , __snake_case ) is not None:
return prompt_or_repo_id
lowercase : Optional[int] = cached_file(
__snake_case , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} )
with open(__snake_case , "r" , encoding="utf-8" ) as f:
return f.read()
| 202 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase_ ={
"""configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ =["""MobileViTFeatureExtractor"""]
UpperCamelCase_ =["""MobileViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ =[
"""MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MobileViTForImageClassification""",
"""MobileViTForSemanticSegmentation""",
"""MobileViTModel""",
"""MobileViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ =[
"""TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFMobileViTForImageClassification""",
"""TFMobileViTForSemanticSegmentation""",
"""TFMobileViTModel""",
"""TFMobileViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
UpperCamelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 128 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _a :
def __init__( self : Dict, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[int]=1_3, lowerCAmelCase__ : Optional[Any]=7, lowerCAmelCase__ : Optional[Any]=True, lowerCAmelCase__ : Any=True, lowerCAmelCase__ : str=True, lowerCAmelCase__ : Any=9_9, lowerCAmelCase__ : Dict=3_2, lowerCAmelCase__ : List[Any]=5, lowerCAmelCase__ : Tuple=4, lowerCAmelCase__ : List[Any]=3_7, lowerCAmelCase__ : Tuple="gelu", lowerCAmelCase__ : Any=0.1, lowerCAmelCase__ : Optional[Any]=0.1, lowerCAmelCase__ : Dict=5_1_2, lowerCAmelCase__ : List[str]=1_6, lowerCAmelCase__ : Tuple=2, lowerCAmelCase__ : int=0.02, lowerCAmelCase__ : int=3, lowerCAmelCase__ : Optional[Any]=4, lowerCAmelCase__ : Dict=None, ) -> int:
'''simple docstring'''
_UpperCamelCase : Tuple = parent
_UpperCamelCase : Union[str, Any] = batch_size
_UpperCamelCase : Union[str, Any] = seq_length
_UpperCamelCase : Tuple = is_training
_UpperCamelCase : Tuple = use_token_type_ids
_UpperCamelCase : Optional[int] = use_labels
_UpperCamelCase : Dict = vocab_size
_UpperCamelCase : int = hidden_size
_UpperCamelCase : Optional[Any] = num_hidden_layers
_UpperCamelCase : str = num_attention_heads
_UpperCamelCase : Union[str, Any] = intermediate_size
_UpperCamelCase : List[str] = hidden_act
_UpperCamelCase : Optional[Any] = hidden_dropout_prob
_UpperCamelCase : int = attention_probs_dropout_prob
_UpperCamelCase : Union[str, Any] = max_position_embeddings
_UpperCamelCase : int = type_vocab_size
_UpperCamelCase : List[str] = type_sequence_label_size
_UpperCamelCase : List[str] = initializer_range
_UpperCamelCase : int = num_labels
_UpperCamelCase : List[str] = num_choices
_UpperCamelCase : str = scope
_UpperCamelCase : Optional[int] = self.vocab_size - 1
def snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
_UpperCamelCase : List[str] = None
if self.use_token_type_ids:
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
_UpperCamelCase : Optional[int] = None
_UpperCamelCase : str = None
_UpperCamelCase : List[str] = None
if self.use_labels:
_UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size )
_UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
_UpperCamelCase : Dict = ids_tensor([self.batch_size], self.num_choices )
_UpperCamelCase : str = OpenAIGPTConfig(
vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, )
_UpperCamelCase : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], *lowerCAmelCase__ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase : Dict = OpenAIGPTModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase : List[str] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, head_mask=lowerCAmelCase__ )
_UpperCamelCase : Any = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__ )
_UpperCamelCase : List[str] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case ( self : Any, lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase : Any = OpenAIGPTLMHeadModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase : Tuple = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case ( self : Optional[int], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[Any], *lowerCAmelCase__ : Any ) -> int:
'''simple docstring'''
_UpperCamelCase : Tuple = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase : Optional[int] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case ( self : List[str], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Dict, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase : List[Any] = self.num_labels
_UpperCamelCase : Optional[int] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size )
_UpperCamelCase : Union[str, Any] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase : Any = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) : Tuple = config_and_inputs
_UpperCamelCase : Tuple = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
UpperCamelCase = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
UpperCamelCase = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
UpperCamelCase = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[str], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str] ) -> List[str]:
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def snake_case ( self : str, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[int]=False ) -> Tuple:
'''simple docstring'''
_UpperCamelCase : Optional[Any] = super()._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__, return_labels=lowerCAmelCase__ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
_UpperCamelCase : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowerCAmelCase__, )
_UpperCamelCase : Tuple = inputs_dict['''labels''']
_UpperCamelCase : List[str] = inputs_dict['''labels''']
_UpperCamelCase : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowerCAmelCase__, )
_UpperCamelCase : Dict = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase__ )
return inputs_dict
def snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase : Optional[Any] = OpenAIGPTModelTester(self )
_UpperCamelCase : int = ConfigTester(self, config_class=lowerCAmelCase__, n_embd=3_7 )
def snake_case ( self : Optional[int] ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case ( self : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ )
def snake_case ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ )
def snake_case ( self : int ) -> Dict:
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ )
def snake_case ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ )
@slow
def snake_case ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase : int = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@require_torch
class _a ( unittest.TestCase ):
@slow
def snake_case ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(lowerCAmelCase__ )
_UpperCamelCase : str = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=lowerCAmelCase__ ) # the president is
_UpperCamelCase : Optional[int] = [
4_8_1,
4_7_3_5,
5_4_4,
2_4_6,
9_6_3,
8_7_0,
7_6_2,
2_3_9,
2_4_4,
4_0_4_7_7,
2_4_4,
2_4_9,
7_1_9,
8_8_1,
4_8_7,
5_4_4,
2_4_0,
2_4_4,
6_0_3,
4_8_1,
] # the president is a very good man. " \n " i\'m sure he is, " said the
_UpperCamelCase : Union[str, Any] = model.generate(lowerCAmelCase__, do_sample=lowerCAmelCase__ )
self.assertListEqual(output_ids[0].tolist(), lowerCAmelCase__ )
| 128 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def __snake_case( _lowerCAmelCase ) -> int:
if not postfix_notation:
return 0
snake_case__ : Tuple = {"""+""", """-""", """*""", """/"""}
snake_case__ : list[Any] = []
for token in postfix_notation:
if token in operations:
snake_case__ , snake_case__ : Optional[int] = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(_lowerCAmelCase ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 35 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
__a = logging.get_logger(__name__)
__a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__a = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
__a = {
"junnyu/roformer_chinese_small": 1536,
"junnyu/roformer_chinese_base": 1536,
"junnyu/roformer_chinese_char_small": 512,
"junnyu/roformer_chinese_char_base": 512,
"junnyu/roformer_small_discriminator": 128,
"junnyu/roformer_small_generator": 128,
}
__a = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class UpperCAmelCase_ ( _a ):
"""simple docstring"""
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = PRETRAINED_INIT_CONFIGURATION
lowercase = RoFormerTokenizer
def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ):
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case
or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents
):
snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) )
snake_case__ : Optional[int] = do_lower_case
snake_case__ : Union[str, Any] = strip_accents
snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ )
snake_case__ : str = do_lower_case
def __getstate__( self : int ):
snake_case__ : List[Any] = self.__dict__.copy()
snake_case__ : str = BertPreTokenizer()
return state
def __setstate__( self : Dict , snake_case_ : Dict ):
snake_case__ : List[Any] = d
snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab()
snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) )
def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ):
snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ):
snake_case__ : int = [self.sep_token_id]
snake_case__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ):
snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ):
snake_case__ : Optional[Any] = BertPreTokenizer()
return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
| 35 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
_lowerCAmelCase : Optional[Any] = ''''''
_lowerCAmelCase : List[str] = ''''''
_lowerCAmelCase : Dict = ''''''
_lowerCAmelCase : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def __snake_case ( ) -> None:
A_ , A_ : List[Any] = get_dataset(_lowerCAmelCase , _lowerCAmelCase )
print("Processing..." )
A_ , A_ , A_ : List[str] = update_image_and_anno(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for index, image in enumerate(_lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
A_ : Union[str, Any] = random_chars(32 )
A_ : Tuple = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
A_ : int = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(f"/{file_root}.jpg" , _lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"Success {index+1}/{len(_lowerCAmelCase )} with {file_name}" )
A_ : List[Any] = []
for anno in new_annos[index]:
A_ : Union[str, Any] = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(_lowerCAmelCase )
with open(f"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> tuple[list, list]:
A_ : str = []
A_ : Any = []
for label_file in glob.glob(os.path.join(_lowerCAmelCase , "*.txt" ) ):
A_ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(_lowerCAmelCase ) as in_file:
A_ : Any = in_file.readlines()
A_ : Optional[Any] = os.path.join(_lowerCAmelCase , f"{label_name}.jpg" )
A_ : List[Any] = []
for obj_list in obj_lists:
A_ : int = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(_lowerCAmelCase )
labels.append(_lowerCAmelCase )
return img_paths, labels
def __snake_case ( _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : int = 1 ) -> tuple[list, list, list]:
A_ : Tuple = []
A_ : int = []
A_ : Optional[int] = []
for idx in range(len(_lowerCAmelCase ) ):
A_ : Optional[int] = []
A_ : Optional[int] = img_list[idx]
path_list.append(_lowerCAmelCase )
A_ : Union[str, Any] = anno_list[idx]
A_ : int = cva.imread(_lowerCAmelCase )
if flip_type == 1:
A_ : Optional[Any] = cva.flip(_lowerCAmelCase , _lowerCAmelCase )
for bbox in img_annos:
A_ : int = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
A_ : Union[str, Any] = cva.flip(_lowerCAmelCase , _lowerCAmelCase )
for bbox in img_annos:
A_ : Any = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(_lowerCAmelCase )
new_imgs_list.append(_lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def __snake_case ( _lowerCAmelCase : int = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
A_ : Optional[Any] = ascii_lowercase + digits
return "".join(random.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) )
if __name__ == "__main__":
main()
print('''DONE ✅''')
| 70 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
_lowerCAmelCase : Tuple = logging.get_logger('''transformers.models.speecht5''')
_lowerCAmelCase : int = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
_lowerCAmelCase : str = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
_lowerCAmelCase : int = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
_lowerCAmelCase : Union[str, Any] = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
_lowerCAmelCase : Union[str, Any] = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
_lowerCAmelCase : int = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
_lowerCAmelCase : Any = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
_lowerCAmelCase : List[str] = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
_lowerCAmelCase : Optional[Any] = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
_lowerCAmelCase : Dict = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
_lowerCAmelCase : Union[str, Any] = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : Tuple = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
_lowerCAmelCase : Tuple = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
_lowerCAmelCase : int = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
_lowerCAmelCase : Optional[int] = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ) -> Optional[Any]:
for attribute in key.split("." ):
A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase )
if weight_type is not None:
A_ : Tuple = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape
else:
A_ : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
A_ : Dict = value
elif weight_type == "weight_g":
A_ : int = value
elif weight_type == "weight_v":
A_ : str = value
elif weight_type == "bias":
A_ : int = value
elif weight_type == "running_mean":
A_ : str = value
elif weight_type == "running_var":
A_ : Any = value
elif weight_type == "num_batches_tracked":
A_ : str = value
else:
A_ : int = value
logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." )
def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> Union[str, Any]:
for key in ignore_keys:
if key.endswith(".*" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
A_ , A_ : Tuple = key.split(".*." )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]:
A_ : Tuple = []
if task == "s2t":
A_ : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder
A_ : str = MAPPING_S2T
A_ : Union[str, Any] = IGNORE_KEYS_S2T
elif task == "t2s":
A_ : Optional[int] = None
A_ : Dict = MAPPING_T2S
A_ : Any = IGNORE_KEYS_T2S
elif task == "s2s":
A_ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder
A_ : Dict = MAPPING_S2S
A_ : List[str] = IGNORE_KEYS_S2S
else:
raise ValueError(f"Unsupported task: {task}" )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase , _lowerCAmelCase ):
logger.info(f"{name} was ignored" )
continue
A_ : List[Any] = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , )
A_ : Tuple = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
A_ , A_ : Optional[Any] = key.split(".*." )
if prefix in name and suffix in name:
A_ : int = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
A_ : str = True
if "*" in mapped_key:
A_ : List[str] = name.split(_lowerCAmelCase )[0].split("." )[-2]
A_ : Optional[int] = mapped_key.replace("*" , _lowerCAmelCase )
if "weight_g" in name:
A_ : Union[str, Any] = "weight_g"
elif "weight_v" in name:
A_ : List[Any] = "weight_v"
elif "bias" in name:
A_ : Tuple = "bias"
elif "weight" in name:
A_ : List[Any] = "weight"
elif "running_mean" in name:
A_ : Union[str, Any] = "running_mean"
elif "running_var" in name:
A_ : Union[str, Any] = "running_var"
elif "num_batches_tracked" in name:
A_ : List[Any] = "num_batches_tracked"
else:
A_ : Optional[Any] = None
set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f"Unused weights: {unused_weights}" )
def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> List[Any]:
A_ : int = full_name.split("conv_layers." )[-1]
A_ : Optional[Any] = name.split("." )
A_ : List[Any] = int(items[0] )
A_ : int = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
A_ : Optional[int] = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
A_ : Optional[Any] = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
A_ : Tuple = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
A_ : Union[str, Any] = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , ) -> Optional[Any]:
if config_path is not None:
A_ : Dict = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
A_ : Optional[int] = SpeechTaConfig()
if task == "s2t":
A_ : Optional[Any] = config.max_text_positions
A_ : Optional[int] = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
A_ : str = 1876
A_ : List[str] = 600
A_ : List[str] = config.max_speech_positions
A_ : Tuple = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
A_ : Optional[int] = 1876
A_ : int = config.max_speech_positions
A_ : Union[str, Any] = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f"Unknown task name: {task}" )
if vocab_path:
A_ : int = SpeechTaTokenizer(_lowerCAmelCase , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
A_ : str = AddedToken("<mask>" , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase )
A_ : int = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
A_ : int = SpeechTaFeatureExtractor()
A_ : Optional[Any] = SpeechTaProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
A_ : Union[str, Any] = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint["model"] , _lowerCAmelCase , _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print("Pushing to the hub..." )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
_lowerCAmelCase : Tuple = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 70 | 1 |
'''simple docstring'''
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
_A : Optional[Any] =logging.get_logger(__name__)
_A : int ={name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' )
if tokenizer_name is None:
lowerCamelCase__ : Optional[Any] = TOKENIZER_CLASSES
else:
lowerCamelCase__ : Dict = {tokenizer_name: getattr(UpperCamelCase , tokenizer_name + """Fast""" )}
logger.info(f'''Loading tokenizer classes: {tokenizer_names}''' )
for tokenizer_name in tokenizer_names:
lowerCamelCase__ : Tuple = TOKENIZER_CLASSES[tokenizer_name]
lowerCamelCase__ : Optional[int] = True
if checkpoint_name is None:
lowerCamelCase__ : Any = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowerCamelCase__ : Any = [checkpoint_name]
logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' )
for checkpoint in checkpoint_names:
logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' )
# Load tokenizer
lowerCamelCase__ : List[str] = tokenizer_class.from_pretrained(UpperCamelCase , force_download=UpperCamelCase )
# Save fast tokenizer
logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' )
# For organization names we create sub-directories
if "/" in checkpoint:
lowerCamelCase__ , lowerCamelCase__ : List[str] = checkpoint.split("""/""" )
lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , UpperCamelCase )
elif add_prefix:
lowerCamelCase__ : Optional[int] = checkpoint
lowerCamelCase__ : Optional[Any] = dump_path
else:
lowerCamelCase__ : str = None
lowerCamelCase__ : Union[str, Any] = dump_path
logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowerCamelCase__ : Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowerCamelCase__ : Optional[Any] = file_path.split(UpperCamelCase )[-1][0]
if next_char == "/":
lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase , UpperCamelCase )
lowerCamelCase__ : List[Any] = None
logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
lowerCamelCase__ : Any = tokenizer.save_pretrained(
UpperCamelCase , legacy_format=UpperCamelCase , filename_prefix=UpperCamelCase )
logger.info(f'''=> File names {file_names}''' )
for file_name in file_names:
if not file_name.endswith("""tokenizer.json""" ):
os.remove(UpperCamelCase )
logger.info(f'''=> removing {file_name}''' )
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
_A : Optional[int] =parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 41 | '''simple docstring'''
def __UpperCamelCase ( UpperCAmelCase = 1 , UpperCAmelCase = 1000 ):
lowercase__ : Dict = 1
lowercase__ : Dict = 0
for divide_by_number in range(UpperCAmelCase , digit + 1 ):
lowercase__ : list[int] = []
lowercase__ : Union[str, Any] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(UpperCAmelCase ):
lowercase__ : Dict = len(UpperCAmelCase )
lowercase__ : Optional[Any] = divide_by_number
else:
has_been_divided.append(UpperCAmelCase )
lowercase__ : int = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 198 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
'''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''],
'''processing_git''': ['''GitProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GitForCausalLM''',
'''GitModel''',
'''GitPreTrainedModel''',
'''GitVisionModel''',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 132 |
"""simple docstring"""
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
A_ = (
'''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py'''
)
A_ = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Tuple = """https://pypi.org/pypi/diffusers/json"""
_snake_case : Optional[int] = json.loads(request.urlopen(snake_case__ ).read() )["""releases"""].keys()
return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) )
def UpperCAmelCase__ ():
"""simple docstring"""
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(snake_case__ )
os.makedirs(snake_case__ , exist_ok=snake_case__ )
_snake_case : str = Path(snake_case__ ) / """__init__.py"""
if not init_path.exists():
init_path.touch()
def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] ):
"""simple docstring"""
init_hf_modules()
_snake_case : List[Any] = Path(snake_case__ ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(snake_case__ , exist_ok=snake_case__ )
_snake_case : List[Any] = dynamic_module_path / """__init__.py"""
if not init_path.exists():
init_path.touch()
def UpperCAmelCase__ (snake_case__ : Optional[Any] ):
"""simple docstring"""
with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f:
_snake_case : Union[str, Any] = f.read()
# Imports of the form `import .xxx`
_snake_case : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE )
# Unique-ify
return list(set(snake_case__ ) )
def UpperCAmelCase__ (snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : Tuple = False
_snake_case : Any = [module_file]
_snake_case : str = []
# Let's recurse through all relative imports
while not no_change:
_snake_case : Dict = []
for f in files_to_check:
new_imports.extend(get_relative_imports(snake_case__ ) )
_snake_case : Dict = Path(snake_case__ ).parent
_snake_case : Dict = [str(module_path / m ) for m in new_imports]
_snake_case : Tuple = [f for f in new_import_files if f not in all_relative_imports]
_snake_case : str = [F"{f}.py" for f in new_import_files]
_snake_case : Dict = len(snake_case__ ) == 0
all_relative_imports.extend(snake_case__ )
return all_relative_imports
def UpperCAmelCase__ (snake_case__ : Tuple ):
"""simple docstring"""
with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f:
_snake_case : int = f.read()
# Imports of the form `import xxx`
_snake_case : Tuple = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE )
# Only keep the top-level module
_snake_case : Tuple = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )]
# Unique-ify and test we got them all
_snake_case : Any = list(set(snake_case__ ) )
_snake_case : int = []
for imp in imports:
try:
importlib.import_module(snake_case__ )
except ImportError:
missing_packages.append(snake_case__ )
if len(snake_case__ ) > 0:
raise ImportError(
"""This modeling file requires the following packages that were not found in your environment: """
F"{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`" )
return get_relative_imports(snake_case__ )
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : List[Any] = module_path.replace(os.path.sep , """.""" )
_snake_case : int = importlib.import_module(snake_case__ )
if class_name is None:
return find_pipeline_class(snake_case__ )
return getattr(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : List[Any] ):
"""simple docstring"""
from ..pipelines import DiffusionPipeline
_snake_case : Tuple = dict(inspect.getmembers(snake_case__ , inspect.isclass ) )
_snake_case : Dict = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , snake_case__ )
and cls.__module__.split(""".""" )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"
F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"
F" {loaded_module}." )
_snake_case : List[str] = cls
return pipeline_class
def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ):
"""simple docstring"""
_snake_case : List[str] = str(snake_case__ )
_snake_case : Optional[Any] = os.path.join(snake_case__ , snake_case__ )
if os.path.isfile(snake_case__ ):
_snake_case : List[str] = module_file_or_url
_snake_case : Optional[Any] = """local"""
elif pretrained_model_name_or_path.count("""/""" ) == 0:
_snake_case : Tuple = get_diffusers_versions()
# cut ".dev0"
_snake_case : Union[str, Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] )
# retrieve github version that matches
if revision is None:
_snake_case : int = latest_version if latest_version[1:] in available_versions else """main"""
logger.info(F"Defaulting to latest_version: {revision}." )
elif revision in available_versions:
_snake_case : Optional[Any] = F"v{revision}"
elif revision == "main":
_snake_case : int = revision
else:
raise ValueError(
F"`custom_revision`: {revision} does not exist. Please make sure to choose one of"
F" {', '.join(available_versions + ['main'] )}." )
# community pipeline on GitHub
_snake_case : List[str] = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ )
try:
_snake_case : Dict = cached_download(
snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , )
_snake_case : Union[str, Any] = """git"""
_snake_case : str = pretrained_model_name_or_path + """.py"""
except EnvironmentError:
logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." )
raise
else:
try:
# Load from URL or cache if already cached
_snake_case : str = hf_hub_download(
snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , )
_snake_case : Optional[Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) )
except EnvironmentError:
logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." )
raise
# Check we have all the requirements in our environment
_snake_case : int = check_imports(snake_case__ )
# Now we move the module inside our cached dynamic modules.
_snake_case : Optional[int] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(snake_case__ )
_snake_case : Any = Path(snake_case__ ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(snake_case__ , submodule_path / module_file )
for module_needed in modules_needed:
_snake_case : Any = F"{module_needed}.py"
shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(snake_case__ , snake_case__ ):
_snake_case : Any = use_auth_token
elif use_auth_token is True:
_snake_case : int = HfFolder.get_token()
else:
_snake_case : Optional[int] = None
_snake_case : int = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
_snake_case : int = submodule_path / commit_hash
_snake_case : Optional[int] = full_submodule + os.path.sep + commit_hash
create_dynamic_module(snake_case__ )
if not (submodule_path / module_file).exists():
shutil.copy(snake_case__ , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
snake_case__ , F"{module_needed}.py" , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , )
return os.path.join(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : Tuple , ):
"""simple docstring"""
_snake_case : Union[str, Any] = get_cached_module_file(
snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , )
return get_class_in_module(snake_case__ , final_module.replace(""".py""" , """""" ) )
| 132 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class snake_case__(UpperCAmelCase_ ):
"""simple docstring"""
lowercase_ = """ctrl"""
lowercase_ = ["""past_key_values"""]
lowercase_ = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=246_534 , SCREAMING_SNAKE_CASE : Tuple=256 , SCREAMING_SNAKE_CASE : int=1_280 , SCREAMING_SNAKE_CASE : Tuple=8_192 , SCREAMING_SNAKE_CASE : Optional[int]=48 , SCREAMING_SNAKE_CASE : Dict=16 , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1E-6 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : Optional[Any]=True , **SCREAMING_SNAKE_CASE : Dict , ):
lowercase__ : List[str] = vocab_size
lowercase__ : Optional[Any] = n_positions
lowercase__ : Dict = n_embd
lowercase__ : Dict = n_layer
lowercase__ : List[Any] = n_head
lowercase__ : int = dff
lowercase__ : Union[str, Any] = resid_pdrop
lowercase__ : Optional[int] = embd_pdrop
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : Dict = initializer_range
lowercase__ : Any = use_cache
super().__init__(**__lowercase )
| 130 | import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
__lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name
__lowercase = 256
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
a__ : Tuple = ["""melgan"""]
def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> None:
super().__init__()
# From MELGAN
__UpperCamelCase :int = math.log(1E-5) # Matches MelGAN training.
__UpperCamelCase :int = 4.0 # Largest value for most examples
__UpperCamelCase :str = 128
self.register_modules(
notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , )
def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Dict:
__UpperCamelCase , __UpperCamelCase :str = output_range
if clip:
__UpperCamelCase :Union[str, Any] = torch.clip(__lowercase , self.min_value , self.max_value)
# Scale to [0, 1].
__UpperCamelCase :Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Optional[int]:
__UpperCamelCase , __UpperCamelCase :int = input_range
__UpperCamelCase :Optional[int] = torch.clip(__lowercase , __lowercase , __lowercase) if clip else outputs
# Scale to [0, 1].
__UpperCamelCase :List[str] = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[Any]:
__UpperCamelCase :List[str] = input_tokens > 0
__UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.notes_encoder(
encoder_input_tokens=__lowercase , encoder_inputs_mask=__lowercase)
__UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.continuous_encoder(
encoder_inputs=__lowercase , encoder_inputs_mask=__lowercase)
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> str:
__UpperCamelCase :Optional[int] = noise_time
if not torch.is_tensor(__lowercase):
__UpperCamelCase :str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device)
elif torch.is_tensor(__lowercase) and len(timesteps.shape) == 0:
__UpperCamelCase :Dict = timesteps[None].to(input_tokens.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCamelCase :List[str] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device)
__UpperCamelCase :Tuple = self.decoder(
encodings_and_masks=__lowercase , decoder_input_tokens=__lowercase , decoder_noise_time=__lowercase)
return logits
@torch.no_grad()
def __call__( self , __lowercase , __lowercase = None , __lowercase = 100 , __lowercase = True , __lowercase = "numpy" , __lowercase = None , __lowercase = 1 , ) -> Union[AudioPipelineOutput, Tuple]:
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__lowercase , __lowercase) or callback_steps <= 0)
):
raise ValueError(
f"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
f""" {type(__lowercase)}.""")
__UpperCamelCase :Union[str, Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa)
__UpperCamelCase :Union[str, Any] = np.zeros([1, 0, self.n_dims] , np.floataa)
__UpperCamelCase :Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device)
for i, encoder_input_tokens in enumerate(__lowercase):
if i == 0:
__UpperCamelCase :int = torch.from_numpy(pred_mel[:1].copy()).to(
device=self.device , dtype=self.decoder.dtype)
# The first chunk has no previous context.
__UpperCamelCase :int = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device)
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
__UpperCamelCase :Tuple = ones
__UpperCamelCase :Optional[Any] = self.scale_features(
__lowercase , output_range=[-1.0, 1.0] , clip=__lowercase)
__UpperCamelCase :int = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=__lowercase , continuous_mask=__lowercase , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
__UpperCamelCase :int = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=__lowercase , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(__lowercase)
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
__UpperCamelCase :Optional[int] = self.decode(
encodings_and_masks=__lowercase , input_tokens=__lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
__UpperCamelCase :int = self.scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase).prev_sample
__UpperCamelCase :Tuple = self.scale_to_features(__lowercase , input_range=[-1.0, 1.0])
__UpperCamelCase :List[Any] = mel[:1]
__UpperCamelCase :Optional[Any] = mel.cpu().float().numpy()
__UpperCamelCase :Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1)
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__lowercase , __lowercase)
logger.info('''Generated segment''' , __lowercase)
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''')
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''')
if output_type == "numpy":
__UpperCamelCase :Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa))
else:
__UpperCamelCase :List[str] = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=__lowercase)
| 43 | 0 |
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: complex , lowerCAmelCase: str = "x" , lowerCAmelCase: float = 10**-10 , lowerCAmelCase: int = 1 , )-> complex:
_snake_case : Optional[int] = symbols(lowerCAmelCase )
_snake_case : Tuple = lambdify(lowerCAmelCase , lowerCAmelCase )
_snake_case : Union[str, Any] = lambdify(lowerCAmelCase , diff(lowerCAmelCase , lowerCAmelCase ) )
_snake_case : int = starting_point
while True:
if diff_function(lowerCAmelCase ) != 0:
_snake_case : Optional[Any] = prev_guess - multiplicity * func(lowerCAmelCase ) / diff_function(
lowerCAmelCase )
else:
raise ZeroDivisionError('Could not find root' ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
_snake_case : Dict = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""")
# Find root of polynomial
# Find fourth Root of 5
print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""")
# Find value of e
print(
"""The root of log(y) - 1 = 0 is """,
F"""{newton_raphson("log(y) - 1", 2, variable="y")}""",
)
# Exponential Roots
print(
"""The root of exp(x) - 1 = 0 is""",
F"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""",
)
# Find root of cos(x)
print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
| 360 |
from __future__ import annotations
lowerCAmelCase_ = []
def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int )-> bool:
for i in range(len(lowerCAmelCase ) ):
if board[row][i] == 1:
return False
for i in range(len(lowerCAmelCase ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , len(lowerCAmelCase ) ) ):
if board[i][j] == 1:
return False
return True
def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int )-> bool:
if row >= len(lowerCAmelCase ):
solution.append(lowerCAmelCase )
printboard(lowerCAmelCase )
print()
return True
for i in range(len(lowerCAmelCase ) ):
if is_safe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
_snake_case : Dict = 1
solve(lowerCAmelCase , row + 1 )
_snake_case : str = 0
return False
def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] )-> None:
for i in range(len(lowerCAmelCase ) ):
for j in range(len(lowerCAmelCase ) ):
if board[i][j] == 1:
print('Q' , end=' ' )
else:
print('.' , end=' ' )
print()
# n=int(input("The no. of queens"))
lowerCAmelCase_ = 8
lowerCAmelCase_ = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("""The total no. of solutions are :""", len(solution))
| 260 | 0 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCAmelCase : List[Any] =logging.getLogger(__name__)
UpperCAmelCase : Dict =50 # max width of layer names
UpperCAmelCase : Dict =70 # max width of quantizer names
def _lowerCAmelCase (_lowerCAmelCase):
UpperCamelCase_ = parser.add_argument_group("quant_trainer arguments")
group.add_argument("--wprec" , type=_lowerCAmelCase , default=8 , help="weight precision")
group.add_argument("--aprec" , type=_lowerCAmelCase , default=8 , help="activation precision")
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling")
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers")
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers")
group.add_argument("--quant-disable-keyword" , type=_lowerCAmelCase , nargs="+" , help="disable quantizers by keyword")
group.add_argument("--quant-disable-layer-module" , type=_lowerCAmelCase , help="disable quantizers by keyword under layer.")
group.add_argument("--quant-enable-layer-module" , type=_lowerCAmelCase , help="enable quantizers by keyword under layer")
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use")
group.add_argument("--percentile" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="percentile for PercentileCalibrator")
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv")
group.add_argument("--clip-gelu" , metavar="N" , type=_lowerCAmelCase , help="clip gelu output maximum value to N")
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase (_lowerCAmelCase):
if args.calibrator == "max":
UpperCamelCase_ = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator")
UpperCamelCase_ = "histogram"
elif args.calibrator == "mse":
UpperCamelCase_ = "histogram"
else:
raise ValueError(f"""Invalid calibrator {args.calibrator}""")
UpperCamelCase_ = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCAmelCase)
UpperCamelCase_ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)))
quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCAmelCase)
quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCAmelCase)
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False):
logger.info("Configuring Model for Quantization")
logger.info(f"""using quantization package {pytorch_quantization.__file__}""")
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_lowerCAmelCase , ["embeddings"] , which="weight" , _disabled=_lowerCAmelCase)
if args.quant_disable:
set_quantizer_by_name(_lowerCAmelCase , [""] , _disabled=_lowerCAmelCase)
if args.quant_disable_keyword:
set_quantizer_by_name(_lowerCAmelCase , args.quant_disable_keyword , _disabled=_lowerCAmelCase)
if args.quant_disable_layer_module:
set_quantizer_by_name(_lowerCAmelCase , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=_lowerCAmelCase)
if args.quant_enable_layer_module:
set_quantizer_by_name(_lowerCAmelCase , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=_lowerCAmelCase)
if args.recalibrate_weights:
recalibrate_weights(_lowerCAmelCase)
if args.fuse_qkv:
fuse_qkv(_lowerCAmelCase , _lowerCAmelCase)
if args.clip_gelu:
clip_gelu(_lowerCAmelCase , args.clip_gelu)
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_lowerCAmelCase)
def _lowerCAmelCase (_lowerCAmelCase):
logger.info("Enabling Calibration")
for name, module in model.named_modules():
if name.endswith("_quantizer"):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"""{name:80}: {module}""")
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase):
logger.info("Loading calibrated amax")
for name, module in model.named_modules():
if name.endswith("_quantizer"):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile)
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_lowerCAmelCase)
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase):
def fusea(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase):
for mod in [qq, qk, qv]:
if not hasattr(_lowerCAmelCase , "_amax"):
print(" WARNING: NO AMAX BUFFER")
return
UpperCamelCase_ = qq._amax.detach().item()
UpperCamelCase_ = qk._amax.detach().item()
UpperCamelCase_ = qv._amax.detach().item()
UpperCamelCase_ = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
qq._amax.fill_(_lowerCAmelCase)
qk._amax.fill_(_lowerCAmelCase)
qv._amax.fill_(_lowerCAmelCase)
logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""")
for name, mod in model.named_modules():
if name.endswith(".attention.self"):
logger.info(f"""FUSE_QKV: {name:{name_width}}""")
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer)
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer)
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase):
for name, mod in model.named_modules():
if name.endswith(".output.dense") and not name.endswith("attention.output.dense"):
UpperCamelCase_ = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCAmelCase)
UpperCamelCase_ = mod._input_quantizer._amax.data.detach().item()
logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""")
def _lowerCAmelCase (_lowerCAmelCase):
for name, mod in model.named_modules():
if hasattr(_lowerCAmelCase , "_weight_quantizer") and mod._weight_quantizer.axis is not None:
UpperCamelCase_ = mod.weight.shape[0]
UpperCamelCase_ = mod._weight_quantizer._amax.detach()
UpperCamelCase_ = torch.ones(_lowerCAmelCase , dtype=amax.dtype , device=amax.device) * amax
print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""")
def _lowerCAmelCase (_lowerCAmelCase):
for name, mod in model.named_modules():
if hasattr(_lowerCAmelCase , "_weight_quantizer"):
if not hasattr(mod.weight_quantizer , "_amax"):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER")
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCamelCase_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis)
UpperCamelCase_ = set(range(len(mod.weight.size()))) - axis_set
UpperCamelCase_ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCAmelCase , keepdims=_lowerCAmelCase).detach()
logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""")
UpperCamelCase_ = amax
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=25 , _lowerCAmelCase=1_80 , _lowerCAmelCase=None):
if ignore is None:
UpperCamelCase_ = []
elif not isinstance(_lowerCAmelCase , _lowerCAmelCase):
UpperCamelCase_ = [ignore]
UpperCamelCase_ = 0
for name, mod in model.named_modules():
if not hasattr(_lowerCAmelCase , "weight"):
continue
UpperCamelCase_ = max(_lowerCAmelCase , len(_lowerCAmelCase))
for name, mod in model.named_modules():
UpperCamelCase_ = getattr(_lowerCAmelCase , "_input_quantizer" , _lowerCAmelCase)
UpperCamelCase_ = getattr(_lowerCAmelCase , "_weight_quantizer" , _lowerCAmelCase)
if not hasattr(_lowerCAmelCase , "weight"):
continue
if type(_lowerCAmelCase) in ignore:
continue
if [True for s in ignore if type(_lowerCAmelCase) is str and s in name]:
continue
UpperCamelCase_ = f"""Act:{input_q.extra_repr()}"""
UpperCamelCase_ = f"""Wgt:{weight_q.extra_repr()}"""
UpperCamelCase_ = f"""{name:{name_width}} {act_str} {wgt_str}"""
if len(_lowerCAmelCase) <= line_width:
logger.info(_lowerCAmelCase)
else:
logger.info(f"""{name:{name_width}} {act_str}""")
logger.info(f"""{' ':{name_width}} {wgt_str}""")
def _lowerCAmelCase (_lowerCAmelCase):
UpperCamelCase_ = 0
for name, mod in model.named_modules():
if isinstance(_lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer):
print(f"""{name:80} {mod}""")
count += 1
print(f"""{count} TensorQuantizers found in model""")
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase):
UpperCamelCase_ = getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
if quantizer_mod is not None:
assert hasattr(_lowerCAmelCase , _lowerCAmelCase)
setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
else:
logger.warning(f"""{name} has no {quantizer}""")
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="both" , **_lowerCAmelCase):
UpperCamelCase_ = f"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(_lowerCAmelCase , _lowerCAmelCase , "_input_quantizer" , _lowerCAmelCase , _lowerCAmelCase)
if which in ["weight", "both"]:
set_quantizer(_lowerCAmelCase , _lowerCAmelCase , "_weight_quantizer" , _lowerCAmelCase , _lowerCAmelCase)
logger.info(_lowerCAmelCase)
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase):
for name, mod in model.named_modules():
if hasattr(_lowerCAmelCase , "_input_quantizer") or hasattr(_lowerCAmelCase , "_weight_quantizer"):
for n in names:
if re.search(_lowerCAmelCase , _lowerCAmelCase):
set_quantizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase)
elif name.endswith("_quantizer"):
for n in names:
if re.search(_lowerCAmelCase , _lowerCAmelCase):
UpperCamelCase_ = f"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
logger.info(_lowerCAmelCase)
| 128 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _lowercase (a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
lowercase__ = AltDiffusionPipeline
lowercase__ = TEXT_TO_IMAGE_PARAMS
lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def _lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
UpperCamelCase_ = CLIPTextModel(snake_case__ )
UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
UpperCamelCase_ = 77
UpperCamelCase_ = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith("mps" ):
UpperCamelCase_ = torch.manual_seed(snake_case__ )
else:
UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
UpperCamelCase_ = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowerCamelCase ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def _lowerCamelCase ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase_ = self.get_dummy_components()
torch.manual_seed(0 )
UpperCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ )
UpperCamelCase_ = text_encoder
UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ )
UpperCamelCase_ = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCamelCase_ = self.get_dummy_inputs(snake_case__ )
UpperCamelCase_ = "A photo of an astronaut"
UpperCamelCase_ = alt_pipe(**snake_case__ )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase_ = np.array(
[0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase_ = self.get_dummy_components()
UpperCamelCase_ = PNDMScheduler(skip_prk_steps=snake_case__ )
torch.manual_seed(0 )
UpperCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ )
UpperCamelCase_ = text_encoder
UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ )
UpperCamelCase_ = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCamelCase_ = self.get_dummy_inputs(snake_case__ )
UpperCamelCase_ = alt_pipe(**snake_case__ )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase_ = np.array(
[0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class _lowercase (unittest.TestCase ):
'''simple docstring'''
def _lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case__ )
UpperCamelCase_ = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCamelCase_ = "A painting of a squirrel eating a burger"
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" )
UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case__ , safety_checker=snake_case__ )
UpperCamelCase_ = alt_pipe.to(snake_case__ )
alt_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCamelCase_ = "A painting of a squirrel eating a burger"
UpperCamelCase_ = torch.manual_seed(0 )
UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="numpy" )
UpperCamelCase_ = output.images
UpperCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 128 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : List[Any] = {
"""microsoft/unispeech-large-1500h-cv""": (
"""https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"""
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = """unispeech"""
def __init__( self : str , SCREAMING_SNAKE_CASE_ : List[Any]=3_2 , SCREAMING_SNAKE_CASE_ : Dict=7_6_8 , SCREAMING_SNAKE_CASE_ : Tuple=1_2 , SCREAMING_SNAKE_CASE_ : int=1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=1E-5 , SCREAMING_SNAKE_CASE_ : Any="group" , SCREAMING_SNAKE_CASE_ : str="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE_ : List[Any]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_ : int=(1_0, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_2_8 , SCREAMING_SNAKE_CASE_ : List[str]=1_6 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=0.05 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_0 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : int=0.0 , SCREAMING_SNAKE_CASE_ : Any=1_0 , SCREAMING_SNAKE_CASE_ : Any=0 , SCREAMING_SNAKE_CASE_ : List[str]=3_2_0 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Any=1_0_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE_ : str=2_5_6 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]="mean" , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : int=2_5_6 , SCREAMING_SNAKE_CASE_ : int=8_0 , SCREAMING_SNAKE_CASE_ : List[Any]=0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Dict=0.5 , **SCREAMING_SNAKE_CASE_ : Any , ):
super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Dict = hidden_size
lowerCAmelCase_ : int = feat_extract_norm
lowerCAmelCase_ : List[str] = feat_extract_activation
lowerCAmelCase_ : List[Any] = list(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Optional[Any] = list(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Any = list(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Optional[int] = conv_bias
lowerCAmelCase_ : Optional[Any] = num_conv_pos_embeddings
lowerCAmelCase_ : Any = num_conv_pos_embedding_groups
lowerCAmelCase_ : Optional[Any] = len(self.conv_dim )
lowerCAmelCase_ : Optional[int] = num_hidden_layers
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : str = hidden_dropout
lowerCAmelCase_ : str = attention_dropout
lowerCAmelCase_ : Tuple = activation_dropout
lowerCAmelCase_ : str = feat_proj_dropout
lowerCAmelCase_ : Optional[Any] = final_dropout
lowerCAmelCase_ : int = layerdrop
lowerCAmelCase_ : List[str] = layer_norm_eps
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Dict = num_ctc_classes
lowerCAmelCase_ : str = vocab_size
lowerCAmelCase_ : Union[str, Any] = do_stable_layer_norm
lowerCAmelCase_ : Any = use_weighted_layer_sum
lowerCAmelCase_ : str = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase_ : Tuple = apply_spec_augment
lowerCAmelCase_ : str = mask_time_prob
lowerCAmelCase_ : Optional[int] = mask_time_length
lowerCAmelCase_ : Tuple = mask_time_min_masks
lowerCAmelCase_ : int = mask_feature_prob
lowerCAmelCase_ : Dict = mask_feature_length
lowerCAmelCase_ : Dict = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCAmelCase_ : str = num_codevectors_per_group
lowerCAmelCase_ : Optional[int] = num_codevector_groups
lowerCAmelCase_ : Any = contrastive_logits_temperature
lowerCAmelCase_ : int = feat_quantizer_dropout
lowerCAmelCase_ : List[Any] = num_negatives
lowerCAmelCase_ : str = codevector_dim
lowerCAmelCase_ : Union[str, Any] = proj_codevector_dim
lowerCAmelCase_ : Optional[int] = diversity_loss_weight
# ctc loss
lowerCAmelCase_ : Dict = ctc_loss_reduction
lowerCAmelCase_ : Optional[Any] = ctc_zero_infinity
# pretraining loss
lowerCAmelCase_ : Optional[int] = replace_prob
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 289 |
"""simple docstring"""
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
lowercase__ : Tuple = datasets.logging.get_logger(__name__)
lowercase__ : List[Any] = """\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
"""
lowercase__ : Tuple = """\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project's README at https://github.com/google-research/bleurt#readme for more information.
"""
lowercase__ : List[Any] = """
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
'scores': List of scores.
Examples:
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> bleurt = datasets.load_metric(\"bleurt\")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results[\"scores\"]])
[1.03, 1.04]
"""
lowercase__ : List[Any] = {
"""bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""",
"""bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""",
"""bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""",
"""bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""",
"""bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""",
"""bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""",
"""BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""",
"""BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""",
"""BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""",
"""BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class UpperCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , )
def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : str ):
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
'Using default BLEURT-Base checkpoint for sequence maximum length 128. '
'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' )
lowerCAmelCase_ : List[Any] = 'bleurt-base-128'
if self.config_name.lower() in CHECKPOINT_URLS:
lowerCAmelCase_ : List[Any] = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
lowerCAmelCase_ : Tuple = self.config_name.upper()
else:
raise KeyError(
F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" )
# download the model checkpoint specified by self.config_name and set up the scorer
lowerCAmelCase_ : List[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
lowerCAmelCase_ : List[str] = score.BleurtScorer(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ):
lowerCAmelCase_ : Tuple = self.scorer.score(references=SCREAMING_SNAKE_CASE_ , candidates=SCREAMING_SNAKE_CASE_ )
return {"scores": scores}
| 289 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Union[str, Any] =logging.get_logger(__name__)
A__ : str ={
'''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''',
}
class UpperCAmelCase ( snake_case_ ):
_lowercase: List[Any] = '''git_vision_model'''
def __init__( self : Optional[Any] , __snake_case : List[Any]=7_68 , __snake_case : Dict=30_72 , __snake_case : Dict=12 , __snake_case : List[Any]=12 , __snake_case : int=3 , __snake_case : List[Any]=2_24 , __snake_case : Optional[Any]=16 , __snake_case : Optional[Any]="quick_gelu" , __snake_case : Tuple=1E-5 , __snake_case : Dict=0.0 , __snake_case : Any=0.02 , **__snake_case : Optional[int] , ) -> str:
super().__init__(**__snake_case )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = num_channels
_lowerCAmelCase = patch_size
_lowerCAmelCase = image_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = hidden_act
@classmethod
def lowercase__ ( cls : Dict , __snake_case : Union[str, os.PathLike] , **__snake_case : List[str] ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__snake_case )
_lowerCAmelCase , _lowerCAmelCase = cls.get_config_dict(__snake_case , **__snake_case )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
_lowerCAmelCase = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__snake_case , **__snake_case )
class UpperCAmelCase ( snake_case_ ):
_lowercase: List[str] = '''git'''
def __init__( self : int , __snake_case : Dict=None , __snake_case : List[str]=3_05_22 , __snake_case : str=7_68 , __snake_case : Optional[int]=6 , __snake_case : Dict=12 , __snake_case : Dict=30_72 , __snake_case : Optional[Any]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=10_24 , __snake_case : List[Any]=0.02 , __snake_case : int=1E-1_2 , __snake_case : int=0 , __snake_case : Tuple="absolute" , __snake_case : Tuple=True , __snake_case : str=False , __snake_case : str=1_01 , __snake_case : Dict=1_02 , __snake_case : str=None , **__snake_case : List[Any] , ) -> Union[str, Any]:
super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , pad_token_id=__snake_case , **__snake_case )
if vision_config is None:
_lowerCAmelCase = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
_lowerCAmelCase = GitVisionConfig(**__snake_case )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = position_embedding_type
_lowerCAmelCase = use_cache
_lowerCAmelCase = tie_word_embeddings
_lowerCAmelCase = num_image_with_embedding
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
def lowercase__ ( self : str ) -> Optional[Any]:
_lowerCAmelCase = copy.deepcopy(self.__dict__ )
_lowerCAmelCase = self.vision_config.to_dict()
_lowerCAmelCase = self.__class__.model_type
return output
| 70 |
'''simple docstring'''
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class UpperCAmelCase ( snake_case_ ):
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
_lowerCAmelCase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__snake_case , """hidden_sizes""" ) )
self.parent.assertTrue(hasattr(__snake_case , """num_attention_heads""" ) )
self.parent.assertTrue(hasattr(__snake_case , """num_encoder_blocks""" ) )
class UpperCAmelCase :
def __init__( self : Optional[int] , __snake_case : str , __snake_case : Dict=13 , __snake_case : str=64 , __snake_case : Dict=3 , __snake_case : Dict=4 , __snake_case : Tuple=[2, 2, 2, 2] , __snake_case : int=[8, 4, 2, 1] , __snake_case : List[str]=[16, 32, 64, 1_28] , __snake_case : Optional[Any]=[1, 4, 8, 16] , __snake_case : Dict=[1, 2, 4, 8] , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : int="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Tuple=0.02 , __snake_case : Union[str, Any]=3 , __snake_case : Tuple=None , ) -> List[str]:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = image_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = num_encoder_blocks
_lowerCAmelCase = sr_ratios
_lowerCAmelCase = depths
_lowerCAmelCase = hidden_sizes
_lowerCAmelCase = downsampling_rates
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = is_training
_lowerCAmelCase = use_labels
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = scope
def lowercase__ ( self : int ) -> Union[str, Any]:
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : List[Any] ) -> List[str]:
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> Tuple:
_lowerCAmelCase = SegformerModel(config=__snake_case )
model.to(__snake_case )
model.eval()
_lowerCAmelCase = model(__snake_case )
_lowerCAmelCase = _lowerCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]:
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = SegformerForSemanticSegmentation(__snake_case )
model.to(__snake_case )
model.eval()
_lowerCAmelCase = model(__snake_case )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
_lowerCAmelCase = model(__snake_case , labels=__snake_case )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss , 0.0 )
def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> List[str]:
_lowerCAmelCase = 1
_lowerCAmelCase = SegformerForSemanticSegmentation(config=__snake_case )
model.to(__snake_case )
model.eval()
_lowerCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__snake_case )
_lowerCAmelCase = model(__snake_case , labels=__snake_case )
self.parent.assertGreater(result.loss , 0.0 )
def lowercase__ ( self : Optional[int] ) -> int:
_lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs
_lowerCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
_lowercase: Any = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
_lowercase: Tuple = (
{
'''feature-extraction''': SegformerModel,
'''image-classification''': SegformerForImageClassification,
'''image-segmentation''': SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_lowercase: Tuple = True
_lowercase: Union[str, Any] = False
_lowercase: Dict = False
_lowercase: Optional[Any] = False
def lowercase__ ( self : Tuple ) -> Any:
_lowerCAmelCase = SegformerModelTester(self )
_lowerCAmelCase = SegformerConfigTester(self , config_class=__snake_case )
def lowercase__ ( self : Optional[Any] ) -> Dict:
self.config_tester.run_common_tests()
def lowercase__ ( self : int ) -> Union[str, Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def lowercase__ ( self : Dict ) -> int:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*__snake_case )
def lowercase__ ( self : Dict ) -> Dict:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*__snake_case )
@unittest.skip("""SegFormer does not use inputs_embeds""" )
def lowercase__ ( self : int ) -> Union[str, Any]:
pass
@unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" )
def lowercase__ ( self : Optional[int] ) -> int:
pass
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__snake_case )
_lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
def lowercase__ ( self : Tuple ) -> Tuple:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = True
for model_class in self.all_model_classes:
_lowerCAmelCase = True
_lowerCAmelCase = False
_lowerCAmelCase = True
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) )
_lowerCAmelCase = outputs.attentions
_lowerCAmelCase = sum(self.model_tester.depths )
self.assertEqual(len(__snake_case ) , __snake_case )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_lowerCAmelCase = True
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) )
_lowerCAmelCase = outputs.attentions
self.assertEqual(len(__snake_case ) , __snake_case )
# verify the first attentions (first block, first layer)
_lowerCAmelCase = (self.model_tester.image_size // 4) ** 2
_lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
_lowerCAmelCase = (self.model_tester.image_size // 32) ** 2
_lowerCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
_lowerCAmelCase = len(__snake_case )
# Check attention is always last and order is fine
_lowerCAmelCase = True
_lowerCAmelCase = True
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) )
self.assertEqual(out_len + 1 , len(__snake_case ) )
_lowerCAmelCase = outputs.attentions
self.assertEqual(len(__snake_case ) , __snake_case )
# verify the first attentions (first block, first layer)
_lowerCAmelCase = (self.model_tester.image_size // 4) ** 2
_lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def lowercase__ ( self : int ) -> List[str]:
def check_hidden_states_output(__snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] ):
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) )
_lowerCAmelCase = outputs.hidden_states
_lowerCAmelCase = self.model_tester.num_encoder_blocks
self.assertEqual(len(__snake_case ) , __snake_case )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = True
check_hidden_states_output(__snake_case , __snake_case , __snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase = True
check_hidden_states_output(__snake_case , __snake_case , __snake_case )
def lowercase__ ( self : Optional[Any] ) -> Any:
if not self.model_tester.is_training:
return
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = True
for model_class in self.all_model_classes:
if model_class in get_values(__snake_case ):
continue
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.train()
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
_lowerCAmelCase = model(**__snake_case ).loss
loss.backward()
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase__ ( self : Tuple ) -> Dict:
pass
@slow
def lowercase__ ( self : str ) -> Optional[int]:
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = SegformerModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def UpperCamelCase__ ( ):
"""simple docstring"""
_lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def lowercase__ ( self : Union[str, Any] ) -> Any:
# only resize + normalize
_lowerCAmelCase = SegformerImageProcessor(
image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case )
_lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to(
__snake_case )
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" )
_lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case )
with torch.no_grad():
_lowerCAmelCase = model(__snake_case )
_lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) )
self.assertEqual(outputs.logits.shape , __snake_case )
_lowerCAmelCase = torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def lowercase__ ( self : Optional[Any] ) -> Any:
# only resize + normalize
_lowerCAmelCase = SegformerImageProcessor(
image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case )
_lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained(
"""nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(__snake_case )
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" )
_lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case )
with torch.no_grad():
_lowerCAmelCase = model(__snake_case )
_lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) )
self.assertEqual(outputs.logits.shape , __snake_case )
_lowerCAmelCase = torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1E-1 ) )
@slow
def lowercase__ ( self : Any ) -> str:
# only resize + normalize
_lowerCAmelCase = SegformerImageProcessor(
image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case )
_lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to(
__snake_case )
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" )
_lowerCAmelCase = encoded_inputs.pixel_values.to(__snake_case )
with torch.no_grad():
_lowerCAmelCase = model(__snake_case )
_lowerCAmelCase = outputs.logits.detach().cpu()
_lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] )
_lowerCAmelCase = torch.Size((5_00, 3_00) )
self.assertEqual(segmentation[0].shape , __snake_case )
_lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__snake_case )
_lowerCAmelCase = torch.Size((1_28, 1_28) )
self.assertEqual(segmentation[0].shape , __snake_case )
| 70 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
class lowercase_ ( A ):
"""simple docstring"""
lowerCamelCase_ = ['''input_features''', '''attention_mask''']
def __init__( self : Tuple , __lowerCamelCase : List[str]=8_0 , __lowerCamelCase : Dict=1_6_0_0_0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : int=1_0 , __lowerCamelCase : Optional[Any]=2_5 , __lowerCamelCase : Tuple="hamming_window" , __lowerCamelCase : Dict=3_2_7_6_8.0 , __lowerCamelCase : List[Any]=0.9_7 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=False , **__lowerCamelCase : str , ):
"""simple docstring"""
super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase )
_SCREAMING_SNAKE_CASE = feature_size
_SCREAMING_SNAKE_CASE = sampling_rate
_SCREAMING_SNAKE_CASE = padding_value
_SCREAMING_SNAKE_CASE = hop_length
_SCREAMING_SNAKE_CASE = win_length
_SCREAMING_SNAKE_CASE = frame_signal_scale
_SCREAMING_SNAKE_CASE = preemphasis_coeff
_SCREAMING_SNAKE_CASE = mel_floor
_SCREAMING_SNAKE_CASE = normalize_means
_SCREAMING_SNAKE_CASE = normalize_vars
_SCREAMING_SNAKE_CASE = win_function
_SCREAMING_SNAKE_CASE = return_attention_mask
_SCREAMING_SNAKE_CASE = win_length * sampling_rate // 1_0_0_0
_SCREAMING_SNAKE_CASE = hop_length * sampling_rate // 1_0_0_0
_SCREAMING_SNAKE_CASE = optimal_fft_length(self.sample_size )
_SCREAMING_SNAKE_CASE = (self.n_fft // 2) + 1
def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : np.array ):
"""simple docstring"""
if self.win_function == "hamming_window":
_SCREAMING_SNAKE_CASE = window_function(window_length=self.sample_size , name=self.win_function , periodic=__lowerCamelCase )
else:
_SCREAMING_SNAKE_CASE = window_function(window_length=self.sample_size , name=self.win_function )
_SCREAMING_SNAKE_CASE = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
_SCREAMING_SNAKE_CASE = spectrogram(
one_waveform * self.frame_signal_scale , window=__lowerCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__lowerCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=__lowerCamelCase , mel_floor=self.mel_floor , log_mel="log" , )
return msfc_features.T
def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ):
"""simple docstring"""
# make sure we normalize float32 arrays
if self.normalize_means:
_SCREAMING_SNAKE_CASE = x[:input_length].mean(axis=0 )
_SCREAMING_SNAKE_CASE = np.subtract(__lowerCamelCase , __lowerCamelCase )
if self.normalize_vars:
_SCREAMING_SNAKE_CASE = x[:input_length].std(axis=0 )
_SCREAMING_SNAKE_CASE = np.divide(__lowerCamelCase , __lowerCamelCase )
if input_length < x.shape[0]:
_SCREAMING_SNAKE_CASE = padding_value
# make sure array is in float32
_SCREAMING_SNAKE_CASE = x.astype(np.floataa )
return x
def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : List[np.ndarray] , __lowerCamelCase : Optional[np.ndarray] = None ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(__lowerCamelCase , __lowerCamelCase , self.padding_value ) for x, n in zip(__lowerCamelCase , __lowerCamelCase )]
def __call__( self : Optional[int] , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : int , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
_SCREAMING_SNAKE_CASE = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
_SCREAMING_SNAKE_CASE = is_batched_numpy or (
isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ):
_SCREAMING_SNAKE_CASE = np.asarray(__lowerCamelCase , dtype=np.floataa )
elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_SCREAMING_SNAKE_CASE = [raw_speech]
# extract fbank features
_SCREAMING_SNAKE_CASE = [self._extract_mfsc_features(__lowerCamelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
_SCREAMING_SNAKE_CASE = BatchFeature({"input_features": features} )
_SCREAMING_SNAKE_CASE = self.pad(
__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , )
# make sure list is in array format
_SCREAMING_SNAKE_CASE = padded_inputs.get("input_features" )
if isinstance(input_features[0] , __lowerCamelCase ):
_SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features]
_SCREAMING_SNAKE_CASE = padded_inputs.get("attention_mask" )
if attention_mask is not None:
_SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
_SCREAMING_SNAKE_CASE = (
np.array(__lowerCamelCase , dtype=np.intaa )
if self._get_padding_strategies(__lowerCamelCase , max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
_SCREAMING_SNAKE_CASE = self.normalize(
padded_inputs["input_features"] , attention_mask=__lowerCamelCase )
if return_tensors is not None:
_SCREAMING_SNAKE_CASE = padded_inputs.convert_to_tensors(__lowerCamelCase )
return padded_inputs
| 360 |
'''simple docstring'''
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json',
}
class lowercase_ ( A ):
"""simple docstring"""
lowerCamelCase_ = '''efficientnet'''
def __init__( self : Optional[Any] , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 6_0_0 , __lowerCamelCase : float = 2.0 , __lowerCamelCase : float = 3.1 , __lowerCamelCase : int = 8 , __lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase : List[int] = [] , __lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase : float = 0.2_5 , __lowerCamelCase : str = "swish" , __lowerCamelCase : int = 2_5_6_0 , __lowerCamelCase : str = "mean" , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 0.0_0_1 , __lowerCamelCase : float = 0.9_9 , __lowerCamelCase : float = 0.5 , __lowerCamelCase : float = 0.2 , **__lowerCamelCase : Tuple , ):
"""simple docstring"""
super().__init__(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE = num_channels
_SCREAMING_SNAKE_CASE = image_size
_SCREAMING_SNAKE_CASE = width_coefficient
_SCREAMING_SNAKE_CASE = depth_coefficient
_SCREAMING_SNAKE_CASE = depth_divisor
_SCREAMING_SNAKE_CASE = kernel_sizes
_SCREAMING_SNAKE_CASE = in_channels
_SCREAMING_SNAKE_CASE = out_channels
_SCREAMING_SNAKE_CASE = depthwise_padding
_SCREAMING_SNAKE_CASE = strides
_SCREAMING_SNAKE_CASE = num_block_repeats
_SCREAMING_SNAKE_CASE = expand_ratios
_SCREAMING_SNAKE_CASE = squeeze_expansion_ratio
_SCREAMING_SNAKE_CASE = hidden_act
_SCREAMING_SNAKE_CASE = hidden_dim
_SCREAMING_SNAKE_CASE = pooling_type
_SCREAMING_SNAKE_CASE = initializer_range
_SCREAMING_SNAKE_CASE = batch_norm_eps
_SCREAMING_SNAKE_CASE = batch_norm_momentum
_SCREAMING_SNAKE_CASE = dropout_rate
_SCREAMING_SNAKE_CASE = drop_connect_rate
_SCREAMING_SNAKE_CASE = sum(__lowerCamelCase ) * 4
class lowercase_ ( A ):
"""simple docstring"""
lowerCamelCase_ = version.parse('''1.11''' )
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def lowerCAmelCase_ ( self : List[Any] ):
"""simple docstring"""
return 1e-5
| 111 | 0 |
"""simple docstring"""
import sys
a :int = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : List[Any] = 1
for digit in s:
product *= int(__lowerCAmelCase )
return product
def _lowercase ( __lowerCAmelCase = N ) -> int:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = -sys.maxsize - 1
SCREAMING_SNAKE_CASE__ : Tuple = n[:13]
SCREAMING_SNAKE_CASE__ : Optional[int] = 13
while cur_index < len(__lowerCAmelCase ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
SCREAMING_SNAKE_CASE__ : Optional[int] = substr[1:] + n[cur_index]
cur_index += 1
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = max(__lowerCAmelCase , str_eval(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(f'{solution() = }')
| 132 |
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
a :List[Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def _lowercase ( __lowerCAmelCase ) -> List[str]:
for pegasus_name, hf_name in PATTERNS:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = k.replace(__lowerCAmelCase , __lowerCAmelCase )
return k
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration:
SCREAMING_SNAKE_CASE__ : str = DEFAULTS.copy()
cfg_kwargs.update(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = PegasusConfig(**__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[int] = PegasusForConditionalGeneration(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = torch_model.model.state_dict()
SCREAMING_SNAKE_CASE__ : Any = {}
for k, v in tf_weights.items():
SCREAMING_SNAKE_CASE__ : Optional[int] = rename_state_dict_key(__lowerCAmelCase )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
SCREAMING_SNAKE_CASE__ : Tuple = v.T
SCREAMING_SNAKE_CASE__ : Any = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
SCREAMING_SNAKE_CASE__ : Optional[int] = mapping["""shared.weight"""]
SCREAMING_SNAKE_CASE__ : Any = mapping["""shared.weight"""]
SCREAMING_SNAKE_CASE__ : int = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def _lowercase ( __lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
SCREAMING_SNAKE_CASE__ : List[Any] = tf.train.list_variables(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = {}
SCREAMING_SNAKE_CASE__ : Any = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ):
SCREAMING_SNAKE_CASE__ : Tuple = any(pat in name for pat in ignore_name )
if skip_key:
continue
SCREAMING_SNAKE_CASE__ : str = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = array
return tf_weights
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any:
# save tokenizer first
SCREAMING_SNAKE_CASE__ : Any = Path(__lowerCAmelCase ).parent.name
SCREAMING_SNAKE_CASE__ : Dict = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""]
SCREAMING_SNAKE_CASE__ : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(__lowerCAmelCase )
# convert model
SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tf_weights_as_numpy(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Any = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
SCREAMING_SNAKE_CASE__ : Tuple = task_specific_params
SCREAMING_SNAKE_CASE__ : str = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase )
torch_model.save_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" )
if __name__ == "__main__":
a :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
a :Optional[Any] = parser.parse_args()
if args.save_dir is None:
a :List[Any] = Path(args.tf_ckpt_path).parent.name
a :Optional[Any] = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 132 | 1 |
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
a__ : Optional[int] = logging.get_logger(__name__)
def UpperCAmelCase__ ():
'''simple docstring'''
__SCREAMING_SNAKE_CASE = os.getenv("SM_HP_MP_PARAMETERS" , "{}" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
__SCREAMING_SNAKE_CASE = json.loads(SCREAMING_SNAKE_CASE__ )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
__SCREAMING_SNAKE_CASE = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
__SCREAMING_SNAKE_CASE = json.loads(SCREAMING_SNAKE_CASE__ )
if not mpi_options.get("sagemaker_mpi_enabled" , SCREAMING_SNAKE_CASE__ ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("smdistributed" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class UpperCamelCase_ ( lowerCamelCase_):
"""simple docstring"""
snake_case__ : str = field(
default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , )
def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]:
super().__post_init__()
warnings.warn(
"`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use "
"`TrainingArguments` instead." , _UpperCAmelCase , )
@cached_property
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple:
logger.info("PyTorch: setting up devices" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"torch.distributed process group is initialized, but local_rank == -1. "
"In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" )
if self.no_cuda:
__SCREAMING_SNAKE_CASE = torch.device("cpu" )
__SCREAMING_SNAKE_CASE = 0
elif is_sagemaker_model_parallel_available():
__SCREAMING_SNAKE_CASE = smp.local_rank()
__SCREAMING_SNAKE_CASE = torch.device("cuda" , _UpperCAmelCase )
__SCREAMING_SNAKE_CASE = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta )
__SCREAMING_SNAKE_CASE = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) )
__SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank )
__SCREAMING_SNAKE_CASE = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
__SCREAMING_SNAKE_CASE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
__SCREAMING_SNAKE_CASE = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta )
__SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank )
__SCREAMING_SNAKE_CASE = 1
if device.type == "cuda":
torch.cuda.set_device(_UpperCAmelCase )
return device
@property
def UpperCAmelCase_ ( self : List[Any] ) -> int:
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]:
return not is_sagemaker_model_parallel_available()
@property
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
return False
| 367 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
"""simple docstring"""
snake_case__ : str = IFInpaintingSuperResolutionPipeline
snake_case__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"})
snake_case__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"}
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]:
return self._get_superresolution_dummy_components()
def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=0 ) -> List[str]:
if str(UpperCAmelCase__ ).startswith("mps" ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def UpperCAmelCase_ ( self : str ) -> Dict:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCAmelCase_ ( self : str ) -> Tuple:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]:
self._test_save_load_local()
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 195 | 0 |
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 43 |
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
while cur > 1:
# Find the maximum number in arr
_UpperCAmelCase = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
_UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )]
# Reverse whole list
_UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )]
cur -= 1
return arr
if __name__ == "__main__":
__A : List[str] = input("Enter numbers separated by a comma:\n").strip()
__A : List[Any] = [int(item) for item in user_input.split(",")]
print(pancake_sort(unsorted))
| 260 | 0 |
"""simple docstring"""
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class _UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
__UpperCAmelCase : List[str] =None
__UpperCAmelCase : List[Any] =None
@property
def snake_case ( self ):
return self.feat_extract_tester.prepare_feat_extract_dict()
def snake_case ( self ):
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(__a , "feature_size" ) )
self.assertTrue(hasattr(__a , "sampling_rate" ) )
self.assertTrue(hasattr(__a , "padding_value" ) )
def snake_case ( self ):
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(__a ) == len(__a ) for x, y in zip(__a , processed_features[input_name] ) ) )
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a )
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="np" )
__lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
__lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def snake_case ( self ):
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a )
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="pt" )
__lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
__lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def snake_case ( self ):
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a )
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="tf" )
__lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
__lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def snake_case ( self , __a=False ):
def _inputs_have_equal_length(__a ):
__lowerCAmelCase = len(input[0] )
for input_slice in input[1:]:
if len(__a ) != length:
return False
return True
def _inputs_are_equal(__a , __a ):
if len(__a ) != len(__a ):
return False
for input_slice_a, input_slice_a in zip(__a , __a ):
if not np.allclose(np.asarray(__a ) , np.asarray(__a ) , atol=1e-3 ):
return False
return True
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__a )
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
__lowerCAmelCase = self.feat_extract_tester.seq_length_diff
__lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff
__lowerCAmelCase = self.feat_extract_tester.min_seq_length
__lowerCAmelCase = self.feat_extract_tester.batch_size
__lowerCAmelCase = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
__lowerCAmelCase = feat_extract.pad(__a , padding=__a )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(__a , padding="longest" )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(__a , padding="max_length" , max_length=len(speech_inputs[-1] ) )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="np" )
__lowerCAmelCase = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(__a ):
feat_extract.pad(__a , padding="max_length" )[input_name]
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=__a , return_tensors="np" )
__lowerCAmelCase = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(__a ) )
self.assertTrue(_inputs_have_equal_length(__a ) )
self.assertTrue(_inputs_have_equal_length(__a ) )
self.assertTrue(_inputs_are_equal(__a , __a ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
__lowerCAmelCase = feat_extract.pad(__a , pad_to_multiple_of=10 )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(__a , padding="longest" , pad_to_multiple_of=10 )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , pad_to_multiple_of=10 , max_length=__a )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , pad_to_multiple_of=10 , max_length=__a , return_tensors="np" , )
__lowerCAmelCase = input_a[input_name]
self.assertTrue(all(len(__a ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(__a , __a ) )
__lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(__a ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
__lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def snake_case ( self , __a=False ):
def _inputs_have_equal_length(__a ):
__lowerCAmelCase = len(input[0] )
for input_slice in input[1:]:
if len(__a ) != length:
return False
return True
def _inputs_are_equal(__a , __a ):
if len(__a ) != len(__a ):
return False
for input_slice_a, input_slice_a in zip(__a , __a ):
if not np.allclose(np.asarray(__a ) , np.asarray(__a ) , atol=1e-3 ):
return False
return True
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__a )
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=__a )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(__a , padding="max_length" , max_length=len(speech_inputs[0] ) )
__lowerCAmelCase = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(__a ) )
self.assertFalse(_inputs_have_equal_length(__a ) )
# truncate to smallest with np
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=__a , )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" )
__lowerCAmelCase = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(__a ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(__a ) )
# truncate to middle
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=__a , return_tensors="np" , )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=__a )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" )
__lowerCAmelCase = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(__a ) )
self.assertTrue(_inputs_have_equal_length(__a ) )
self.assertTrue(_inputs_are_equal(__a , __a ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(__a ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__a ):
feat_extract.pad(__a , truncation=__a )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__a ):
feat_extract.pad(__a , padding="longest" , truncation=__a )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__a ):
feat_extract.pad(__a , padding="longest" , truncation=__a )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(__a ):
feat_extract.pad(__a , padding="max_length" , truncation=__a )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
__lowerCAmelCase = 12
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__a , truncation=__a , )
__lowerCAmelCase = input_a[input_name]
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__a , )
__lowerCAmelCase = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
__lowerCAmelCase = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
__lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(__a ) )
self.assertFalse(_inputs_have_equal_length(__a ) )
def snake_case ( self ):
self._check_padding(numpify=__a )
def snake_case ( self ):
self._check_padding(numpify=__a )
def snake_case ( self ):
self._check_truncation(numpify=__a )
def snake_case ( self ):
self._check_truncation(numpify=__a )
@require_torch
def snake_case ( self ):
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
__lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="np" )[input_name]
__lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="pt" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def snake_case ( self ):
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
__lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="np" )[input_name]
__lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="tf" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def snake_case ( self ):
__lowerCAmelCase = self.feat_extract_dict
__lowerCAmelCase = True
__lowerCAmelCase = self.feature_extraction_class(**__a )
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
__lowerCAmelCase = [len(__a ) for x in speech_inputs]
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
__lowerCAmelCase = feat_extract.pad(__a , padding="longest" , return_tensors="np" )
self.assertIn("attention_mask" , __a )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __a )
def snake_case ( self ):
__lowerCAmelCase = self.feat_extract_dict
__lowerCAmelCase = True
__lowerCAmelCase = self.feature_extraction_class(**__a )
__lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
__lowerCAmelCase = [len(__a ) for x in speech_inputs]
__lowerCAmelCase = feat_extract.model_input_names[0]
__lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
__lowerCAmelCase = min(__a )
__lowerCAmelCase = feat_extract.pad(
__a , padding="max_length" , max_length=__a , truncation=__a , return_tensors="np" )
self.assertIn("attention_mask" , __a )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 259 |
"""simple docstring"""
import string
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = ""
for i in sequence:
__lowerCAmelCase = ord(_UpperCamelCase )
if 65 <= extract <= 90:
output += chr(155 - extract )
elif 97 <= extract <= 122:
output += chr(219 - extract )
else:
output += i
return output
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = string.ascii_letters
__lowerCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1]
return "".join(
letters_reversed[letters.index(_UpperCamelCase )] if c in letters else c for c in sequence )
def _lowerCamelCase ( ):
'''simple docstring'''
from timeit import timeit
print("Running performance benchmarks..." )
__lowerCAmelCase = "from string import printable ; from __main__ import atbash, atbash_slow"
print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_UpperCamelCase )} seconds" )
print(f"> atbash(): {timeit('atbash(printable)' , setup=_UpperCamelCase )} seconds" )
if __name__ == "__main__":
for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"):
print(f'''{example} encrypted in atbash: {atbash(example)}''')
benchmark()
| 259 | 1 |
"""simple docstring"""
from math import pow
def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,):
"""simple docstring"""
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
_UpperCAmelCase = int(pow(lowercase ,lowercase ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
_UpperCAmelCase , _UpperCAmelCase = backtrack(
lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
_UpperCAmelCase , _UpperCAmelCase = backtrack(
lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase )
return current_sum, solutions_count
def __UpperCAmelCase ( lowercase ,lowercase ):
"""simple docstring"""
if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10):
raise ValueError(
"""Invalid input\n"""
"""needed_sum must be between 1 and 1000, power between 2 and 10.""" )
return backtrack(lowercase ,lowercase ,1 ,0 ,0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 289 | """simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
_snake_case : int = StableUnCLIPPipeline
_snake_case : str = TEXT_TO_IMAGE_PARAMS
_snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
_snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_snake_case : str = False
def lowerCAmelCase_ ( self : Optional[int] ):
_UpperCAmelCase = 32
_UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , )
torch.manual_seed(0 )
_UpperCAmelCase = DDPMScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , )
# regular denoising components
torch.manual_seed(0 )
_UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase )
_UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , )
torch.manual_seed(0 )
_UpperCAmelCase = DDIMScheduler(
beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCAmelCase = AutoencoderKL()
_UpperCAmelCase = {
# prior components
"""prior_tokenizer""": prior_tokenizer,
"""prior_text_encoder""": prior_text_encoder,
"""prior""": prior,
"""prior_scheduler""": prior_scheduler,
# image noising components
"""image_normalizer""": image_normalizer,
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder,
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
}
return components
def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ):
if str(__lowerCAmelCase ).startswith("""mps""" ):
_UpperCAmelCase = torch.manual_seed(__lowerCAmelCase )
else:
_UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_UpperCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""prior_num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase_ ( self : Optional[int] ):
_UpperCAmelCase = torch_device == """cpu"""
self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
_UpperCAmelCase = torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase )
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : List[Any] ):
_UpperCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" )
_UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
_UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" )
_UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
def lowerCAmelCase_ ( self : Any ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa )
_UpperCAmelCase = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCAmelCase = pipe(
"""anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , )
_UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 289 | 1 |
"""simple docstring"""
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
lowerCamelCase_ : Dict = logging.get_logger(__name__)
@add_end_docstrings(
_SCREAMING_SNAKE_CASE, r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ", )
class __A ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self , __A ) -> np.ndarray:
if self.framework == "tf":
a =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
a =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A )
else:
raise ValueError('''Unsupported framework''' )
return masked_index
def SCREAMING_SNAKE_CASE ( self , __A ) -> np.ndarray:
a =self.get_masked_index(__A )
a =np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , )
def SCREAMING_SNAKE_CASE ( self , __A ) -> str:
if isinstance(__A , __A ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__A )
def SCREAMING_SNAKE_CASE ( self , __A , __A=None , **__A ) -> Dict[str, GenericTensor]:
if return_tensors is None:
a =self.framework
a =self.tokenizer(__A , return_tensors=__A )
self.ensure_exactly_one_mask_token(__A )
return model_inputs
def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[int]:
a =self.model(**__A )
a =model_inputs['''input_ids''']
return model_outputs
def SCREAMING_SNAKE_CASE ( self , __A , __A=5 , __A=None ) -> Any:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
a =target_ids.shape[0]
a =model_outputs['''input_ids'''][0]
a =model_outputs['''logits''']
if self.framework == "tf":
a =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
a =outputs.numpy()
a =outputs[0, masked_index, :]
a =stable_softmax(__A , axis=-1 )
if target_ids is not None:
a =tf.gather_nd(tf.squeeze(__A , 0 ) , target_ids.reshape(-1 , 1 ) )
a =tf.expand_dims(__A , 0 )
a =tf.math.top_k(__A , k=__A )
a , a =topk.values.numpy(), topk.indices.numpy()
else:
a =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
a =outputs[0, masked_index, :]
a =logits.softmax(dim=-1 )
if target_ids is not None:
a =probs[..., target_ids]
a , a =probs.topk(__A )
a =[]
a =values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
a =[]
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
a =input_ids.numpy().copy()
if target_ids is not None:
a =target_ids[p].tolist()
a =p
# Filter padding out:
a =tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
a =self.tokenizer.decode(__A , skip_special_tokens=__A )
a ={'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence}
row.append(__A )
result.append(__A )
if single_mask:
return result[0]
return result
def SCREAMING_SNAKE_CASE ( self , __A , __A=None ) -> List[Any]:
if isinstance(__A , __A ):
a =[targets]
try:
a =self.tokenizer.get_vocab()
except Exception:
a ={}
a =[]
for target in targets:
a =vocab.get(__A , __A )
if id_ is None:
a =self.tokenizer(
__A , add_special_tokens=__A , return_attention_mask=__A , return_token_type_ids=__A , max_length=1 , truncation=__A , )['''input_ids''']
if len(__A ) == 0:
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
'''We cannot replace it with anything meaningful, ignoring it''' )
continue
a =input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' )
target_ids.append(id_ )
a =list(set(__A ) )
if len(__A ) == 0:
raise ValueError('''At least one target must be provided when passed.''' )
a =np.array(__A )
return target_ids
def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None ) -> Any:
a ={}
if targets is not None:
a =self.get_target_ids(__A , __A )
a =target_ids
if top_k is not None:
a =top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' )
return {}, {}, postprocess_params
def __call__( self , __A , *__A , **__A ) -> Optional[int]:
a =super().__call__(__A , **__A )
if isinstance(__A , __A ) and len(__A ) == 1:
return outputs[0]
return outputs | 362 |
"""simple docstring"""
def _A ( lowercase = 2_00_00_00 ):
"""simple docstring"""
a =[0 for i in range(n + 1 )]
a =1
a =1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , lowercase ):
a =1
a =0
for i in range(lowercase ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(F'{solution() = }') | 215 | 0 |
def __magic_name__ ( __a : Dict ):
'''simple docstring'''
UpperCamelCase__ = 0
while len(SCREAMING_SNAKE_CASE__ ) > 1:
UpperCamelCase__ = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
UpperCamelCase__ = files.index(min(SCREAMING_SNAKE_CASE__ ) )
temp += files[min_index]
files.pop(SCREAMING_SNAKE_CASE__ )
files.append(SCREAMING_SNAKE_CASE__ )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 244 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
__UpperCAmelCase : Any = logging.get_logger(__name__)
__UpperCAmelCase : str = Dict[str, Any]
__UpperCAmelCase : int = List[Prediction]
@add_end_docstrings(__lowerCamelCase )
class __snake_case ( __lowerCamelCase ):
'''simple docstring'''
def __init__( self : int , *A : Optional[int] , **A : Optional[int] ):
super().__init__(*A , **A )
if self.framework == "tf":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def UpperCAmelCase__ ( self : List[str] , **A : Tuple ):
__snake_case: List[str] = {}
if "threshold" in kwargs:
__snake_case: Optional[Any] = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : int , *A : Optional[Any] , **A : Tuple ):
return super().__call__(*A , **A )
def UpperCAmelCase__ ( self : Optional[int] , A : str ):
__snake_case: Optional[Any] = load_image(A )
__snake_case: Dict = torch.IntTensor([[image.height, image.width]] )
__snake_case: str = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
__snake_case: Optional[Any] = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
__snake_case: Any = target_size
return inputs
def UpperCAmelCase__ ( self : Optional[int] , A : Dict ):
__snake_case: int = model_inputs.pop("""target_size""" )
__snake_case: int = self.model(**A )
__snake_case: Any = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
__snake_case: Optional[int] = model_inputs["""bbox"""]
return model_outputs
def UpperCAmelCase__ ( self : List[Any] , A : Optional[int] , A : Union[str, Any]=0.9 ):
__snake_case: Optional[Any] = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
__snake_case , __snake_case: Union[str, Any] = target_size[0].tolist()
def unnormalize(A : Tuple ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1_000),
(height * bbox[1] / 1_000),
(width * bbox[2] / 1_000),
(height * bbox[3] / 1_000),
] ) )
__snake_case , __snake_case: Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
__snake_case: List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
__snake_case: int = [unnormalize(A ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
__snake_case: int = ["""score""", """label""", """box"""]
__snake_case: List[Any] = [dict(zip(A , A ) ) for vals in zip(scores.tolist() , A , A ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
__snake_case: Tuple = self.image_processor.post_process_object_detection(A , A , A )
__snake_case: Optional[Any] = raw_annotations[0]
__snake_case: int = raw_annotation["""scores"""]
__snake_case: int = raw_annotation["""labels"""]
__snake_case: Optional[Any] = raw_annotation["""boxes"""]
__snake_case: Union[str, Any] = scores.tolist()
__snake_case: List[str] = [self.model.config.idalabel[label.item()] for label in labels]
__snake_case: List[str] = [self._get_bounding_box(A ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
__snake_case: List[Any] = ["""score""", """label""", """box"""]
__snake_case: Dict = [
dict(zip(A , A ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def UpperCAmelCase__ ( self : Optional[Any] , A : "torch.Tensor" ):
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
__snake_case , __snake_case , __snake_case , __snake_case: Union[str, Any] = box.int().tolist()
__snake_case: Optional[Any] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 111 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE : Optional[int] = {
"configuration_chinese_clip": [
"CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ChineseCLIPConfig",
"ChineseCLIPOnnxConfig",
"ChineseCLIPTextConfig",
"ChineseCLIPVisionConfig",
],
"processing_chinese_clip": ["ChineseCLIPProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Any = ["ChineseCLIPFeatureExtractor"]
SCREAMING_SNAKE_CASE : List[Any] = ["ChineseCLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Tuple = [
"CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ChineseCLIPModel",
"ChineseCLIPPreTrainedModel",
"ChineseCLIPTextModel",
"ChineseCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 351 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Any = {
"edbeeching/decision-transformer-gym-hopper-medium": (
"https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class UpperCamelCase ( lowercase__ ):
'''simple docstring'''
lowercase : Optional[int] ="""decision_transformer"""
lowercase : Dict =["""past_key_values"""]
lowercase : Any ={
"""max_position_embeddings""": """n_positions""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , UpperCamelCase_=17 , UpperCamelCase_=4 , UpperCamelCase_=128 , UpperCamelCase_=4096 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=1024 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=None , UpperCamelCase_="relu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ):
lowercase_ :Any = state_dim
lowercase_ :List[str] = act_dim
lowercase_ :List[str] = hidden_size
lowercase_ :int = max_ep_len
lowercase_ :List[str] = action_tanh
lowercase_ :Any = vocab_size
lowercase_ :List[Any] = n_positions
lowercase_ :List[str] = n_layer
lowercase_ :Optional[Any] = n_head
lowercase_ :int = n_inner
lowercase_ :List[str] = activation_function
lowercase_ :List[str] = resid_pdrop
lowercase_ :Dict = embd_pdrop
lowercase_ :List[Any] = attn_pdrop
lowercase_ :Union[str, Any] = layer_norm_epsilon
lowercase_ :List[str] = initializer_range
lowercase_ :Any = scale_attn_weights
lowercase_ :Union[str, Any] = use_cache
lowercase_ :Any = scale_attn_by_inverse_layer_idx
lowercase_ :Tuple = reorder_and_upcast_attn
lowercase_ :int = bos_token_id
lowercase_ :List[str] = eos_token_id
super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
| 252 | 0 |
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
A : Union[str, Any] = [8, 5, 9, 7]
A : Dict = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Optional[Any] = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _UpperCamelCase :
'''simple docstring'''
def __init__( self , __a , __a , __a , ):
__lowerCAmelCase = claim_vector
__lowerCAmelCase = allocated_resources_table
__lowerCAmelCase = maximum_claim_table
def snake_case ( self ):
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def snake_case ( self ):
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def snake_case ( self ):
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def snake_case ( self ):
return {self.__need().index(__a ): i for i in self.__need()}
def snake_case ( self , **__a ):
__lowerCAmelCase = self.__need()
__lowerCAmelCase = self.__allocated_resources_table
__lowerCAmelCase = self.__available_resources()
__lowerCAmelCase = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
__lowerCAmelCase = False
for each_need in need_list:
__lowerCAmelCase = True
for index, need in enumerate(__a ):
if need > available_resources[index]:
__lowerCAmelCase = False
break
if execution:
__lowerCAmelCase = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
__lowerCAmelCase = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__a )
# update available/freed resources stack
__lowerCAmelCase = np.array(__a ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__a ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def snake_case ( self ):
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__a ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__a ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__a ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__a ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 57 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class A_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = tempfile.mkdtemp()
lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'的',
'价',
'格',
'是',
'15',
'便',
'alex',
'##andra',
',',
'。',
'-',
't',
'shirt',
]
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
lowercase = {
'do_resize': True,
'size': {'height': 224, 'width': 224},
'do_center_crop': True,
'crop_size': {'height': 18, 'width': 18},
'do_normalize': True,
'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073],
'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711],
'do_convert_rgb': True,
}
lowercase = os.path.join(self.tmpdirname , snake_case )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(snake_case , snake_case )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case ):
return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.get_tokenizer()
lowercase = self.get_rust_tokenizer()
lowercase = self.get_image_processor()
lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case )
processor_slow.save_pretrained(self.tmpdirname )
lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case )
lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case )
processor_fast.save_pretrained(self.tmpdirname )
lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , snake_case )
self.assertIsInstance(processor_fast.tokenizer , snake_case )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , snake_case )
self.assertIsInstance(processor_fast.image_processor , snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' )
lowercase = self.get_image_processor(do_normalize=snake_case )
lowercase = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=snake_case )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case )
lowercase = self.prepare_image_inputs()
lowercase = image_processor(snake_case , return_tensors='np' )
lowercase = processor(images=snake_case , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case )
lowercase = 'Alexandra,T-shirt的价格是15便士。'
lowercase = processor(text=snake_case )
lowercase = tokenizer(snake_case )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case )
lowercase = 'Alexandra,T-shirt的价格是15便士。'
lowercase = self.prepare_image_inputs()
lowercase = processor(text=snake_case , images=snake_case )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(snake_case ):
processor()
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case )
lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase = processor.batch_decode(snake_case )
lowercase = tokenizer.batch_decode(snake_case )
self.assertListEqual(snake_case , snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case )
lowercase = 'Alexandra,T-shirt的价格是15便士。'
lowercase = self.prepare_image_inputs()
lowercase = processor(text=snake_case , images=snake_case )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 195 | 0 |
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( lowerCamelCase ):
if len(lowerCamelCase ) != 32:
raise ValueError("Input must be of length 32" )
lowercase :Dict = B""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( lowerCamelCase ):
if i < 0:
raise ValueError("Input must be non-negative" )
lowercase :Optional[int] = format(lowerCamelCase, "08x" )[-8:]
lowercase :Optional[Any] = B""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def UpperCAmelCase__ ( lowerCamelCase ):
lowercase :List[str] = B""
for char in message:
bit_string += format(lowerCamelCase, "08b" ).encode("utf-8" )
lowercase :str = format(len(lowerCamelCase ), "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(lowerCamelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( lowerCamelCase ):
if len(lowerCamelCase ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0, len(lowerCamelCase ), 512 ):
lowercase :Optional[Any] = bit_string[pos : pos + 512]
lowercase :Union[str, Any] = []
for i in range(0, 512, 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) )
yield block_words
def UpperCAmelCase__ ( lowerCamelCase ):
if i < 0:
raise ValueError("Input must be non-negative" )
lowercase :List[Any] = format(lowerCamelCase, "032b" )
lowercase :Dict = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(lowerCamelCase, 2 )
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ):
return (a + b) % 2**32
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ):
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( lowerCamelCase ):
lowercase :Any = preprocess(lowerCamelCase )
lowercase :Optional[int] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
lowercase :Union[str, Any] = 0X6745_2301
lowercase :Optional[int] = 0XEFCD_AB89
lowercase :Optional[Any] = 0X98BA_DCFE
lowercase :Optional[int] = 0X1032_5476
lowercase :Tuple = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(lowerCamelCase ):
lowercase :List[Any] = aa
lowercase :List[Any] = ba
lowercase :Dict = ca
lowercase :int = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
lowercase :Dict = d ^ (b & (c ^ d))
lowercase :List[str] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
lowercase :Dict = c ^ (d & (b ^ c))
lowercase :int = (5 * i + 1) % 16
elif i <= 47:
lowercase :str = b ^ c ^ d
lowercase :Optional[int] = (3 * i + 5) % 16
else:
lowercase :Optional[int] = c ^ (b | not_aa(lowerCamelCase ))
lowercase :Any = (7 * i) % 16
lowercase :List[Any] = (f + a + added_consts[i] + block_words[g]) % 2**32
lowercase :List[Any] = d
lowercase :Any = c
lowercase :str = b
lowercase :int = sum_aa(lowerCamelCase, left_rotate_aa(lowerCamelCase, shift_amounts[i] ) )
# Add hashed chunk to running total
lowercase :int = sum_aa(lowerCamelCase, lowerCamelCase )
lowercase :str = sum_aa(lowerCamelCase, lowerCamelCase )
lowercase :str = sum_aa(lowerCamelCase, lowerCamelCase )
lowercase :Optional[int] = sum_aa(lowerCamelCase, lowerCamelCase )
lowercase :Any = reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 158 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_UpperCAmelCase : str = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
_UpperCAmelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( lowerCAmelCase):
_a = '''mask2former'''
_a = ['''swin''']
_a = {'''hidden_size''': '''hidden_dim'''}
def __init__( self: List[str] , _lowerCAmelCase: Optional[Dict] = None , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 10_24 , _lowerCAmelCase: str = "relu" , _lowerCAmelCase: int = 6 , _lowerCAmelCase: int = 10 , _lowerCAmelCase: int = 8 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 20_48 , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 2_55 , _lowerCAmelCase: int = 1_00 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 2.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 1_25_44 , _lowerCAmelCase: float = 3.0 , _lowerCAmelCase: float = 0.75 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 1.0 , _lowerCAmelCase: bool = True , _lowerCAmelCase: List[int] = [4, 8, 16, 32] , _lowerCAmelCase: bool = None , **_lowerCAmelCase: List[str] , ):
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." )
lowercase :Optional[int] = CONFIG_MAPPING["swin"](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCAmelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
lowercase :List[str] = backbone_config.pop("model_type" )
lowercase :Tuple = CONFIG_MAPPING[backbone_model_type]
lowercase :int = config_class.from_dict(_lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. "
F"Supported model types: {','.join(self.backbones_supported )}" )
lowercase :Optional[Any] = backbone_config
lowercase :Union[str, Any] = feature_size
lowercase :Any = mask_feature_size
lowercase :List[Any] = hidden_dim
lowercase :Optional[int] = encoder_feedforward_dim
lowercase :Dict = activation_function
lowercase :Tuple = encoder_layers
lowercase :List[str] = decoder_layers
lowercase :Optional[Any] = num_attention_heads
lowercase :Optional[Any] = dropout
lowercase :Any = dim_feedforward
lowercase :List[Any] = pre_norm
lowercase :List[Any] = enforce_input_projection
lowercase :Optional[int] = common_stride
lowercase :List[Any] = ignore_value
lowercase :Optional[int] = num_queries
lowercase :List[str] = no_object_weight
lowercase :Dict = class_weight
lowercase :Union[str, Any] = mask_weight
lowercase :List[Any] = dice_weight
lowercase :Dict = train_num_points
lowercase :Optional[int] = oversample_ratio
lowercase :List[Any] = importance_sample_ratio
lowercase :Dict = init_std
lowercase :Union[str, Any] = init_xavier_std
lowercase :Optional[Any] = use_auxiliary_loss
lowercase :Any = feature_strides
lowercase :int = output_auxiliary_logits
lowercase :Dict = decoder_layers
super().__init__(**_lowerCAmelCase )
@classmethod
def SCREAMING_SNAKE_CASE ( cls: Tuple , _lowerCAmelCase: PretrainedConfig , **_lowerCAmelCase: str ):
return cls(
backbone_config=_lowerCAmelCase , **_lowerCAmelCase , )
def SCREAMING_SNAKE_CASE ( self: int ):
lowercase :str = copy.deepcopy(self.__dict__ )
lowercase :Optional[Any] = self.backbone_config.to_dict()
lowercase :Union[str, Any] = self.__class__.model_type
return output
| 158 | 1 |
import heapq
import sys
import numpy as np
__snake_case = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> Optional[Any]:
UpperCamelCase :Any = []
UpperCamelCase :Any = set()
def UpperCAmelCase ( self ) -> Dict:
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def UpperCAmelCase ( self ) -> Optional[Any]:
return len(self.elements ) == 0
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(SCREAMING_SNAKE_CASE_ )
else:
# update
# print("update", item)
UpperCamelCase :Tuple = []
((UpperCamelCase) , (UpperCamelCase)) :Optional[int] = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((UpperCamelCase) , (UpperCamelCase)) :int = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if item in self.set:
self.set.remove(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :List[Any] = []
((UpperCamelCase) , (UpperCamelCase)) :List[Any] = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((UpperCamelCase) , (UpperCamelCase)) :Tuple = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def UpperCAmelCase ( self ) -> Optional[int]:
return self.elements[0][1]
def UpperCAmelCase ( self ) -> Optional[int]:
((UpperCamelCase) , (UpperCamelCase)) :int = heapq.heappop(self.elements )
self.set.remove(SCREAMING_SNAKE_CASE_ )
return (priority, item)
def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ):
# euclidean distance
UpperCamelCase :Union[str, Any] = np.array(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :List[Any] = np.array(SCREAMING_SNAKE_CASE__ )
return np.linalg.norm(a - b )
def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ):
# integer division by time variable
return consistent_heuristic(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) // t
def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : dict[TPos, float] ):
UpperCamelCase :Optional[int] = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return ans
def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ):
UpperCamelCase :Optional[int] = np.chararray((n, n) )
for i in range(SCREAMING_SNAKE_CASE__ ):
for j in range(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :Optional[Any] = '''*'''
for i in range(SCREAMING_SNAKE_CASE__ ):
for j in range(SCREAMING_SNAKE_CASE__ ):
if (j, (n - 1) - i) in blocks:
UpperCamelCase :Optional[int] = '''#'''
UpperCamelCase :List[str] = '''-'''
UpperCamelCase :List[Any] = back_pointer[goal]
while x != start:
((UpperCamelCase) , (UpperCamelCase)) :List[str] = x
# print(x)
UpperCamelCase :int = '''-'''
UpperCamelCase :Optional[int] = back_pointer[x]
UpperCamelCase :Optional[Any] = '''-'''
for i in range(SCREAMING_SNAKE_CASE__ ):
for j in range(SCREAMING_SNAKE_CASE__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
UpperCamelCase :Union[str, Any] = back_pointer[goal]
while x != start:
print(SCREAMING_SNAKE_CASE__ , end=''' ''' )
UpperCamelCase :Any = back_pointer[x]
print(SCREAMING_SNAKE_CASE__ )
sys.exit()
def _A ( SCREAMING_SNAKE_CASE__ : TPos ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , ):
for itera in range(SCREAMING_SNAKE_CASE__ ):
open_list[itera].remove_element(SCREAMING_SNAKE_CASE__ )
# print("s", s)
# print("j", j)
((UpperCamelCase) , (UpperCamelCase)) :Any = s
UpperCamelCase :str = (x - 1, y)
UpperCamelCase :Optional[int] = (x + 1, y)
UpperCamelCase :str = (x, y + 1)
UpperCamelCase :Any = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(SCREAMING_SNAKE_CASE__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :int = -1
UpperCamelCase :int = float('''inf''' )
if valid(SCREAMING_SNAKE_CASE__ ) and g_function[neighbours] > g_function[s] + 1:
UpperCamelCase :str = g_function[s] + 1
UpperCamelCase :Any = s
if neighbours not in close_list_anchor:
open_list[0].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
if neighbours not in close_list_inad:
for var in range(1 , SCREAMING_SNAKE_CASE__ ):
if key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) <= Wa * key(
SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
open_list[j].put(
SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
def _A ( ):
UpperCamelCase :List[Any] = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
__snake_case = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__snake_case = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__snake_case = make_common_ground()
__snake_case = blocks_blk
# hyper parameters
__snake_case = 1
__snake_case = 1
__snake_case = 20
__snake_case = 3 # one consistent and two other inconsistent
# start and end destination
__snake_case = (0, 0)
__snake_case = (n - 1, n - 1)
__snake_case = 1
def _A ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int ):
UpperCamelCase :Any = {start: 0, goal: float('''inf''' )}
UpperCamelCase :Any = {start: -1, goal: -1}
UpperCamelCase :Tuple = []
UpperCamelCase :List[str] = set()
for i in range(SCREAMING_SNAKE_CASE__ ):
open_list.append(PriorityQueue() )
open_list[i].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
UpperCamelCase :list[int] = []
UpperCamelCase :list[int] = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , SCREAMING_SNAKE_CASE__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
UpperCamelCase , UpperCamelCase :Tuple = open_list[i].top_show()
visited.add(SCREAMING_SNAKE_CASE__ )
expand_state(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
close_list_inad.append(SCREAMING_SNAKE_CASE__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
UpperCamelCase :str = open_list[0].top_show()
visited.add(SCREAMING_SNAKE_CASE__ )
expand_state(
SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
close_list_anchor.append(SCREAMING_SNAKE_CASE__ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(SCREAMING_SNAKE_CASE__ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 259 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCAmelCase_ ( lowercase ):
"""simple docstring"""
UpperCamelCase_ : Dict ='git_vision_model'
def __init__( self , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=1e-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple:
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Optional[int] = hidden_size
UpperCamelCase :Union[str, Any] = intermediate_size
UpperCamelCase :Dict = num_hidden_layers
UpperCamelCase :int = num_attention_heads
UpperCamelCase :List[str] = num_channels
UpperCamelCase :Optional[int] = patch_size
UpperCamelCase :Optional[int] = image_size
UpperCamelCase :List[Any] = initializer_range
UpperCamelCase :Union[str, Any] = attention_dropout
UpperCamelCase :Tuple = layer_norm_eps
UpperCamelCase :Optional[Any] = hidden_act
@classmethod
def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig":
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase , UpperCamelCase :Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''' ) == "git":
UpperCamelCase :Tuple = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
class UpperCAmelCase_ ( lowercase ):
"""simple docstring"""
UpperCamelCase_ : Optional[Any] ='git'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=101 , SCREAMING_SNAKE_CASE_=102 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if vision_config is None:
UpperCamelCase :Tuple = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' )
UpperCamelCase :Union[str, Any] = GitVisionConfig(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Optional[int] = vocab_size
UpperCamelCase :Optional[Any] = hidden_size
UpperCamelCase :List[Any] = num_hidden_layers
UpperCamelCase :List[Any] = num_attention_heads
UpperCamelCase :Dict = hidden_act
UpperCamelCase :List[str] = intermediate_size
UpperCamelCase :List[str] = hidden_dropout_prob
UpperCamelCase :Optional[int] = attention_probs_dropout_prob
UpperCamelCase :Optional[Any] = max_position_embeddings
UpperCamelCase :Tuple = initializer_range
UpperCamelCase :Any = layer_norm_eps
UpperCamelCase :int = position_embedding_type
UpperCamelCase :Dict = use_cache
UpperCamelCase :Tuple = tie_word_embeddings
UpperCamelCase :Union[str, Any] = num_image_with_embedding
UpperCamelCase :Optional[int] = bos_token_id
UpperCamelCase :List[Any] = eos_token_id
def UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase :Union[str, Any] = copy.deepcopy(self.__dict__ )
UpperCamelCase :Optional[int] = self.vision_config.to_dict()
UpperCamelCase :int = self.__class__.model_type
return output
| 259 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
_A : str = DPTConfig()
if "large" in checkpoint_url:
_A : List[Any] = 1024
_A : Union[str, Any] = 4096
_A : Tuple = 24
_A : Tuple = 16
_A : int = [5, 11, 17, 23]
_A : List[str] = [256, 512, 1024, 1024]
_A : Optional[Any] = (1, 384, 384)
if "ade" in checkpoint_url:
_A : Optional[Any] = True
_A : Union[str, Any] = 150
_A : Dict = """huggingface/label-files"""
_A : Any = """ade20k-id2label.json"""
_A : Union[str, Any] = json.load(open(cached_download(hf_hub_url(snake_case_,snake_case_,repo_type="""dataset""" ) ),"""r""" ) )
_A : List[str] = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : Optional[int] = idalabel
_A : int = {v: k for k, v in idalabel.items()}
_A : int = [1, 150, 480, 480]
return config, expected_shape
def lowerCAmelCase_ ( snake_case_ ):
_A : List[str] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
_A : Dict = name.replace("""pretrained.model""","""dpt.encoder""" )
if "pretrained.model" in name:
_A : Any = name.replace("""pretrained.model""","""dpt.embeddings""" )
if "patch_embed" in name:
_A : List[Any] = name.replace("""patch_embed""","""patch_embeddings""" )
if "pos_embed" in name:
_A : str = name.replace("""pos_embed""","""position_embeddings""" )
if "attn.proj" in name:
_A : Optional[int] = name.replace("""attn.proj""","""attention.output.dense""" )
if "proj" in name and "project" not in name:
_A : int = name.replace("""proj""","""projection""" )
if "blocks" in name:
_A : str = name.replace("""blocks""","""layer""" )
if "mlp.fc1" in name:
_A : int = name.replace("""mlp.fc1""","""intermediate.dense""" )
if "mlp.fc2" in name:
_A : Any = name.replace("""mlp.fc2""","""output.dense""" )
if "norm1" in name:
_A : Tuple = name.replace("""norm1""","""layernorm_before""" )
if "norm2" in name:
_A : Optional[Any] = name.replace("""norm2""","""layernorm_after""" )
if "scratch.output_conv" in name:
_A : List[str] = name.replace("""scratch.output_conv""","""head""" )
if "scratch" in name:
_A : Dict = name.replace("""scratch""","""neck""" )
if "layer1_rn" in name:
_A : Dict = name.replace("""layer1_rn""","""convs.0""" )
if "layer2_rn" in name:
_A : List[Any] = name.replace("""layer2_rn""","""convs.1""" )
if "layer3_rn" in name:
_A : str = name.replace("""layer3_rn""","""convs.2""" )
if "layer4_rn" in name:
_A : Any = name.replace("""layer4_rn""","""convs.3""" )
if "refinenet" in name:
_A : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
_A : List[str] = name.replace(f'''refinenet{layer_idx}''',f'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
_A : Tuple = name.replace("""out_conv""","""projection""" )
if "resConfUnit1" in name:
_A : Optional[Any] = name.replace("""resConfUnit1""","""residual_layer1""" )
if "resConfUnit2" in name:
_A : List[str] = name.replace("""resConfUnit2""","""residual_layer2""" )
if "conv1" in name:
_A : Union[str, Any] = name.replace("""conv1""","""convolution1""" )
if "conv2" in name:
_A : List[Any] = name.replace("""conv2""","""convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
_A : List[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""","""neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
_A : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""","""neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
_A : Union[str, Any] = name.replace("""pretrained.act_postprocess3.0.project.0""","""neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
_A : Dict = name.replace("""pretrained.act_postprocess4.0.project.0""","""neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
_A : int = name.replace("""pretrained.act_postprocess1.3""","""neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
_A : Union[str, Any] = name.replace("""pretrained.act_postprocess1.4""","""neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
_A : str = name.replace("""pretrained.act_postprocess2.3""","""neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
_A : Any = name.replace("""pretrained.act_postprocess2.4""","""neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
_A : List[str] = name.replace("""pretrained.act_postprocess3.3""","""neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
_A : str = name.replace("""pretrained.act_postprocess4.3""","""neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
_A : List[Any] = name.replace("""pretrained.act_postprocess4.4""","""neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
_A : int = name.replace("""pretrained""","""dpt""" )
if "bn" in name:
_A : Any = name.replace("""bn""","""batch_norm""" )
if "head" in name:
_A : List[str] = name.replace("""head""","""head.head""" )
if "encoder.norm" in name:
_A : int = name.replace("""encoder.norm""","""layernorm""" )
if "auxlayer" in name:
_A : Any = name.replace("""auxlayer""","""auxiliary_head.head""" )
return name
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_A : Optional[Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
_A : Any = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_A : Optional[int] = in_proj_weight[: config.hidden_size, :]
_A : List[str] = in_proj_bias[: config.hidden_size]
_A : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_A : str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_A : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
_A : Optional[int] = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( ):
_A : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_A : Optional[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A , _A : Optional[int] = get_dpt_config(snake_case_ )
# load original state_dict from URL
_A : Tuple = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(snake_case_ )
# rename keys
for key in state_dict.copy().keys():
_A : Dict = state_dict.pop(snake_case_ )
_A : List[Any] = val
# read in qkv matrices
read_in_q_k_v(snake_case_,snake_case_ )
# load HuggingFace model
_A : Optional[int] = DPTForSemanticSegmentation(snake_case_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(snake_case_ )
model.load_state_dict(snake_case_ )
model.eval()
# Check outputs on an image
_A : Optional[Any] = 480 if """ade""" in checkpoint_url else 384
_A : str = DPTImageProcessor(size=snake_case_ )
_A : Any = prepare_img()
_A : Union[str, Any] = image_processor(snake_case_,return_tensors="""pt""" )
# forward pass
_A : List[str] = model(**snake_case_ ).logits if """ade""" in checkpoint_url else model(**snake_case_ ).predicted_depth
# Assert logits
_A : Optional[Any] = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] )
if "ade" in checkpoint_url:
_A : List[str] = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] )
assert outputs.shape == torch.Size(snake_case_ )
assert (
torch.allclose(outputs[0, 0, :3, :3],snake_case_,atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3],snake_case_ )
)
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case_ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(snake_case_,snake_case_ ),organization="""nielsr""",commit_message="""Add model""",use_temp_dir=snake_case_,)
image_processor.push_to_hub(
repo_path_or_name=Path(snake_case_,snake_case_ ),organization="""nielsr""",commit_message="""Add image processor""",use_temp_dir=snake_case_,)
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
_snake_case = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 343 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 1 |
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
lowercase__ : Optional[int] = logging.get_logger(__name__)
class _UpperCAmelCase ( _lowerCamelCase):
def __init__( self : List[str] , lowercase_ : Tuple ):
super().__init__()
snake_case_ : List[str] = nn.ModuleList(a_ )
def _snake_case ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any] = None , lowercase_ : Dict = None , lowercase_ : List[Any] = None , lowercase_ : Tuple = None , lowercase_ : int = False , lowercase_ : Tuple = True , ):
for i, (image, scale, controlnet) in enumerate(zip(a_ , a_ , self.nets ) ):
snake_case_ : List[Any] = controlnet(
a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , )
# merge samples
if i == 0:
snake_case_ : Optional[int] = down_samples, mid_sample
else:
snake_case_ : Dict = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(a_ , a_ )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def _snake_case ( self : Dict , lowercase_ : Any , lowercase_ : Any = True , lowercase_ : str = None , lowercase_ : List[str] = False , lowercase_ : List[str] = None , ):
snake_case_ : List[Any] = 0
snake_case_ : Dict = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
a_ , is_main_process=a_ , save_function=a_ , safe_serialization=a_ , variant=a_ , )
idx += 1
snake_case_ : Optional[Any] = model_path_to_save + f"_{idx}"
@classmethod
def _snake_case ( cls : Tuple , lowercase_ : str , **lowercase_ : Union[str, Any] ):
snake_case_ : str = 0
snake_case_ : Union[str, Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
snake_case_ : Optional[int] = pretrained_model_path
while os.path.isdir(a_ ):
snake_case_ : List[str] = ControlNetModel.from_pretrained(a_ , **a_ )
controlnets.append(a_ )
idx += 1
snake_case_ : Tuple = pretrained_model_path + f"_{idx}"
logger.info(f"{len(a_ )} controlnets loaded from {pretrained_model_path}." )
if len(a_ ) == 0:
raise ValueError(
f"No ControlNets found under {os.path.dirname(a_ )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(a_ )
| 264 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _snake_case ( self ) -> Any:
_UpperCAmelCase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
_UpperCAmelCase : Optional[int] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !"
_UpperCAmelCase : Dict = model(a_ )["""last_hidden_state"""]
_UpperCAmelCase : Dict = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape ,a_ )
# compare the actual values for a slice.
_UpperCAmelCase : Tuple = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,)
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
| 215 | 0 |
import os
import sys
import unittest
SCREAMING_SNAKE_CASE__ : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
SCREAMING_SNAKE_CASE__ : Any = os.path.join(git_repo_path, "src", "diffusers")
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Dict ) -> str:
__lowerCamelCase = find_backend(''' if not is_torch_available():''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch''' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__lowerCamelCase = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch_and_transformers''' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__lowerCamelCase = find_backend(
''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch_and_transformers_and_onnx''' )
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , SCREAMING_SNAKE_CASE__ )
self.assertIn('''torch_and_transformers''' , SCREAMING_SNAKE_CASE__ )
self.assertIn('''flax_and_transformers''' , SCREAMING_SNAKE_CASE__ )
self.assertIn('''torch_and_transformers_and_onnx''' , SCREAMING_SNAKE_CASE__ )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''UNet2DModel''' , objects['''torch'''] )
self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] )
self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] )
self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] )
self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] )
self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] )
def __A ( self : Tuple ) -> List[Any]:
__lowerCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , '''\nCONSTANT = None\n''' )
__lowerCamelCase = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
__lowerCamelCase = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
'''
__lowerCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
'''
__lowerCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , SCREAMING_SNAKE_CASE__ )
| 339 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} )
a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ : bool = field(
default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict:
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) )
def __magic_name__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
__lowerCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__lowerCamelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__lowerCamelCase = SeqaSeqDataset
# Get datasets
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__lowerCamelCase = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
__lowerCamelCase = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
__lowerCamelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
__lowerCamelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__lowerCamelCase = train_result.metrics
__lowerCamelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' )
__lowerCamelCase = data_args.n_val
__lowerCamelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
__lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' )
__lowerCamelCase = test_output.metrics
__lowerCamelCase = data_args.n_test
if trainer.is_world_process_zero():
__lowerCamelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
__lowerCamelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
__lowerCamelCase = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 339 | 1 |
"""simple docstring"""
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any=5 ) -> List[str]:
assert masked_input.count("""<mask>""" ) == 1
_lowerCAmelCase : Optional[int] = torch.tensor(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ).unsqueeze(0 ) # Batch size 1
_lowerCAmelCase : str = model(lowerCamelCase__ )[0] # The last hidden-state is the first element of the output tuple
_lowerCAmelCase : Optional[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
_lowerCAmelCase : str = logits[0, masked_index, :]
_lowerCAmelCase : Tuple = logits.softmax(dim=0 )
_lowerCAmelCase , _lowerCAmelCase : Any = prob.topk(k=lowerCamelCase__ ,dim=0 )
_lowerCAmelCase : str = """ """.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCamelCase__ ) )] )
_lowerCAmelCase : List[str] = tokenizer.mask_token
_lowerCAmelCase : List[str] = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ):
_lowerCAmelCase : Union[str, Any] = predicted_token_bpe.replace("""\u2581""" ,""" """ )
if " {0}".format(lowerCamelCase__ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(""" {0}""".format(lowerCamelCase__ ) ,lowerCamelCase__ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(lowerCamelCase__ ,lowerCamelCase__ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
_a : str = CamembertTokenizer.from_pretrained('camembert-base')
_a : List[str] = CamembertForMaskedLM.from_pretrained('camembert-base')
model.eval()
_a : Union[str, Any] = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 44 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
UpperCAmelCase : Optional[Any] = 16
UpperCAmelCase : Optional[Any] = 32
def __lowerCamelCase ( lowerCamelCase__ : List[str] ):
'''simple docstring'''
return int(x / 2**20 )
class __lowercase :
"""simple docstring"""
def __enter__( self ) -> Optional[Any]:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
lowerCamelCase = torch.cuda.memory_allocated()
return self
def __exit__( self , *A ) -> int:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
lowerCamelCase = torch.cuda.memory_allocated()
lowerCamelCase = torch.cuda.max_memory_allocated()
lowerCamelCase = bamb(self.end - self.begin )
lowerCamelCase = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def __lowerCamelCase ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : int = 16 , lowerCamelCase__ : str = "bert-base-cased" , lowerCamelCase__ : int = 320 , lowerCamelCase__ : int = 160 , ):
'''simple docstring'''
lowerCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase__ )
lowerCamelCase = load_dataset(
"""glue""" , """mrpc""" , split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} )
def tokenize_function(lowerCamelCase__ : str ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCamelCase = datasets.map(
lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowerCamelCase__ : Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
lowerCamelCase = DataLoader(
tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ )
lowerCamelCase = DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ )
return train_dataloader, eval_dataloader
def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ):
'''simple docstring'''
lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase = config["""lr"""]
lowerCamelCase = int(config["""num_epochs"""] )
lowerCamelCase = int(config["""seed"""] )
lowerCamelCase = int(config["""batch_size"""] )
lowerCamelCase = args.model_name_or_path
set_seed(lowerCamelCase__ )
lowerCamelCase , lowerCamelCase = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , return_dict=lowerCamelCase__ )
# Instantiate optimizer
lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowerCamelCase = optimizer_cls(params=model.parameters() , lr=lowerCamelCase__ )
if accelerator.state.deepspeed_plugin is not None:
lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
lowerCamelCase = 1
lowerCamelCase = (len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase__ , num_warmup_steps=0 , num_training_steps=lowerCamelCase__ , )
else:
lowerCamelCase = DummyScheduler(lowerCamelCase__ , total_num_steps=lowerCamelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# We need to keep track of how many total steps we have iterated over
lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
lowerCamelCase = 0
# Now we train the model
lowerCamelCase = {}
for epoch in range(lowerCamelCase__ , lowerCamelCase__ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(lowerCamelCase__ ):
lowerCamelCase = model(**lowerCamelCase__ )
lowerCamelCase = outputs.loss
lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(lowerCamelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) )
accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) )
accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) )
accelerator.print(
"""Total Peak Memory consumed during the train (max): {}""".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f:
json.dump(lowerCamelCase__ , lowerCamelCase__ )
def __lowerCamelCase ( ):
'''simple docstring'''
lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=lowerCamelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase__ , )
parser.add_argument(
"""--output_dir""" , type=lowerCamelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--peak_memory_upper_bound""" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , )
parser.add_argument(
"""--n_train""" , type=lowerCamelCase__ , default=320 , help="""Number of training examples to use.""" , )
parser.add_argument(
"""--n_val""" , type=lowerCamelCase__ , default=160 , help="""Number of validation examples to use.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowerCamelCase__ , default=1 , help="""Number of train epochs.""" , )
lowerCamelCase = parser.parse_args()
lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(lowerCamelCase__ , lowerCamelCase__ )
if __name__ == "__main__":
main()
| 252 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Dict = {
"configuration_informer": [
"INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"InformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[Any] = [
"INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"InformerForPrediction",
"InformerModel",
"InformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
lowercase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 369 |
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class a__ :
def __init__( self , A , A=2 , A=32 , A=16 , A=3 , A=True , A=True , A=32 , A=4 , A=[0, 1, 2, 3] , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=0.0_2 , A=3 , A=[1, 384, 24, 24] , A=True , A=None , ) -> Any:
'''simple docstring'''
a = parent
a = batch_size
a = image_size
a = patch_size
a = num_channels
a = is_training
a = use_labels
a = hidden_size
a = num_hidden_layers
a = backbone_out_indices
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = num_labels
a = backbone_featmap_shape
a = scope
a = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
a = (image_size // patch_size) ** 2
a = num_patches + 1
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_labels:
a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
a = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ ( self ) -> List[Any]:
'''simple docstring'''
a = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
"hidden_sizes": [96, 192, 384, 768],
"num_groups": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A , backbone_featmap_shape=self.backbone_featmap_shape , )
def lowerCAmelCase_ ( self , A , A , A ) -> str:
'''simple docstring'''
a = DPTModel(config=A )
model.to(A )
model.eval()
a = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self , A , A , A ) -> Optional[int]:
'''simple docstring'''
a = self.num_labels
a = DPTForDepthEstimation(A )
model.to(A )
model.eval()
a = model(A )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def lowerCAmelCase_ ( self , A , A , A ) -> Dict:
'''simple docstring'''
a = self.num_labels
a = DPTForSemanticSegmentation(A )
model.to(A )
model.eval()
a = model(A , labels=A )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowerCAmelCase_ ( self ) -> Optional[Any]:
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a = config_and_inputs
a = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class a__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
a : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
a : Union[str, Any] = (
{
"""depth-estimation""": DPTForDepthEstimation,
"""feature-extraction""": DPTModel,
"""image-segmentation""": DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a : Optional[int] = False
a : List[Any] = False
a : int = False
def lowerCAmelCase_ ( self ) -> Dict:
'''simple docstring'''
a = DPTModelTester(self )
a = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def lowerCAmelCase_ ( self ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="DPT does not use inputs_embeds" )
def lowerCAmelCase_ ( self ) -> int:
'''simple docstring'''
pass
def lowerCAmelCase_ ( self ) -> Optional[Any]:
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(A )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
a = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A , nn.Linear ) )
def lowerCAmelCase_ ( self ) -> int:
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(A )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["pixel_values"]
self.assertListEqual(arg_names[:1] , A )
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*A )
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
def lowerCAmelCase_ ( self ) -> Dict:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = True
if model_class in get_values(A ):
continue
a = model_class(A )
model.to(A )
model.train()
a = self._prepare_for_class(A , A , return_labels=A )
a = model(**A ).loss
loss.backward()
def lowerCAmelCase_ ( self ) -> List[str]:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = False
a = True
if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing:
continue
a = model_class(A )
model.to(A )
model.gradient_checkpointing_enable()
model.train()
a = self._prepare_for_class(A , A , return_labels=A )
a = model(**A ).loss
loss.backward()
def lowerCAmelCase_ ( self ) -> Optional[Any]:
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = _config_zero_init(A )
for model_class in self.all_model_classes:
a = model_class(config=A )
# Skip the check for the backbone
a = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
a = [F'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowerCAmelCase_ ( self ) -> List[Any]:
'''simple docstring'''
pass
@slow
def lowerCAmelCase_ ( self ) -> Tuple:
'''simple docstring'''
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
a = DPTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowerCAmelCase_ ( self ) -> int:
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = "add"
with self.assertRaises(A ):
a = DPTForDepthEstimation(A )
def SCREAMING_SNAKE_CASE ( ) -> str:
a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
@slow
class a__ ( unittest.TestCase ):
def lowerCAmelCase_ ( self ) -> List[str]:
'''simple docstring'''
a = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" )
a = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(A )
a = prepare_img()
a = image_processor(images=A , return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
a = model(**A )
a = outputs.predicted_depth
# verify the predicted depth
a = torch.Size((1, 384, 384) )
self.assertEqual(predicted_depth.shape , A )
a = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(A )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , A , atol=1e-4 ) )
| 180 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class lowerCAmelCase_ :
__lowerCamelCase : Optional[Any] = BlenderbotConfig
__lowerCamelCase : Optional[Any] = {}
__lowerCamelCase : Any = "gelu"
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=20 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , ) -> Optional[Any]:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = pad_token_id
_lowerCAmelCase = bos_token_id
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_lowerCAmelCase = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = TFBlenderbotModel(config=_lowerCAmelCase ).get_decoder()
_lowerCAmelCase = inputs_dict["input_ids"]
_lowerCAmelCase = input_ids[:1, :]
_lowerCAmelCase = inputs_dict["attention_mask"][:1, :]
_lowerCAmelCase = inputs_dict["head_mask"]
_lowerCAmelCase = 1
# first forward pass
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase )
_lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
_lowerCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-3 )
def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , ):
'''simple docstring'''
if attention_mask is None:
_lowerCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_lowerCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : str = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowerCamelCase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowerCamelCase : int = (
{
"conversational": TFBlenderbotForConditionalGeneration,
"feature-extraction": TFBlenderbotModel,
"summarization": TFBlenderbotForConditionalGeneration,
"text2text-generation": TFBlenderbotForConditionalGeneration,
"translation": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowerCamelCase : Any = True
__lowerCamelCase : int = False
__lowerCamelCase : List[Any] = False
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = TFBlenderbotModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> str:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase )
@require_tokenizers
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
__lowerCamelCase : List[Any] = ["My friends are cool but they eat too many carbs."]
__lowerCamelCase : List[str] = "facebook/blenderbot-400M-distill"
@cached_property
def _snake_case ( self ) -> Dict:
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.tokenizer(self.src_text , return_tensors="tf" )
_lowerCAmelCase = self.model.generate(
model_inputs.input_ids , )
_lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 158 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=False ):
'''simple docstring'''
_lowerCAmelCase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCAmelCase = ""
else:
_lowerCAmelCase = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
_lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_lowerCAmelCase = in_proj_weight[
: config.hidden_size, :
]
_lowerCAmelCase = in_proj_bias[: config.hidden_size]
_lowerCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
_lowerCAmelCase = in_proj_bias[-config.hidden_size :]
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = val
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ):
'''simple docstring'''
_lowerCAmelCase = ViTMSNConfig()
_lowerCAmelCase = 1000
_lowerCAmelCase = "datasets/huggingface/label-files"
_lowerCAmelCase = "imagenet-1k-id2label.json"
_lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , "r" ) )
_lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
_lowerCAmelCase = idalabel
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
_lowerCAmelCase = 384
_lowerCAmelCase = 1536
_lowerCAmelCase = 6
elif "l16" in checkpoint_url:
_lowerCAmelCase = 1024
_lowerCAmelCase = 4096
_lowerCAmelCase = 24
_lowerCAmelCase = 16
_lowerCAmelCase = 0.1
elif "b4" in checkpoint_url:
_lowerCAmelCase = 4
elif "l7" in checkpoint_url:
_lowerCAmelCase = 7
_lowerCAmelCase = 1024
_lowerCAmelCase = 4096
_lowerCAmelCase = 24
_lowerCAmelCase = 16
_lowerCAmelCase = 0.1
_lowerCAmelCase = ViTMSNModel(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["target_encoder"]
_lowerCAmelCase = ViTImageProcessor(size=config.image_size )
remove_projection_head(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
model.eval()
_lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
_lowerCAmelCase = ViTImageProcessor(
size=config.image_size , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
_lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
_lowerCAmelCase = torch.tensor([[-1.0915, -1.4876, -1.1809]] )
elif "b16" in checkpoint_url:
_lowerCAmelCase = torch.tensor([[14.2889, -18.9045, 11.7281]] )
elif "l16" in checkpoint_url:
_lowerCAmelCase = torch.tensor([[41.5028, -22.8681, 45.6475]] )
elif "b4" in checkpoint_url:
_lowerCAmelCase = torch.tensor([[-4.3868, 5.2932, -0.4137]] )
else:
_lowerCAmelCase = torch.tensor([[-0.1792, -0.6465, 2.4263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 158 | 1 |
def _a ( a :int ) -> bool:
if not isinstance(a , a ):
a = F"""Input value of [number={number}] must be an integer"""
raise TypeError(a )
if number < 0:
return False
a = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 365 |
from math import ceil, sqrt
def _a ( a :int = 1_000_000 ) -> int:
a = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
a = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f"""{solution() = }""")
| 26 | 0 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
def __init__( self : List[Any] , lowerCamelCase_ : WhisperForConditionalGeneration , lowerCamelCase_ : WhisperProcessor , lowerCamelCase_ : AutoencoderKL , lowerCamelCase_ : CLIPTextModel , lowerCamelCase_ : CLIPTokenizer , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ : StableDiffusionSafetyChecker , lowerCamelCase_ : CLIPImageProcessor , ):
"""simple docstring"""
super().__init__()
if safety_checker is None:
logger.warning(
f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
speech_model=lowerCamelCase_ , speech_processor=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[Union[str, int]] = "auto" ):
"""simple docstring"""
if slice_size == "auto":
UpperCamelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
self.enable_attention_slicing(lowerCamelCase_ )
@torch.no_grad()
def __call__( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=1_6000 , lowerCamelCase_ : int = 512 , lowerCamelCase_ : int = 512 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Any , ):
"""simple docstring"""
UpperCamelCase = self.speech_processor.feature_extractor(
lowerCamelCase_ , return_tensors="""pt""" , sampling_rate=lowerCamelCase_ ).input_features.to(self.device )
UpperCamelCase = self.speech_model.generate(lowerCamelCase_ , max_length=48_0000 )
UpperCamelCase = self.speech_processor.tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , normalize=lowerCamelCase_ )[
0
]
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
UpperCamelCase = 1
elif isinstance(lowerCamelCase_ , lowerCamelCase_ ):
UpperCamelCase = len(lowerCamelCase_ )
else:
raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_ )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or callback_steps <= 0)
):
raise ValueError(
f"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
f""" {type(lowerCamelCase_ )}.""" )
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
lowerCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
UpperCamelCase , UpperCamelCase , UpperCamelCase = text_embeddings.shape
UpperCamelCase = text_embeddings.repeat(1 , lowerCamelCase_ , 1 )
UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase_ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
UpperCamelCase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
UpperCamelCase = 42
if negative_prompt is None:
UpperCamelCase = [""""""] * batch_size
elif type(lowerCamelCase_ ) is not type(lowerCamelCase_ ):
raise TypeError(
f"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase_ )} !="""
f""" {type(lowerCamelCase_ )}.""" )
elif isinstance(lowerCamelCase_ , lowerCamelCase_ ):
UpperCamelCase = [negative_prompt]
elif batch_size != len(lowerCamelCase_ ):
raise ValueError(
f"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase_ )}, but `prompt`:"""
f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
""" the batch size of `prompt`.""" )
else:
UpperCamelCase = negative_prompt
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
lowerCamelCase_ , padding="""max_length""" , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors="""pt""" , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = uncond_embeddings.shape[1]
UpperCamelCase = uncond_embeddings.repeat(1 , lowerCamelCase_ , 1 )
UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
UpperCamelCase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
UpperCamelCase = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device="""cpu""" , dtype=lowerCamelCase_ ).to(
self.device )
else:
UpperCamelCase = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=lowerCamelCase_ )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(lowerCamelCase_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
UpperCamelCase = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
UpperCamelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCamelCase = {}
if accepts_eta:
UpperCamelCase = eta
for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ):
# expand the latents if we are doing classifier free guidance
UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCamelCase = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# predict the noise residual
UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ ).sample
# perform guidance
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 )
UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = 1 / 0.1_8_2_1_5 * latents
UpperCamelCase = self.vae.decode(lowerCamelCase_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowerCamelCase_ , nsfw_content_detected=lowerCamelCase_ )
| 343 | import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X2_0000 and cp <= 0X2_A6DF) #
or (cp >= 0X2_A700 and cp <= 0X2_B73F) #
or (cp >= 0X2_B740 and cp <= 0X2_B81F) #
or (cp >= 0X2_B820 and cp <= 0X2_CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2_F800 and cp <= 0X2_FA1F) #
): #
return True
return False
def lowercase( UpperCamelCase_ ) -> Dict:
'''simple docstring'''
# word like '180' or '身高' or '神'
for char in word:
UpperCamelCase = ord(UpperCamelCase_ )
if not _is_chinese_char(UpperCamelCase_ ):
return 0
return 1
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = set()
for token in tokens:
UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ )
if chinese_word:
word_set.add(UpperCamelCase_ )
UpperCamelCase = list(UpperCamelCase_ )
return word_list
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] )
UpperCamelCase = bert_tokens
UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ )
while start < end:
UpperCamelCase = True
if is_chinese(bert_word[start] ):
UpperCamelCase = min(end - start , UpperCamelCase_ )
for i in range(UpperCamelCase_ , 1 , -1 ):
UpperCamelCase = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCamelCase = """##""" + bert_word[j]
UpperCamelCase = start + i
UpperCamelCase = False
break
if single_word:
start += 1
return bert_word
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str:
'''simple docstring'''
UpperCamelCase = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0]
UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res]
ltp_res.extend(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
UpperCamelCase = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
UpperCamelCase = []
for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ):
UpperCamelCase = []
for id in input_ids:
UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ )
input_tokens.append(UpperCamelCase_ )
UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ )
UpperCamelCase = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(UpperCamelCase_ ):
if token[:2] == "##":
UpperCamelCase = token[2:]
# save chinese tokens' pos
if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ):
ref_id.append(UpperCamelCase_ )
ref_ids.append(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
return ref_ids
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
UpperCamelCase = f.readlines()
UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCamelCase = LTP(args.ltp ) # faster in GPU device
UpperCamelCase = BertTokenizer.from_pretrained(args.bert )
UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids]
f.writelines(UpperCamelCase_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_SCREAMING_SNAKE_CASE = parser.parse_args()
main(args)
| 343 | 1 |
import os
from collections.abc import Iterator
def __A ( __lowerCamelCase = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(__lowerCamelCase ):
a = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(__lowerCamelCase )[1] in (".py", ".ipynb"):
yield os.path.join(__lowerCamelCase , __lowerCamelCase ).lstrip("""./""" )
def __A ( __lowerCamelCase ) -> Dict:
return f'{i * " "}*' if i else "\n##"
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
a = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(__lowerCamelCase ) or old_parts[i] != new_part) and new_part:
print(f'{md_prefix(__lowerCamelCase )} {new_part.replace("_" , " " ).title()}' )
return new_path
def __A ( __lowerCamelCase = "." ) -> None:
a = """"""
for filepath in sorted(good_file_paths(__lowerCamelCase ) ):
a , a = os.path.split(__lowerCamelCase )
if filepath != old_path:
a = print_path(__lowerCamelCase , __lowerCamelCase )
a = (filepath.count(os.sep ) + 1) if filepath else 0
a = f'{filepath}/{filename}'.replace(""" """ , """%20""" )
a = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(f'{md_prefix(__lowerCamelCase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md(".")
| 347 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
UpperCAmelCase__ = ""
UpperCAmelCase__ = ""
UpperCAmelCase__ = ""
UpperCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def A ( ) -> None:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = get_dataset(_UpperCAmelCase , _UpperCAmelCase )
print('Processing...' )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = update_image_and_anno(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
for index, image in enumerate(_UpperCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_UpperCAmelCase = random_chars(32 )
_UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0]
_UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , _UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(_UpperCAmelCase )} with {file_name}" )
_UpperCAmelCase = []
for anno in new_annos[index]:
_UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(_UpperCAmelCase )
with open(F"/{file_root}.txt" , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> tuple[list, list]:
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = []
for label_file in glob.glob(os.path.join(_UpperCAmelCase , '*.txt' ) ):
_UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(_UpperCAmelCase ) as in_file:
_UpperCAmelCase = in_file.readlines()
_UpperCAmelCase = os.path.join(_UpperCAmelCase , F"{label_name}.jpg" )
_UpperCAmelCase = []
for obj_list in obj_lists:
_UpperCAmelCase = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(_UpperCAmelCase )
labels.append(_UpperCAmelCase )
return img_paths, labels
def A ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int = 1 ) -> tuple[list, list, list]:
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = []
for idx in range(len(_UpperCAmelCase ) ):
_UpperCAmelCase = []
_UpperCAmelCase = img_list[idx]
path_list.append(_UpperCAmelCase )
_UpperCAmelCase = anno_list[idx]
_UpperCAmelCase = cva.imread(_UpperCAmelCase )
if flip_type == 1:
_UpperCAmelCase = cva.flip(_UpperCAmelCase , _UpperCAmelCase )
for bbox in img_annos:
_UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
_UpperCAmelCase = cva.flip(_UpperCAmelCase , _UpperCAmelCase )
for bbox in img_annos:
_UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(_UpperCAmelCase )
new_imgs_list.append(_UpperCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def A ( _UpperCAmelCase : int = 32 ) -> str:
'''simple docstring'''
assert number_char > 1, "The number of character should greater than 1"
_UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 339 |
import sys
from collections import defaultdict
class __lowerCAmelCase :
def __init__( self : int) -> str:
"""simple docstring"""
_UpperCAmelCase = []
def _lowerCamelCase ( self : Any , A : List[str]) -> int:
"""simple docstring"""
return self.node_position[vertex]
def _lowerCamelCase ( self : Optional[Any] , A : Optional[int] , A : str) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = pos
def _lowerCamelCase ( self : Tuple , A : Tuple , A : Dict , A : List[str] , A : Optional[Any]) -> Dict:
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_UpperCAmelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_UpperCAmelCase = 2 * start + 1
else:
_UpperCAmelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
_UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child]
_UpperCAmelCase , _UpperCAmelCase = (
heap[start],
positions[start],
)
_UpperCAmelCase , _UpperCAmelCase = temp, tempa
_UpperCAmelCase = self.get_position(positions[smallest_child])
self.set_position(
positions[smallest_child] , self.get_position(positions[start]))
self.set_position(positions[start] , A)
self.top_to_bottom(A , A , A , A)
def _lowerCamelCase ( self : Optional[int] , A : str , A : Optional[Any] , A : Optional[int] , A : str) -> Any:
"""simple docstring"""
_UpperCAmelCase = position[index]
while index != 0:
_UpperCAmelCase = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2)
if val < heap[parent]:
_UpperCAmelCase = heap[parent]
_UpperCAmelCase = position[parent]
self.set_position(position[parent] , A)
else:
_UpperCAmelCase = val
_UpperCAmelCase = temp
self.set_position(A , A)
break
_UpperCAmelCase = parent
else:
_UpperCAmelCase = val
_UpperCAmelCase = temp
self.set_position(A , 0)
def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int] , A : Tuple) -> str:
"""simple docstring"""
_UpperCAmelCase = len(A) // 2 - 1
for i in range(A , -1 , -1):
self.top_to_bottom(A , A , len(A) , A)
def _lowerCamelCase ( self : Optional[int] , A : int , A : str) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = positions[0]
_UpperCAmelCase = sys.maxsize
self.top_to_bottom(A , 0 , len(A) , A)
return temp
def A ( _UpperCAmelCase : int ) -> Any:
'''simple docstring'''
_UpperCAmelCase = Heap()
_UpperCAmelCase = [0] * len(_UpperCAmelCase )
_UpperCAmelCase = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex
_UpperCAmelCase = []
for vertex in range(len(_UpperCAmelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(_UpperCAmelCase )
heap.node_position.append(_UpperCAmelCase )
_UpperCAmelCase = []
_UpperCAmelCase = 1
_UpperCAmelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_UpperCAmelCase = 0
_UpperCAmelCase = distance
heap.heapify(_UpperCAmelCase , _UpperCAmelCase )
for _ in range(1 , len(_UpperCAmelCase ) ):
_UpperCAmelCase = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_UpperCAmelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(_UpperCAmelCase )]
):
_UpperCAmelCase = distance
heap.bottom_to_top(
_UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase )
_UpperCAmelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCAmelCase__ = int(input("Enter number of edges: ").strip())
UpperCAmelCase__ = defaultdict(list)
for _ in range(edges_number):
UpperCAmelCase__ = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 339 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class _lowercase ( A_ ):
lowercase = "vit_mae"
def __init__( self : Optional[int] , snake_case : List[str]=7_6_8 , snake_case : List[str]=1_2 , snake_case : int=1_2 , snake_case : Tuple=3_0_7_2 , snake_case : str="gelu" , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=0.0 , snake_case : List[Any]=0.02 , snake_case : Optional[int]=1e-12 , snake_case : List[str]=2_2_4 , snake_case : str=1_6 , snake_case : Dict=3 , snake_case : List[Any]=True , snake_case : Dict=1_6 , snake_case : Any=5_1_2 , snake_case : Optional[int]=8 , snake_case : int=2_0_4_8 , snake_case : Any=0.75 , snake_case : str=False , **snake_case : int , ) -> str:
"""simple docstring"""
super().__init__(**snake_case__ )
UpperCamelCase_ : str = hidden_size
UpperCamelCase_ : str = num_hidden_layers
UpperCamelCase_ : Optional[Any] = num_attention_heads
UpperCamelCase_ : Optional[int] = intermediate_size
UpperCamelCase_ : Any = hidden_act
UpperCamelCase_ : Dict = hidden_dropout_prob
UpperCamelCase_ : Any = attention_probs_dropout_prob
UpperCamelCase_ : Dict = initializer_range
UpperCamelCase_ : Tuple = layer_norm_eps
UpperCamelCase_ : int = image_size
UpperCamelCase_ : Optional[int] = patch_size
UpperCamelCase_ : Dict = num_channels
UpperCamelCase_ : int = qkv_bias
UpperCamelCase_ : str = decoder_num_attention_heads
UpperCamelCase_ : Optional[int] = decoder_hidden_size
UpperCamelCase_ : List[str] = decoder_num_hidden_layers
UpperCamelCase_ : List[Any] = decoder_intermediate_size
UpperCamelCase_ : Optional[int] = mask_ratio
UpperCamelCase_ : Dict = norm_pix_loss
| 360 | a_ = [
'DownloadConfig',
'DownloadManager',
'DownloadMode',
'StreamingDownloadManager',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 50 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase = {
"""configuration_blenderbot_small""": [
"""BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlenderbotSmallConfig""",
"""BlenderbotSmallOnnxConfig""",
],
"""tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ["""BlenderbotSmallTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlenderbotSmallForCausalLM""",
"""BlenderbotSmallForConditionalGeneration""",
"""BlenderbotSmallModel""",
"""BlenderbotSmallPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""TFBlenderbotSmallForConditionalGeneration""",
"""TFBlenderbotSmallModel""",
"""TFBlenderbotSmallPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""FlaxBlenderbotSmallForConditionalGeneration""",
"""FlaxBlenderbotSmallModel""",
"""FlaxBlenderbotSmallPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 59 | import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def snake_case ( snake_case__ :int , snake_case__ :List[str] , snake_case__ :Union[str, Any]) -> str:
# Initialise PyTorch model
_A = AlbertConfig.from_json_file(snake_case__)
print(F'''Building PyTorch model from configuration: {config}''')
_A = AlbertForPreTraining(snake_case__)
# Load weights from tf checkpoint
load_tf_weights_in_albert(snake_case__ , snake_case__ , snake_case__)
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''')
torch.save(model.state_dict() , snake_case__)
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--albert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained ALBERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 180 | 0 |
"""simple docstring"""
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
__lowercase = "pytorch_model.bin"
__lowercase = "pytorch_model.bin.index.json"
__lowercase = "adapter_config.json"
__lowercase = "adapter_model.bin"
__lowercase = "adapter_model.safetensors"
__lowercase = "tf_model.h5"
__lowercase = "tf_model.h5.index.json"
__lowercase = "model.ckpt"
__lowercase = "flax_model.msgpack"
__lowercase = "flax_model.msgpack.index.json"
__lowercase = "model.safetensors"
__lowercase = "model.safetensors.index.json"
__lowercase = "config.json"
__lowercase = "preprocessor_config.json"
__lowercase = FEATURE_EXTRACTOR_NAME
__lowercase = "generation_config.json"
__lowercase = "modelcard.json"
__lowercase = "▁"
__lowercase = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
__lowercase = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
__lowercase = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
__lowercase = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowercase ( A_ )-> Optional[Any]:
'''simple docstring'''
if version.parse(A_ ) < version.parse(A_ ):
if "dev" in min_version:
a : Optional[int] = (
"""This example requires a source install from HuggingFace Transformers (see """
"""`https://huggingface.co/docs/transformers/installation#install-from-source`),"""
)
else:
a : Optional[int] = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 360 |
"""simple docstring"""
from __future__ import annotations
import queue
class _A :
"""simple docstring"""
def __init__( self : List[str] , __UpperCAmelCase : Union[str, Any]):
a : Optional[Any] = data
a : Optional[int] = None
a : Union[str, Any] = None
def lowercase ( )-> TreeNode:
'''simple docstring'''
print("\n********Press N to stop entering at any point of time********\n" )
a : int = input("Enter the value of the root node: " ).strip().lower()
a : queue.Queue = queue.Queue()
a : Tuple = TreeNode(int(A_ ) )
q.put(A_ )
while not q.empty():
a : Union[str, Any] = q.get()
a : Optional[int] = F'''Enter the left node of {node_found.data}: '''
a : Union[str, Any] = input(A_ ).strip().lower() or "n"
if check == "n":
return tree_node
a : List[str] = TreeNode(int(A_ ) )
a : Any = left_node
q.put(A_ )
a : Dict = F'''Enter the right node of {node_found.data}: '''
a : str = input(A_ ).strip().lower() or "n"
if check == "n":
return tree_node
a : Any = TreeNode(int(A_ ) )
a : str = right_node
q.put(A_ )
raise
def lowercase ( A_ )-> None:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not node:
return
print(node.data , end="," )
pre_order(node.left )
pre_order(node.right )
def lowercase ( A_ )-> None:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not node:
return
in_order(node.left )
print(node.data , end="," )
in_order(node.right )
def lowercase ( A_ )-> None:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end="," )
def lowercase ( A_ )-> None:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not node:
return
a : queue.Queue = queue.Queue()
q.put(A_ )
while not q.empty():
a : str = q.get()
print(node_dequeued.data , end="," )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase ( A_ )-> None:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not node:
return
a : queue.Queue = queue.Queue()
q.put(A_ )
while not q.empty():
a : Any = []
while not q.empty():
a : Any = q.get()
print(node_dequeued.data , end="," )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(A_ )
def lowercase ( A_ )-> None:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not node:
return
a : list[TreeNode] = []
a : int = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end="," )
stack.append(A_ )
a : Tuple = n.left
# end of while means current node doesn't have left child
a : Optional[Any] = stack.pop()
# start to traverse its right child
a : str = n.right
def lowercase ( A_ )-> None:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not node:
return
a : list[TreeNode] = []
a : Union[str, Any] = node
while n or stack:
while n:
stack.append(A_ )
a : int = n.left
a : str = stack.pop()
print(n.data , end="," )
a : Optional[int] = n.right
def lowercase ( A_ )-> None:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not node:
return
a , a : Tuple = [], []
a : Tuple = node
stacka.append(A_ )
while stacka: # to find the reversed order of post order, store it in stack2
a : Optional[Any] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(A_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end="," )
def lowercase ( A_ = "" , A_=50 , A_="*" )-> str:
'''simple docstring'''
if not s:
return "\n" + width * char
a , a : Dict = divmod(width - len(A_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
__lowercase = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 226 | 0 |
from __future__ import annotations
def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int:
"""simple docstring"""
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict:
"""simple docstring"""
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> str:
"""simple docstring"""
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 142 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict:
_A : str = parent
_A : int = batch_size
_A : Optional[int] = num_channels
_A : List[Any] = image_size
_A : int = min_resolution
_A : Optional[int] = max_resolution
_A : Any = do_resize
_A : List[str] = size if size is not None else {"""height""": 18, """width""": 20}
_A : Optional[int] = do_thumbnail
_A : str = do_align_axis
_A : List[Any] = do_pad
_A : Optional[Any] = do_normalize
_A : Tuple = image_mean
_A : List[str] = image_std
def a__ ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DonutImageProcessor if is_vision_available() else None
def a__ ( self ) -> Optional[int]:
_A : List[str] = DonutImageProcessingTester(self )
@property
def a__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
self.assertTrue(hasattr(_a , """do_thumbnail""" ) )
self.assertTrue(hasattr(_a , """do_align_long_axis""" ) )
self.assertTrue(hasattr(_a , """do_pad""" ) )
self.assertTrue(hasattr(_a , """do_normalize""" ) )
self.assertTrue(hasattr(_a , """image_mean""" ) )
self.assertTrue(hasattr(_a , """image_std""" ) )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
_A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
_A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def a__ ( self ) -> Union[str, Any]:
pass
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Dict:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 26 | 0 |
"""simple docstring"""
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 359 | """simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(snake_case_ )
class snake_case__ ( snake_case_ ):
def __init__( self , *lowerCamelCase , **lowerCamelCase ):
super().__init__(*lowerCamelCase , **lowerCamelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def a__ ( self , lowerCamelCase=None ):
__a = {}
if top_k is not None:
__a = top_k
return {}, {}, postprocess_params
def __call__( self , lowerCamelCase , **lowerCamelCase ):
return super().__call__(lowerCamelCase , **lowerCamelCase )
def a__ ( self , lowerCamelCase ):
__a = load_image(lowerCamelCase )
__a = self.image_processor(images=lowerCamelCase , return_tensors=self.framework )
return model_inputs
def a__ ( self , lowerCamelCase ):
__a = self.model(**lowerCamelCase )
return model_outputs
def a__ ( self , lowerCamelCase , lowerCamelCase=5 ):
if top_k > self.model.config.num_labels:
__a = self.model.config.num_labels
if self.framework == "pt":
__a = model_outputs.logits.softmax(-1 )[0]
__a , __a = probs.topk(lowerCamelCase )
elif self.framework == "tf":
__a = stable_softmax(model_outputs.logits , axis=-1 )[0]
__a = tf.math.top_k(lowerCamelCase , k=lowerCamelCase )
__a , __a = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
__a = scores.tolist()
__a = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
| 268 | 0 |
"""simple docstring"""
import os
from collections.abc import Iterator
def _a ( _SCREAMING_SNAKE_CASE = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ):
snake_case_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"):
yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip("""./""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
return f"""{i * " "}*""" if i else "\n##"
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part:
print(f"""{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}""" )
return new_path
def _a ( _SCREAMING_SNAKE_CASE = "." ) -> None:
snake_case_ = """"""
for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ):
snake_case_ , snake_case_ = os.path.split(_SCREAMING_SNAKE_CASE )
if filepath != old_path:
snake_case_ = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = (filepath.count(os.sep ) + 1) if filepath else 0
snake_case_ = f"""{filepath}/{filename}""".replace(""" """ , """%20""" )
snake_case_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(f"""{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})""" )
if __name__ == "__main__":
print_directory_md('.')
| 347 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Tuple = {
'microsoft/beit-base-patch16-224-pt22k': (
'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[int] = """beit"""
def __init__( self : List[str] , UpperCAmelCase_ : List[Any]=8_192 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : List[Any]=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[Any]=1E-12 , UpperCAmelCase_ : int=224 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=[3, 5, 7, 11] , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=0.4 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : List[str] , ) ->Optional[Any]:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = use_mask_token
snake_case_ = use_absolute_position_embeddings
snake_case_ = use_relative_position_bias
snake_case_ = use_shared_relative_position_bias
snake_case_ = layer_scale_init_value
snake_case_ = drop_path_rate
snake_case_ = use_mean_pooling
# decode head attributes (semantic segmentation)
snake_case_ = out_indices
snake_case_ = pool_scales
# auxiliary head attributes (semantic segmentation)
snake_case_ = use_auxiliary_head
snake_case_ = auxiliary_loss_weight
snake_case_ = auxiliary_channels
snake_case_ = auxiliary_num_convs
snake_case_ = auxiliary_concat_input
snake_case_ = semantic_loss_ignore_index
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[Any] = version.parse("""1.11""")
@property
def lowerCAmelCase ( self : Dict ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCAmelCase ( self : Any ) ->float:
"""simple docstring"""
return 1E-4
| 347 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase ( snake_case_ , unittest.TestCase ):
UpperCamelCase : str = LDMTextToImagePipeline
UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - {
'''negative_prompt''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
'''prompt_embeds''',
}
UpperCamelCase : int = PipelineTesterMixin.required_optional_params - {
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCamelCase : int = False
def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]:
torch.manual_seed(0 )
_a : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
_a : Any = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , )
torch.manual_seed(0 )
_a : str = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
_a : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_a : Any = CLIPTextModel(UpperCAmelCase__ )
_a : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_a : List[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def _lowercase ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=0 ) -> Optional[int]:
if str(UpperCAmelCase__ ).startswith("""mps""" ):
_a : List[Any] = torch.manual_seed(UpperCAmelCase__ )
else:
_a : Optional[int] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
_a : str = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _lowercase ( self : int ) -> Union[str, Any]:
_a : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
_a : Optional[Any] = self.get_dummy_components()
_a : List[Any] = LDMTextToImagePipeline(**UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase__ )
_a : str = pipe(**UpperCAmelCase__ ).images
_a : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
_a : List[str] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : List[str] ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]:
_a : Any = torch.manual_seed(UpperCAmelCase__ )
_a : Any = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) )
_a : Dict = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ )
_a : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _lowercase ( self : Optional[int] ) -> List[str]:
_a : List[Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : str = self.get_inputs(UpperCAmelCase__ )
_a : Optional[Any] = pipe(**UpperCAmelCase__ ).images
_a : List[str] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
_a : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] )
_a : List[Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : List[str] ) -> Dict:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=torch.floataa , UpperCAmelCase__ : Optional[Any]=0 ) -> Union[str, Any]:
_a : Optional[Any] = torch.manual_seed(UpperCAmelCase__ )
_a : Tuple = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) )
_a : Tuple = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ )
_a : Any = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _lowercase ( self : int ) -> Dict:
_a : Optional[int] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : List[str] = self.get_inputs(UpperCAmelCase__ )
_a : Union[str, Any] = pipe(**UpperCAmelCase__ ).images[0]
_a : Any = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
_a : Any = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 351 |
"""simple docstring"""
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
_snake_case = logging.getLogger(__name__)
_snake_case = 'pytorch_model.bin'
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} )
UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , )
UpperCamelCase : Optional[List[str]] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} )
@dataclasses.dataclass
class UpperCamelCase :
UpperCamelCase : str = dataclasses.field(
metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} )
UpperCamelCase : Optional[str] = dataclasses.field(
default='''no''' , metadata={
'''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'''
} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={
'''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.'''
} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , )
UpperCamelCase : Optional[bool] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , )
UpperCamelCase : Optional[float] = dataclasses.field(
default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase : Optional[int] = dataclasses.field(
default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
_a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
_a : Any = int(eval_result * len(UpperCamelCase__ ) )
print(UpperCamelCase__ )
_a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ )
_a : Any = dataset.select(range(UpperCamelCase__ ) )
_a : Tuple = dataset.remove_columns(["""label""", """probability"""] )
_a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" )
_a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} )
_a : Union[str, Any] = dataset.shuffle(seed=args.seed )
_a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ )
else:
dataset.to_json(UpperCamelCase__ )
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ):
'''simple docstring'''
_a : Optional[int] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
_a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ )
_a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ )
_a : Any = STTrainingArguments(output_dir=UpperCamelCase__ )
_a : Any = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(UpperCamelCase__ ).items():
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for key, value in kwargs.items():
if hasattr(UpperCamelCase__ , UpperCamelCase__ ):
setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Sanity checks
_a : Union[str, Any] = {}
_a : Tuple = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
_a : int = args.train_file
_a : List[Any] = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
_a : Union[str, Any] = args.eval_file
for key in data_files:
_a : Optional[Any] = data_files[key].split(""".""" )[-1]
assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
_a : str = extension
else:
assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("""Creating the initial data directory for self-training...""" )
_a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format
_a : Dict = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ )
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : str = None
_a : int = None
_a : str = 0
_a : List[Any] = False
# Show the progress bar
_a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
_a : Union[str, Any] = data_dir_format(UpperCamelCase__ )
assert os.path.exists(UpperCamelCase__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
_a : str = os.path.join(UpperCamelCase__ , """stage-1""" )
_a : Tuple = {
"""accelerator""": accelerator,
"""model_name_or_path""": args.model_name_or_path,
"""cache_dir""": args.cache_dir,
"""do_train""": True,
"""train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""],
"""do_eval""": True if args.eval_file is not None else False,
"""eval_file""": data_files["""eval"""],
"""do_predict""": True,
"""infer_file""": data_files["""infer"""],
"""task_name""": args.task_name,
"""label_list""": args.label_list,
"""output_dir""": current_output_dir,
"""eval_metric""": args.eval_metric,
"""evaluation_strategy""": args.evaluation_strategy,
"""early_stopping_patience""": args.early_stopping_patience,
"""early_stopping_threshold""": args.early_stopping_threshold,
"""seed""": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
arguments_dict.update({key: value} )
_a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
_a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" )
_a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" )
# Update arguments_dict
_a : int = model_path
_a : Dict = data_files["""train"""]
_a : int = current_output_dir
_a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ )
finetune(**UpperCamelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(UpperCamelCase__ )
logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ )
_a : List[Any] = iteration
_a : int = data_dir_format(iteration + 1 )
_a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) )
_a : Union[str, Any] = config.idalabel
_a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" )
_a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" )
assert os.path.exists(UpperCamelCase__ )
with open(UpperCamelCase__ , """r""" ) as f:
_a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] )
_a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" )
assert os.path.exists(UpperCamelCase__ )
# Loading the dataset from local csv or json files.
_a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""]
_a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""]
if accelerator.is_main_process:
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(UpperCamelCase__ ):
shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
accelerator.wait_for_everyone()
_a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
_a : Any = eval_result
if best_iteration is None:
_a : Union[str, Any] = new_iteration
_a : str = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
_a : Union[str, Any] = new_iteration
_a : List[str] = new_eval_result
_a : Optional[Any] = 0
else:
if new_eval_result == best_eval_result:
_a : Tuple = new_iteration
_a : List[Any] = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
_a : Union[str, Any] = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("""Best iteration: %d""" , UpperCamelCase__ )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
else:
# Assume that the last iteration is the best
logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
| 324 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''',
'''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''',
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = "xlm-roberta-xl"
def __init__( self : str , _UpperCamelCase : Union[str, Any]=2_5_0_8_8_0 , _UpperCamelCase : List[Any]=2_5_6_0 , _UpperCamelCase : Any=3_6 , _UpperCamelCase : Dict=3_2 , _UpperCamelCase : Optional[int]=1_0_2_4_0 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Union[str, Any]=5_1_4 , _UpperCamelCase : Dict=1 , _UpperCamelCase : int=0.02 , _UpperCamelCase : List[str]=1e-05 , _UpperCamelCase : Dict=1 , _UpperCamelCase : List[str]=0 , _UpperCamelCase : str=2 , _UpperCamelCase : Dict="absolute" , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Dict=None , **_UpperCamelCase : List[Any] , ) ->Union[str, Any]:
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = hidden_act
snake_case_ = intermediate_size
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = position_embedding_type
snake_case_ = use_cache
snake_case_ = classifier_dropout
class snake_case_ ( __A ):
'''simple docstring'''
@property
def snake_case__( self : List[str] ) ->Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
snake_case_ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] ) | 8 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]:
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position
lowerCamelCase__ : Optional[Any] = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
lowerCamelCase__ : Dict = []
for position in positions:
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(_UpperCAmelCase )
return permissible_positions
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool:
return not any(elem == 0 for row in board for elem in row )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool:
if is_complete(_UpperCAmelCase ):
return True
for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ):
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position
if board[y][x] == 0:
lowerCamelCase__ : List[Any] = curr + 1
if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ):
return True
lowerCamelCase__ : Optional[Any] = 0
return False
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]:
lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )]
for i in range(_UpperCAmelCase ):
for j in range(_UpperCAmelCase ):
lowerCamelCase__ : Optional[int] = 1
if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ):
return board
lowerCamelCase__ : Optional[Any] = 0
lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}"""
raise ValueError(_UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 | 0 |
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowerCAmelCase_ ( __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: List[Any] =[False] * len(__a )
lowerCamelCase__: Union[str, Any] =[-1] * len(__a )
def dfs(__a , __a ):
lowerCamelCase__: List[Any] =True
lowerCamelCase__: int =c
for u in graph[v]:
if not visited[u]:
dfs(__a , 1 - c )
for i in range(len(__a ) ):
if not visited[i]:
dfs(__a , 0 )
for i in range(len(__a ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 350 |
from __future__ import annotations
from typing import Any
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0) ->None:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Any =row, column
lowerCamelCase__: List[str] =[[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)]
def __str__(self : Tuple) ->str:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =F"""Matrix consist of {self.row} rows and {self.column} columns\n"""
# Make string identifier
lowerCamelCase__: List[str] =0
for row_vector in self.array:
for obj in row_vector:
lowerCamelCase__: int =max(UpperCAmelCase_ , len(str(UpperCAmelCase_)))
lowerCamelCase__: Any =F"""%{max_element_length}s"""
# Make string and return
def single_line(UpperCAmelCase_ : list[float]) -> str:
nonlocal string_format_identifier
lowerCamelCase__: Tuple ="["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector)
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array)
return s
def __repr__(self : Optional[int]) ->str:
'''simple docstring'''
return str(self)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : tuple[int, int]) ->bool:
'''simple docstring'''
if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__(self : int , UpperCAmelCase_ : tuple[int, int]) ->Any:
'''simple docstring'''
assert self.validate_indicies(UpperCAmelCase_)
return self.array[loc[0]][loc[1]]
def __setitem__(self : Optional[Any] , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float) ->None:
'''simple docstring'''
assert self.validate_indicies(UpperCAmelCase_)
lowerCamelCase__: str =value
def __add__(self : Dict , UpperCAmelCase_ : Matrix) ->Matrix:
'''simple docstring'''
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
assert self.row == another.row and self.column == another.column
# Add
lowerCamelCase__: Dict =Matrix(self.row , self.column)
for r in range(self.row):
for c in range(self.column):
lowerCamelCase__: List[str] =self[r, c] + another[r, c]
return result
def __neg__(self : str) ->Matrix:
'''simple docstring'''
lowerCamelCase__: List[Any] =Matrix(self.row , self.column)
for r in range(self.row):
for c in range(self.column):
lowerCamelCase__: Union[str, Any] =-self[r, c]
return result
def __sub__(self : str , UpperCAmelCase_ : Matrix) ->Matrix:
'''simple docstring'''
return self + (-another)
def __mul__(self : List[str] , UpperCAmelCase_ : int | float | Matrix) ->Matrix:
'''simple docstring'''
if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication
lowerCamelCase__: List[Any] =Matrix(self.row , self.column)
for r in range(self.row):
for c in range(self.column):
lowerCamelCase__: Union[str, Any] =self[r, c] * another
return result
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication
assert self.column == another.row
lowerCamelCase__: Dict =Matrix(self.row , another.column)
for r in range(self.row):
for c in range(another.column):
for i in range(self.column):
result[r, c] += self[r, i] * another[i, c]
return result
else:
lowerCamelCase__: int =F"""Unsupported type given for another ({type(UpperCAmelCase_)})"""
raise TypeError(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Matrix:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =Matrix(self.column , self.row)
for r in range(self.row):
for c in range(self.column):
lowerCamelCase__: Optional[int] =self[r, c]
return result
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix) ->Any:
'''simple docstring'''
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_)
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
lowerCamelCase__: Tuple =v.transpose()
lowerCamelCase__: Optional[Any] =(v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowerCAmelCase_ ( ) -> None:
"""simple docstring"""
lowerCamelCase__: List[str] =Matrix(3 , 3 , 0 )
for i in range(3 ):
lowerCamelCase__: Union[str, Any] =1
print(F"""a^(-1) is {ainv}""" )
# u, v
lowerCamelCase__: Optional[int] =Matrix(3 , 1 , 0 )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =1, 2, -3
lowerCamelCase__: Optional[Any] =Matrix(3 , 1 , 0 )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =4, -2, 5
print(F"""u is {u}""" )
print(F"""v is {v}""" )
print(F"""uv^T is {u * v.transpose()}""" )
# Sherman Morrison
print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__a , __a )}""" )
def lowerCAmelCase_ ( ) -> None:
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 273 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
A_ :int = {
'''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''],
'''processing_trocr''': ['''TrOCRProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ :Tuple = [
'''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrOCRForCausalLM''',
'''TrOCRPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
A_ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 71 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 226 | 0 |
class A_ ( SCREAMING_SNAKE_CASE ):
pass
class A_ ( SCREAMING_SNAKE_CASE ):
pass
class A_ :
def __init__( self : Optional[int]):
__lowerCamelCase : List[str] = [
[],
[],
[],
]
def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int):
try:
if len(self.queues[priority]) >= 1_0_0:
raise OverflowError('Maximum queue size is 100')
self.queues[priority].append(SCREAMING_SNAKE_CASE__)
except IndexError:
raise ValueError('Valid priorities are 0, 1, and 2')
def lowerCAmelCase ( self : str):
for queue in self.queues:
if queue:
return queue.pop(0)
raise UnderFlowError('All queues are empty')
def __str__( self : List[str]):
return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues))
class A_ :
def __init__( self : List[str]):
__lowerCamelCase : Any = []
def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int):
if len(self.queue) == 1_0_0:
raise OverFlowError('Maximum queue size is 100')
self.queue.append(SCREAMING_SNAKE_CASE__)
def lowerCAmelCase ( self : Any):
if not self.queue:
raise UnderFlowError('The queue is empty')
else:
__lowerCamelCase : Optional[Any] = min(self.queue)
self.queue.remove(SCREAMING_SNAKE_CASE__)
return data
def __str__( self : Any):
return str(self.queue)
def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]:
__lowerCamelCase : Dict = FixedPriorityQueue()
fpq.enqueue(0 , 1_0 )
fpq.enqueue(1 , 7_0 )
fpq.enqueue(0 , 1_0_0 )
fpq.enqueue(2 , 1 )
fpq.enqueue(2 , 5 )
fpq.enqueue(1 , 7 )
fpq.enqueue(2 , 4 )
fpq.enqueue(1 , 6_4 )
fpq.enqueue(0 , 1_2_8 )
print(lowerCamelCase__ )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(lowerCamelCase__ )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]:
__lowerCamelCase : Optional[int] = ElementPriorityQueue()
epq.enqueue(1_0 )
epq.enqueue(7_0 )
epq.enqueue(1_0_0 )
epq.enqueue(1 )
epq.enqueue(5 )
epq.enqueue(7 )
epq.enqueue(4 )
epq.enqueue(6_4 )
epq.enqueue(1_2_8 )
print(lowerCamelCase__ )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(lowerCamelCase__ )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 113 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> None:
__lowerCamelCase : int = len(lowerCamelCase__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(lowerCamelCase__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCamelCase__ , lowerCamelCase__ , )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None:
__lowerCamelCase : list[list[str]] = []
depth_first_search([] , [] , [] , lowerCamelCase__ , lowerCamelCase__ )
# Print all the boards
for board in boards:
for column in board:
print(lowerCamelCase__ )
print('' )
print(len(lowerCamelCase__ ) , 'solutions were found.' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 113 | 1 |
import argparse
import os
import re
lowercase__ : int = "src/diffusers"
# Pattern that looks at the indentation in a line.
lowercase__ : int = re.compile(R"^(\s*)\S")
# Pattern that matches `"key":" and puts `key` in group 0.
lowercase__ : Union[str, Any] = re.compile(R"^\s*\"([^\"]+)\":")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowercase__ : Tuple = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]")
# Pattern that matches `"key",` and puts `key` in group 0.
lowercase__ : Optional[int] = re.compile(R"^\s*\"([^\"]+)\",\s*$")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowercase__ : Any = re.compile(R"\[([^\]]+)\]")
def lowerCamelCase__ ( _A ):
'''simple docstring'''
snake_case_ = _re_indent.search(A__ )
return "" if search is None else search.groups()[0]
def lowerCamelCase__ ( _A , _A="" , _A=None , _A=None ):
'''simple docstring'''
snake_case_ = 0
snake_case_ = code.split("\n" )
if start_prompt is not None:
while not lines[index].startswith(A__ ):
index += 1
snake_case_ = ["\n".join(lines[:index] )]
else:
snake_case_ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
snake_case_ = [lines[index]]
index += 1
while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ):
current_block.append(lines[index] )
blocks.append("\n".join(A__ ) )
if index < len(A__ ) - 1:
snake_case_ = [lines[index + 1]]
index += 1
else:
snake_case_ = []
else:
blocks.append("\n".join(A__ ) )
snake_case_ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(A__ ) > 0:
blocks.append("\n".join(A__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(A__ ):
blocks.append("\n".join(lines[index:] ) )
return blocks
def lowerCamelCase__ ( _A ):
'''simple docstring'''
def _inner(_A ):
return key(A__ ).lower().replace("_" , "" )
return _inner
def lowerCamelCase__ ( _A , _A=None ):
'''simple docstring'''
def noop(_A ):
return x
if key is None:
snake_case_ = noop
# Constants are all uppercase, they go first.
snake_case_ = [obj for obj in objects if key(A__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
snake_case_ = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()]
# Functions begin with a lowercase, they go last.
snake_case_ = [obj for obj in objects if not key(A__ )[0].isupper()]
snake_case_ = ignore_underscore(A__ )
return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ )
def lowerCamelCase__ ( _A ):
'''simple docstring'''
def _replace(_A ):
snake_case_ = match.groups()[0]
if "," not in imports:
return f"[{imports}]"
snake_case_ = [part.strip().replace("\"" , "" ) for part in imports.split("," )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
snake_case_ = keys[:-1]
return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(A__ )] ) + "]"
snake_case_ = import_statement.split("\n" )
if len(A__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
snake_case_ = 2 if lines[1].strip() == "[" else 1
snake_case_ = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
snake_case_ = sort_objects(A__ , key=lambda _A : x[1] )
snake_case_ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(A__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
snake_case_ = _re_bracket_content.sub(_replace , lines[1] )
else:
snake_case_ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
snake_case_ = keys[:-1]
snake_case_ = get_indent(lines[1] ) + ", ".join([f"\"{k}\"" for k in sort_objects(A__ )] )
return "\n".join(A__ )
else:
# Finally we have to deal with imports fitting on one line
snake_case_ = _re_bracket_content.sub(_replace , A__ )
return import_statement
def lowerCamelCase__ ( _A , _A=True ):
'''simple docstring'''
with open(A__ , "r" ) as f:
snake_case_ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
snake_case_ = split_code_in_indented_blocks(
A__ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(A__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
snake_case_ = main_blocks[block_idx]
snake_case_ = block.split("\n" )
# Get to the start of the imports.
snake_case_ = 0
while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
snake_case_ = len(A__ )
else:
line_idx += 1
if line_idx >= len(A__ ):
continue
# Ignore beginning and last line: they don't contain anything.
snake_case_ = "\n".join(block_lines[line_idx:-1] )
snake_case_ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
snake_case_ = split_code_in_indented_blocks(A__ , indent_level=A__ )
# We have two categories of import key: list or _import_structure[key].append/extend
snake_case_ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
snake_case_ = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
snake_case_ = [(i, key) for i, key in enumerate(A__ ) if key is not None]
snake_case_ = [x[0] for x in sorted(A__ , key=lambda _A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
snake_case_ = 0
snake_case_ = []
for i in range(len(A__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
snake_case_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(A__ )
count += 1
# And we put our main block back together with its first and last line.
snake_case_ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(A__ ):
if check_only:
return True
else:
print(f"Overwriting {file}." )
with open(A__ , "w" ) as f:
f.write("\n".join(A__ ) )
def lowerCamelCase__ ( _A=True ):
'''simple docstring'''
snake_case_ = []
for root, _, files in os.walk(A__ ):
if "__init__.py" in files:
snake_case_ = sort_imports(os.path.join(A__ , "__init__.py" ) , check_only=A__ )
if result:
snake_case_ = [os.path.join(A__ , "__init__.py" )]
if len(A__ ) > 0:
raise ValueError(f"Would overwrite {len(A__ )} files, run `make style`." )
if __name__ == "__main__":
lowercase__ : int = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
lowercase__ : Tuple = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 187 |
"""simple docstring"""
def snake_case ( A__ ,A__ ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
UpperCAmelCase_ : Dict = (boundary[1] - boundary[0]) / steps
UpperCAmelCase_ : Optional[int] = boundary[0]
UpperCAmelCase_ : str = boundary[1]
UpperCAmelCase_ : Tuple = make_points(A__ ,A__ ,A__ )
UpperCAmelCase_ : List[str] = 0.0
y += (h / 2.0) * f(A__ )
for i in x_i:
# print(i)
y += h * f(A__ )
y += (h / 2.0) * f(A__ )
return y
def snake_case ( A__ ,A__ ,A__ ):
UpperCAmelCase_ : Union[str, Any] = a + h
while x < (b - h):
yield x
UpperCAmelCase_ : Optional[Any] = x + h
def snake_case ( A__ ): # enter your function here
UpperCAmelCase_ : Dict = (x - 0) * (x - 0)
return y
def snake_case ( ):
UpperCAmelCase_ : Dict = 0.0 # Lower bound of integration
UpperCAmelCase_ : Optional[int] = 1.0 # Upper bound of integration
UpperCAmelCase_ : Dict = 10.0 # define number of steps or resolution
UpperCAmelCase_ : List[Any] = [a, b] # define boundary of integration
UpperCAmelCase_ : Union[str, Any] = method_a(A__ ,A__ )
print(F"""y = {y}""" )
if __name__ == "__main__":
main()
| 268 | 0 |
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _snake_case ( _snake_case : str , _snake_case : str , **_snake_case : List[Any] ):
lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_snake_case , **_snake_case )
lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_config(_snake_case )
model.save_pretrained(_snake_case )
AutoTokenizer.from_pretrained(_snake_case ).save_pretrained(_snake_case )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 362 |
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class snake_case_:
def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ):
lowerCAmelCase : Tuple = '''bilinear'''
lowerCAmelCase : List[Any] = max_size
lowerCAmelCase : Optional[int] = short_edge_length
def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = []
for img in imgs:
lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2]
# later: provide list and randomly choose index for resize
lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : int = scale * h, size
if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size:
lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = newh * scale
lowerCAmelCase : str = neww * scale
lowerCAmelCase : Union[str, Any] = int(neww + 0.5 )
lowerCAmelCase : str = int(newh + 0.5 )
if img.dtype == np.uinta:
lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ )
else:
lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowerCAmelCase : Optional[int] = nn.functional.interpolate(
UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 )
img_augs.append(UpperCamelCase_ )
return img_augs
class snake_case_:
def __init__( self : Tuple , UpperCamelCase_ : Any ):
lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT
lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY
lowerCAmelCase : int = cfg.PAD_VALUE
lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE
lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) )
lowerCAmelCase : Dict = [im.shape[-2:] for im in images]
lowerCAmelCase : Dict = [
nn.functional.pad(
UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCamelCase_ , UpperCamelCase_ )
]
return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ )
def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ):
with torch.no_grad():
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase : List[Any] = [images]
if single_image:
assert len(UpperCamelCase_ ) == 1
for i in range(len(UpperCamelCase_ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] )
lowerCAmelCase : str = self.aug(UpperCamelCase_ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images]
# now pad them to do the following operations
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _snake_case ( _snake_case : str , _snake_case : List[Any] ):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ):
assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!"
lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size
tensor[:, 0].clamp_(min=0 , max=_snake_case )
tensor[:, 1].clamp_(min=0 , max=_snake_case )
tensor[:, 2].clamp_(min=0 , max=_snake_case )
tensor[:, 3].clamp_(min=0 , max=_snake_case )
| 314 | 0 |
"""simple docstring"""
from __future__ import annotations
import pandas as pd
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : list[int] ,_lowerCamelCase : int ) -> list[int]:
_lowerCAmelCase : Tuple = [0] * no_of_processes
_lowerCAmelCase : Optional[int] = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(_lowerCamelCase ):
_lowerCAmelCase : List[Any] = burst_time[i]
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Dict = 999999999
_lowerCAmelCase : List[str] = 0
_lowerCAmelCase : int = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(_lowerCamelCase ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
_lowerCAmelCase : Optional[int] = remaining_time[j]
_lowerCAmelCase : Tuple = j
_lowerCAmelCase : Optional[Any] = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
_lowerCAmelCase : Optional[int] = remaining_time[short]
if minm == 0:
_lowerCAmelCase : str = 999999999
if remaining_time[short] == 0:
complete += 1
_lowerCAmelCase : Union[str, Any] = False
# Find finish time of current process
_lowerCAmelCase : str = increment_time + 1
# Calculate waiting time
_lowerCAmelCase : Union[str, Any] = finish_time - arrival_time[short]
_lowerCAmelCase : str = finar - burst_time[short]
if waiting_time[short] < 0:
_lowerCAmelCase : Optional[Any] = 0
# Increment time
increment_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ,_lowerCamelCase : list[int] ) -> list[int]:
_lowerCAmelCase : Dict = [0] * no_of_processes
for i in range(_lowerCamelCase ):
_lowerCAmelCase : str = burst_time[i] + waiting_time[i]
return turn_around_time
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : list[int] ,_lowerCamelCase : int ) -> None:
_lowerCAmelCase : List[Any] = 0
_lowerCAmelCase : List[str] = 0
for i in range(_lowerCamelCase ):
_lowerCAmelCase : Any = total_waiting_time + waiting_time[i]
_lowerCAmelCase : Any = total_turn_around_time + turn_around_time[i]
print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" )
print("""Average turn around time =""" ,total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print('Enter how many process you want to analyze')
_a : str = int(input())
_a : Optional[int] = [0] * no_of_processes
_a : List[Any] = [0] * no_of_processes
_a : Dict = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print('Enter the arrival time and burst time for process:--' + str(i + 1))
_a : Dict = map(int, input().split())
_a : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
_a : int = burst_time
_a : List[str] = no_of_processes
_a : int = waiting_time
_a : Any = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
_a : Optional[Any] = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
'Process',
'BurstTime',
'ArrivalTime',
'WaitingTime',
'TurnAroundTime',
],
)
# Printing the dataFrame
pd.set_option('display.max_rows', fcfs.shape[0] + 1)
print(fcfs)
| 44 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 0 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
lowerCAmelCase_ = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
lowerCAmelCase_ = {
"""allenai/led-base-16384""": 1_6384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowerCamelCase_ ( )-> Any:
_snake_case : Dict = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
_snake_case : Optional[int] = bs[:]
_snake_case : Tuple = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowerCAmelCase )
cs.append(2**8 + n )
n += 1
_snake_case : Optional[int] = [chr(lowerCAmelCase ) for n in cs]
return dict(zip(lowerCAmelCase , lowerCAmelCase ) )
def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> List[Any]:
_snake_case : Dict = set()
_snake_case : List[str] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_snake_case : str = char
return pairs
class _lowerCAmelCase ( UpperCAmelCase_ ):
'''simple docstring'''
a_ : Union[str, Any] =VOCAB_FILES_NAMES
a_ : int =PRETRAINED_VOCAB_FILES_MAP
a_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ : Dict =["""input_ids""", """attention_mask"""]
def __init__( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any]="replace" , UpperCamelCase : Optional[Any]="<s>" , UpperCamelCase : Tuple="</s>" , UpperCamelCase : List[str]="</s>" , UpperCamelCase : str="<s>" , UpperCamelCase : Optional[Any]="<unk>" , UpperCamelCase : Union[str, Any]="<pad>" , UpperCamelCase : List[Any]="<mask>" , UpperCamelCase : List[Any]=False , **UpperCamelCase : Union[str, Any] , ):
'''simple docstring'''
_snake_case : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else bos_token
_snake_case : Optional[int] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token
_snake_case : Optional[int] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else sep_token
_snake_case : int = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else cls_token
_snake_case : int = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else unk_token
_snake_case : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_snake_case : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token
super().__init__(
errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , **UpperCamelCase , )
with open(UpperCamelCase , encoding='utf-8' ) as vocab_handle:
_snake_case : Optional[int] = json.load(UpperCamelCase )
_snake_case : Dict = {v: k for k, v in self.encoder.items()}
_snake_case : Dict = errors # how to handle errors in decoding
_snake_case : int = bytes_to_unicode()
_snake_case : Any = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCamelCase , encoding='utf-8' ) as merges_handle:
_snake_case : str = merges_handle.read().split('\n' )[1:-1]
_snake_case : List[Any] = [tuple(merge.split() ) for merge in bpe_merges]
_snake_case : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
_snake_case : int = {}
_snake_case : List[str] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_snake_case : str = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return len(self.encoder )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
_snake_case : Union[str, Any] = tuple(UpperCamelCase )
_snake_case : List[Any] = get_pairs(UpperCamelCase )
if not pairs:
return token
while True:
_snake_case : Optional[Any] = min(UpperCamelCase , key=lambda UpperCamelCase : self.bpe_ranks.get(UpperCamelCase , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_snake_case , _snake_case : Any = bigram
_snake_case : List[str] = []
_snake_case : Any = 0
while i < len(UpperCamelCase ):
try:
_snake_case : Optional[int] = word.index(UpperCamelCase , UpperCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_snake_case : List[str] = j
if word[i] == first and i < len(UpperCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_snake_case : List[str] = tuple(UpperCamelCase )
_snake_case : str = new_word
if len(UpperCamelCase ) == 1:
break
else:
_snake_case : Optional[Any] = get_pairs(UpperCamelCase )
_snake_case : Tuple = ' '.join(UpperCamelCase )
_snake_case : Dict = word
return word
def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[str] ):
'''simple docstring'''
_snake_case : Tuple = []
for token in re.findall(self.pat , UpperCamelCase ):
_snake_case : int = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase ).split(' ' ) )
return bpe_tokens
def UpperCamelCase_ ( self : int , UpperCamelCase : Tuple ):
'''simple docstring'''
return self.encoder.get(UpperCamelCase , self.encoder.get(self.unk_token ) )
def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
return self.decoder.get(UpperCamelCase )
def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any ):
'''simple docstring'''
_snake_case : Optional[int] = ''.join(UpperCamelCase )
_snake_case : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(UpperCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_snake_case : Any = os.path.join(
UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_snake_case : Tuple = os.path.join(
UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(UpperCamelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase , ensure_ascii=UpperCamelCase ) + '\n' )
_snake_case : int = 0
with open(UpperCamelCase , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_snake_case : Any = token_index
writer.write(' '.join(UpperCamelCase ) + '\n' )
index += 1
return vocab_file, merge_file
def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_snake_case : Any = [self.cls_token_id]
_snake_case : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase )) + [1]
return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1]
def UpperCamelCase_ ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
_snake_case : Tuple = [self.sep_token_id]
_snake_case : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[int] = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase ) > 0 and not text[0].isspace()):
_snake_case : List[str] = ' ' + text
return (text, kwargs)
def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase : Optional[int] = None , UpperCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , ):
'''simple docstring'''
_snake_case : Optional[int] = super()._pad(
encoded_inputs=UpperCamelCase , max_length=UpperCamelCase , padding_strategy=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , )
# Load from model defaults
if return_attention_mask is None:
_snake_case : Tuple = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_snake_case : Any = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_snake_case : Optional[Any] = len(encoded_inputs['global_attention_mask'] ) != len(UpperCamelCase )
if needs_to_be_padded:
_snake_case : int = len(UpperCamelCase ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_snake_case : Union[str, Any] = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
_snake_case : Union[str, Any] = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 260 |
import qiskit
def lowerCamelCase_ ( lowerCAmelCase: int = 2 )-> qiskit.result.counts.Counts:
_snake_case : Dict = qubits
# Using Aer's simulator
_snake_case : List[str] = qiskit.Aer.get_backend('aer_simulator' )
# Creating a Quantum Circuit acting on the q register
_snake_case : Tuple = qiskit.QuantumCircuit(lowerCAmelCase , lowerCAmelCase )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1 , lowerCAmelCase ):
# Adding CX (CNOT) gate
circuit.cx(i - 1 , lowerCAmelCase )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(lowerCAmelCase ) ) , list(range(lowerCAmelCase ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
_snake_case : Any = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=10_00 )
return job.result().get_counts(lowerCAmelCase )
if __name__ == "__main__":
print(F"""Total count for various states are: {quantum_entanglement(3)}""")
| 260 | 1 |
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
lowerCamelCase_ = {
"vocab_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt",
},
"emoji_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json",
},
}
lowerCamelCase_ = {
"abeja/gpt-neox-japanese-2.7b": 20_48,
}
def __magic_name__ ( __a : Union[str, Any] , __a : List[str] ):
'''simple docstring'''
with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f:
UpperCamelCase__ = json.loads(f.read() )
UpperCamelCase__ = collections.OrderedDict()
UpperCamelCase__ = collections.OrderedDict()
UpperCamelCase__ = collections.OrderedDict()
with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f:
UpperCamelCase__ = f.readlines()
UpperCamelCase__ = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token]
for idx, b in enumerate(UpperCamelCase__ ):
UpperCamelCase__ = b
UpperCamelCase__ = idx
for wd in b:
UpperCamelCase__ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class __A( a_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ = ["""input_ids""", """attention_mask"""]
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|startoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ):
super().__init__(
unk_token=_A , pad_token=_A , bos_token=_A , eos_token=_A , do_clean_text=_A , **_A , )
if not os.path.isfile(_A ):
raise ValueError(
F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
""" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
if not os.path.isfile(_A ):
raise ValueError(
F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"
""" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
UpperCamelCase__ = do_clean_text
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = load_vocab_and_emoji(_A , _A )
UpperCamelCase__ = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def UpperCAmelCase_ (self ):
return len(self.raw_vocab )
def UpperCAmelCase_ (self ):
return dict(self.raw_vocab , **self.added_tokens_encoder )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
return self.subword_tokenizer.tokenize(_A , clean=self.do_clean_text )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
return self.vocab.get(_A , self.vocab.get(self.unk_token ) )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
return self.subword_tokenizer.convert_id_to_token(_A )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = """""".join(_A ).strip()
return out_string
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] )
if len(_A ) > self.model_max_length:
UpperCamelCase__ = input_ids[-self.model_max_length :]
return input_ids
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ):
UpperCamelCase__ = 0
if os.path.isdir(_A ):
UpperCamelCase__ = os.path.join(
_A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCamelCase__ = os.path.join(
_A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] )
else:
UpperCamelCase__ = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""]
)
UpperCamelCase__ = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""]
)
with open(_A , """w""" , encoding="""utf-8""" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
""" Please check that the vocabulary is not corrupted!""" )
UpperCamelCase__ = token_index
writer.write(""",""".join(_A ) + """\n""" )
index += 1
with open(_A , """w""" , encoding="""utf-8""" ) as writer:
json.dump(self.emoji , _A )
return vocab_file, emoji_file
class __A( a_ ):
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = vocab # same as swe
UpperCamelCase__ = ids_to_tokens # same as bpe
UpperCamelCase__ = emoji
UpperCamelCase__ = np.max([len(_A ) for w in self.vocab.keys()] )
UpperCamelCase__ = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" )
UpperCamelCase__ = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" )
UpperCamelCase__ = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" )
UpperCamelCase__ = re.compile(
r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
UpperCamelCase__ = re.compile(
r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
UpperCamelCase__ = re.compile(
r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" )
UpperCamelCase__ = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"""
UpperCamelCase__ = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"""
UpperCamelCase__ = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} )
def __len__(self ):
return len(self.ids_to_tokens )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = self.content_repattera.sub("""<URL>""" , _A )
UpperCamelCase__ = self.content_repattera.sub("""<EMAIL>""" , _A )
UpperCamelCase__ = self.content_repattera.sub("""<TEL>""" , _A )
UpperCamelCase__ = self.content_repattera.sub("""<DATE>""" , _A )
UpperCamelCase__ = self.content_repattera.sub("""<DATE>""" , _A )
UpperCamelCase__ = self.content_repattera.sub("""<PRICE>""" , _A )
UpperCamelCase__ = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
UpperCamelCase__ = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" )
return content
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ):
UpperCamelCase__ = text.replace(""" """ , """<SP>""" )
UpperCamelCase__ = text.replace(""" """ , """<SP>""" )
UpperCamelCase__ = text.replace("""\r\n""" , """<BR>""" )
UpperCamelCase__ = text.replace("""\n""" , """<BR>""" )
UpperCamelCase__ = text.replace("""\r""" , """<BR>""" )
UpperCamelCase__ = text.replace("""\t""" , """<TAB>""" )
UpperCamelCase__ = text.replace("""—""" , """ー""" )
UpperCamelCase__ = text.replace("""−""" , """ー""" )
for k, v in self.emoji["emoji"].items():
if k in text:
UpperCamelCase__ = text.replace(_A , _A )
if clean:
UpperCamelCase__ = self.clean_text(_A )
def check_simbol(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = x.encode()
if len(_A ) == 1 and len(_A ) == 2:
UpperCamelCase__ = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f)
or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3)
or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f)
or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2)
):
return True
return False
def checkuae(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = x.encode()
if len(_A ) == 1 and len(_A ) == 3:
UpperCamelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f:
return True
return False
UpperCamelCase__ = 0
UpperCamelCase__ = []
while pos < len(_A ):
UpperCamelCase__ = min(len(_A ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3
UpperCamelCase__ = [] # (token_id, token, pos)
for e in range(_A , _A , -1 ):
UpperCamelCase__ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(_A ) > 2:
UpperCamelCase__ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(_A ) > 0:
# the smallest token_id is adopted
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = sorted(_A , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )[0]
result.append(_A )
UpperCamelCase__ = e
else:
UpperCamelCase__ = pos + 1
UpperCamelCase__ = text[pos:end]
if check_simbol(_A ):
result.append("""<KIGOU>""" )
elif checkuae(_A ):
result.append("""<U2000U2BFF>""" )
else:
for i in wd.encode("""utf-8""" ):
result.append("""<|byte%d|>""" % i )
UpperCamelCase__ = end
return result
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="\n" ):
UpperCamelCase__ = []
UpperCamelCase__ = []
UpperCamelCase__ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(_A ) > 0:
words.append(bytearray(_A ).decode("""utf-8""" , errors="""replace""" ) )
UpperCamelCase__ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["""emoji_inv"""][word] )
elif word == "<SP>":
words.append(""" """ )
elif word == "<BR>":
words.append(_A )
elif word == "<TAB>":
words.append("""\t""" )
elif word == "<BLOCK>":
words.append("""▀""" )
elif word == "<KIGOU>":
words.append("""ǀ""" )
elif word == "<U2000U2BFF>":
words.append("""‖""" )
else:
words.append(_A )
if len(_A ) > 0:
words.append(bytearray(_A ).decode("""utf-8""" , errors="""replace""" ) )
UpperCamelCase__ = """""".join(_A )
return text
| 244 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
__A : Dict = logging.get_logger(__name__)
__A : str = {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json",
"allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json",
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"
),
}
class A_ (a_ ):
UpperCAmelCase__ = '''longformer'''
def __init__( self , _A = 5_1_2 , _A = 2 , _A = 1 , _A = 0 , _A = 2 , _A = 3_0_5_2_2 , _A = 7_6_8 , _A = 1_2 , _A = 1_2 , _A = 3_0_7_2 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 5_1_2 , _A = 2 , _A = 0.02 , _A = 1E-12 , _A = False , **_A , ):
'''simple docstring'''
super().__init__(pad_token_id=_A , **_A )
UpperCAmelCase = attention_window
UpperCAmelCase = sep_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = eos_token_id
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = onnx_export
class A_ (a_ ):
def __init__( self , _A , _A = "default" , _A = None ):
'''simple docstring'''
super().__init__(_A , _A , _A )
UpperCAmelCase = True
@property
def _lowercase ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''global_attention_mask''', dynamic_axis),
] )
@property
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = super().outputs
if self.task == "default":
UpperCAmelCase = {0: '''batch'''}
return outputs
@property
def _lowercase ( self ):
'''simple docstring'''
return 1E-4
@property
def _lowercase ( self ):
'''simple docstring'''
return max(super().default_onnx_opset , 1_4 )
def _lowercase ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ):
'''simple docstring'''
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor=_A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] )
# make every second token global
UpperCAmelCase = 1
return inputs
| 273 | 0 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
__snake_case =logging.get_logger(__name__)
def a_ ( lowerCamelCase : Optional[int]=None , lowerCamelCase : Optional[int]=None ):
return field(default_factory=lambda: default , metadata=lowerCAmelCase__ )
@dataclass
class UpperCAmelCase_ :
lowerCamelCase : List[str] = list_field(
default=[] , metadata={
'''help''': (
'''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'''
''' of all available models'''
)
} , )
lowerCamelCase : List[int] = list_field(
default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} )
lowerCamelCase : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , )
lowerCamelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , )
lowerCamelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , )
lowerCamelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} )
lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Use FP16 to accelerate inference.'''} )
lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Benchmark training of model'''} )
lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Verbose memory tracing'''} )
lowerCamelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , )
lowerCamelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'''
} , )
lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Trace memory line by line'''} )
lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save result to a CSV file'''} )
lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save all print statements in a log file'''} )
lowerCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to print environment information'''} )
lowerCamelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': (
'''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'''
''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'''
''' for debugging / testing and on TPU.'''
)
} , )
lowerCamelCase : str = field(
default=f"""inference_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , )
lowerCamelCase : str = field(
default=f"""inference_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , )
lowerCamelCase : str = field(
default=f"""train_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , )
lowerCamelCase : str = field(
default=f"""train_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , )
lowerCamelCase : str = field(
default=f"""env_info_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , )
lowerCamelCase : str = field(
default=f"""log_{round(time() )}.csv""" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , )
lowerCamelCase : int = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} )
lowerCamelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': (
'''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'''
''' model weights.'''
)
} , )
def __UpperCAmelCase ( self : int ) -> Any:
warnings.warn(
F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'''
' are deprecated in general and it is advised to use external Benchmarking libraries '
' to benchmark Transformer models.' , __UpperCAmelCase , )
def __UpperCAmelCase ( self : Any ) -> List[str]:
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
if len(self.models ) <= 0:
raise ValueError(
'Please make sure you provide at least one model name / model identifier, *e.g.* `--models'
' bert-base-cased` or `args.models = [\'bert-base-cased\'].' )
return self.models
@property
def __UpperCAmelCase ( self : str ) -> Optional[int]:
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('Multiprocessing is currently not possible on TPU.' )
return False
else:
return True
| 366 |
'''simple docstring'''
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase_ :
def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=9_9 , UpperCAmelCase__ : Any=3_6 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=1_0_0_0 , ) -> int:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = patch_size
lowerCAmelCase = text_seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = coordinate_size
lowerCAmelCase = shape_size
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
lowerCAmelCase = text_seq_length
lowerCAmelCase = (image_size // patch_size) ** 2 + 1
lowerCAmelCase = self.text_seq_length + self.image_seq_length
def __UpperCAmelCase ( self : str ) -> Dict:
lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase = bbox[i, j, 3]
lowerCAmelCase = bbox[i, j, 1]
lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase = bbox[i, j, 2]
lowerCAmelCase = bbox[i, j, 0]
lowerCAmelCase = t
lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
lowerCAmelCase = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> str:
lowerCAmelCase = LayoutLMvaModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
# text + image
lowerCAmelCase = model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ )
lowerCAmelCase = model(
UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )
lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )
lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
lowerCAmelCase = model(UpperCAmelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
lowerCAmelCase = model(pixel_values=UpperCAmelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]:
lowerCAmelCase = self.num_labels
lowerCAmelCase = LayoutLMvaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowerCAmelCase = model(
UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]:
lowerCAmelCase = self.num_labels
lowerCAmelCase = LayoutLMvaForTokenClassification(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowerCAmelCase = model(
UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]:
lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowerCAmelCase = model(
UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self : Tuple ) -> Any:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ):
lowerCamelCase : List[str] = False
lowerCamelCase : Tuple = False
lowerCamelCase : int = False
lowerCamelCase : Optional[int] = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str:
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
lowerCAmelCase = LayoutLMvaModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 )
def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=False ) -> Optional[int]:
lowerCAmelCase = copy.deepcopy(UpperCAmelCase__ )
if model_class in get_values(UpperCAmelCase__ ):
lowerCAmelCase = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(UpperCAmelCase__ ):
lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ )
elif model_class in get_values(UpperCAmelCase__ ):
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ )
elif model_class in [
*get_values(UpperCAmelCase__ ),
]:
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ )
elif model_class in [
*get_values(UpperCAmelCase__ ),
]:
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , )
return inputs_dict
def __UpperCAmelCase ( self : Tuple ) -> Any:
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Dict ) -> List[Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def __UpperCAmelCase ( self : str ) -> Union[str, Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ )
def __UpperCAmelCase ( self : Any ) -> Dict:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ )
@slow
def __UpperCAmelCase ( self : Any ) -> Any:
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = LayoutLMvaModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
def a_ ( ):
lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
@cached_property
def __UpperCAmelCase ( self : int ) -> str:
return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None
@slow
def __UpperCAmelCase ( self : int ) -> Any:
lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ )
lowerCAmelCase = self.default_image_processor
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ )
lowerCAmelCase = torch.tensor([[1, 2]] )
lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
lowerCAmelCase = model(
input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , )
# verify the logits
lowerCAmelCase = torch.Size((1, 1_9_9, 7_6_8) )
self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ )
lowerCAmelCase = torch.tensor(
[[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCAmelCase__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
| 55 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__UpperCamelCase = {
'''configuration_rag''': ['''RagConfig'''],
'''retrieval_rag''': ['''RagRetriever'''],
'''tokenization_rag''': ['''RagTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
'''RagModel''',
'''RagPreTrainedModel''',
'''RagSequenceForGeneration''',
'''RagTokenForGeneration''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
'''TFRagModel''',
'''TFRagPreTrainedModel''',
'''TFRagSequenceForGeneration''',
'''TFRagTokenForGeneration''',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 113 |
"""simple docstring"""
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__UpperCamelCase = [
'''cross_validation.py''',
'''gradient_accumulation.py''',
'''local_sgd.py''',
'''multi_process_metrics.py''',
'''memory.py''',
'''automatic_gradient_accumulation.py''',
'''fsdp_with_peak_mem_tracking.py''',
'''deepspeed_with_config_support.py''',
'''megatron_lm_gpt_pretraining.py''',
]
class lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> int:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'by_feature' ) )
SCREAMING_SNAKE_CASE = os.path.abspath('examples' )
for item in os.listdir(lowerCAmelCase__ ):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ) and ".py" in item_path:
with self.subTest(
tested_script=lowerCAmelCase__ , feature_script=lowerCAmelCase__ , tested_section='main()' if parser_only else 'training_function()' , ):
SCREAMING_SNAKE_CASE = compare_against_test(
os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = '\n'.join(lowerCAmelCase__ )
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE = diff.replace(lowerCAmelCase__ , '' )
self.assertEqual(lowerCAmelCase__ , '' )
def __A ( self ) -> Optional[int]:
self.one_complete_example('complete_nlp_example.py' , lowerCAmelCase__ )
self.one_complete_example('complete_nlp_example.py' , lowerCAmelCase__ )
def __A ( self ) -> Optional[int]:
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) )
SCREAMING_SNAKE_CASE = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.one_complete_example('complete_cv_example.py' , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} )
class lowerCAmelCase ( lowerCamelCase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = False
@classmethod
def __A ( cls ) -> List[str]:
super().setUpClass()
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , 'default_config.yml' )
write_basic_config(save_location=cls.configPath )
SCREAMING_SNAKE_CASE = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def __A ( cls ) -> Dict:
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def __A ( self ) -> int:
SCREAMING_SNAKE_CASE = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) )
def __A ( self ) -> List[Any]:
SCREAMING_SNAKE_CASE = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) )
def __A ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
self.assertNotIn('epoch 0:' , lowerCAmelCase__ )
self.assertIn('epoch 1:' , lowerCAmelCase__ )
def __A ( self ) -> int:
SCREAMING_SNAKE_CASE = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , lowerCAmelCase__ )
self.assertIn('epoch 1:' , lowerCAmelCase__ )
else:
self.assertIn('epoch 0:' , lowerCAmelCase__ )
self.assertIn('epoch 1:' , lowerCAmelCase__ )
@slow
def __A ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ):
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = re.findall('({.+})' , lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = [r for r in results if 'accuracy' in r][-1]
SCREAMING_SNAKE_CASE = ast.literal_eval(lowerCAmelCase__ )
self.assertGreaterEqual(results['accuracy'] , 0.75 )
def __A ( self ) -> str:
SCREAMING_SNAKE_CASE = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )
def __A ( self ) -> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , 'tracking' ) ) )
def __A ( self ) -> Dict:
SCREAMING_SNAKE_CASE = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs )
def __A ( self ) -> List[Any]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs )
| 113 | 1 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) ) | 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 329 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=False , A=True , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
UpperCAmelCase : List[Any] = parent
UpperCAmelCase : Optional[Any] = batch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : Union[str, Any] = image_size
UpperCAmelCase : int = min_resolution
UpperCAmelCase : int = max_resolution
UpperCAmelCase : str = do_resize
UpperCAmelCase : Tuple = size if size is not None else {"""height""": 18, """width""": 20}
UpperCAmelCase : int = do_thumbnail
UpperCAmelCase : List[Any] = do_align_axis
UpperCAmelCase : Tuple = do_pad
UpperCAmelCase : Union[str, Any] = do_normalize
UpperCAmelCase : Any = image_mean
UpperCAmelCase : str = image_std
def _lowercase( self ) -> int:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class UpperCamelCase_ ( A__ , unittest.TestCase ):
lowercase = DonutImageProcessor if is_vision_available() else None
def _lowercase( self ) -> Tuple:
UpperCAmelCase : int = DonutImageProcessingTester(self )
@property
def _lowercase( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """size""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_thumbnail""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_align_long_axis""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_pad""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def _lowercase( self ) -> List[str]:
pass
@is_flaky()
def _lowercase( self ) -> Dict:
# Initialize image_processing
UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
UpperCAmelCase : str = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def _lowercase( self ) -> str:
# Initialize image_processing
UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
UpperCAmelCase : Optional[int] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def _lowercase( self ) -> List[Any]:
# Initialize image_processing
UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
UpperCAmelCase : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 265 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self : str ) -> Dict:
SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp()
# fmt: off
SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
SCREAMING_SNAKE_CASE__ = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowerCamelCase , __lowerCamelCase )
def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]:
return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def lowercase_ ( self : str ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self : List[Any] ) -> Tuple:
SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase_ ( self : Optional[int] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def lowercase_ ( self : Any ) -> int:
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def lowercase_ ( self : List[Any] ) -> List[str]:
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' )
SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase_ ( self : Tuple ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = '''lower newer'''
SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase_ ( self : Optional[int] ) -> List[Any]:
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = '''lower newer'''
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__lowerCamelCase ):
processor()
def lowercase_ ( self : Union[str, Any] ) -> int:
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowercase_ ( self : Union[str, Any] ) -> str:
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = '''lower newer'''
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 314 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
_lowerCAmelCase = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _SCREAMING_SNAKE_CASE ( lowerCamelCase_ ):
__SCREAMING_SNAKE_CASE :List[Any] = ["""pixel_values"""]
def __init__( self : Union[str, Any] , a__ : List[Any] = True , a__ : Tuple = None , a__ : str = PILImageResampling.BICUBIC , a__ : Optional[Any] = True , a__ : Union[str, Any] = None , a__ : Union[str, Any] = True , a__ : Dict = 1 / 255 , a__ : List[str] = True , a__ : Any = None , a__ : Union[str, Any] = None , a__ : Tuple = True , **a__ : str , ):
super().__init__(**lowerCAmelCase__ )
__magic_name__ = size if size is not None else {'''shortest_edge''': 224}
__magic_name__ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
__magic_name__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
__magic_name__ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name='''crop_size''' )
__magic_name__ = do_resize
__magic_name__ = size
__magic_name__ = resample
__magic_name__ = do_center_crop
__magic_name__ = crop_size
__magic_name__ = do_rescale
__magic_name__ = rescale_factor
__magic_name__ = do_normalize
__magic_name__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__magic_name__ = image_std if image_std is not None else OPENAI_CLIP_STD
__magic_name__ = do_convert_rgb
def snake_case__ ( self : int , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Optional[int] = PILImageResampling.BICUBIC , a__ : Union[str, Any] = None , **a__ : Dict , ):
__magic_name__ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__magic_name__ = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , a__ : Optional[int] , a__ : Any , a__ : Any = None , **a__ : Any , ):
__magic_name__ = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[str] , a__ : Union[str, Any] , a__ : Optional[int] , a__ : Dict = None , **a__ : Tuple , ):
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , a__ : Optional[Any] , a__ : Tuple , a__ : str , a__ : Dict = None , **a__ : Tuple , ):
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : int , a__ : int , a__ : Optional[int] = None , a__ : List[Any] = None , a__ : List[Any] = None , a__ : int = None , a__ : Tuple = None , a__ : Optional[int] = None , a__ : Dict = None , a__ : List[str] = None , a__ : Any = None , a__ : List[Any] = None , a__ : Any = None , a__ : str = None , a__ : int = ChannelDimension.FIRST , **a__ : Tuple , ):
__magic_name__ = do_resize if do_resize is not None else self.do_resize
__magic_name__ = size if size is not None else self.size
__magic_name__ = get_size_dict(lowerCAmelCase__ , param_name='''size''' , default_to_square=lowerCAmelCase__ )
__magic_name__ = resample if resample is not None else self.resample
__magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop
__magic_name__ = crop_size if crop_size is not None else self.crop_size
__magic_name__ = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' , default_to_square=lowerCAmelCase__ )
__magic_name__ = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ = do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ = image_mean if image_mean is not None else self.image_mean
__magic_name__ = image_std if image_std is not None else self.image_std
__magic_name__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__magic_name__ = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__magic_name__ = [convert_to_rgb(lowerCAmelCase__ ) for image in images]
# All transformations expect numpy arrays.
__magic_name__ = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
__magic_name__ = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
__magic_name__ = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
__magic_name__ = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
__magic_name__ = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
__magic_name__ = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
__magic_name__ = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
| 366 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _SCREAMING_SNAKE_CASE :
def __init__( self : str , a__ : Union[str, Any] , a__ : Dict=13 , a__ : List[str]=32 , a__ : List[Any]=2 , a__ : List[str]=3 , a__ : Union[str, Any]=16 , a__ : Dict=[1, 2, 1] , a__ : Optional[Any]=[2, 2, 4] , a__ : List[str]=2 , a__ : Optional[Any]=2.0 , a__ : Union[str, Any]=True , a__ : int=0.0 , a__ : int=0.0 , a__ : Tuple=0.1 , a__ : List[str]="gelu" , a__ : str=False , a__ : Optional[int]=True , a__ : List[Any]=0.02 , a__ : Any=1E-5 , a__ : int=True , a__ : List[Any]=None , a__ : Dict=True , a__ : Optional[int]=10 , a__ : Any=8 , ):
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = image_size
__magic_name__ = patch_size
__magic_name__ = num_channels
__magic_name__ = embed_dim
__magic_name__ = depths
__magic_name__ = num_heads
__magic_name__ = window_size
__magic_name__ = mlp_ratio
__magic_name__ = qkv_bias
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = drop_path_rate
__magic_name__ = hidden_act
__magic_name__ = use_absolute_embeddings
__magic_name__ = patch_norm
__magic_name__ = layer_norm_eps
__magic_name__ = initializer_range
__magic_name__ = is_training
__magic_name__ = scope
__magic_name__ = use_labels
__magic_name__ = type_sequence_label_size
__magic_name__ = encoder_stride
def snake_case__ ( self : List[Any] ):
__magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Optional[int] ):
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def snake_case__ ( self : Optional[int] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Optional[int] ):
__magic_name__ = SwinvaModel(config=a__ )
model.to(a__ )
model.eval()
__magic_name__ = model(a__ )
__magic_name__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def snake_case__ ( self : Optional[Any] , a__ : Optional[Any] , a__ : str , a__ : int ):
__magic_name__ = SwinvaForMaskedImageModeling(config=a__ )
model.to(a__ )
model.eval()
__magic_name__ = model(a__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ = 1
__magic_name__ = SwinvaForMaskedImageModeling(a__ )
model.to(a__ )
model.eval()
__magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def snake_case__ ( self : List[str] , a__ : List[str] , a__ : List[Any] , a__ : Any ):
__magic_name__ = self.type_sequence_label_size
__magic_name__ = SwinvaForImageClassification(a__ )
model.to(a__ )
model.eval()
__magic_name__ = model(a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : Optional[Any] ):
__magic_name__ = self.prepare_config_and_inputs()
__magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs
__magic_name__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __a ,__a ,unittest.TestCase ):
__SCREAMING_SNAKE_CASE :int = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE :Tuple = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE :Union[str, Any] = False
__SCREAMING_SNAKE_CASE :List[Any] = False
__SCREAMING_SNAKE_CASE :Dict = False
__SCREAMING_SNAKE_CASE :Union[str, Any] = False
def snake_case__ ( self : str ):
__magic_name__ = SwinvaModelTester(self )
__magic_name__ = ConfigTester(self , config_class=a__ , embed_dim=37 )
def snake_case__ ( self : Tuple ):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case__ ( self : List[Any] ):
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
@unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' )
def snake_case__ ( self : str ):
pass
@unittest.skip(reason='''Swinv2 does not use inputs_embeds''' )
def snake_case__ ( self : Union[str, Any] ):
pass
def snake_case__ ( self : Optional[int] ):
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(a__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a__ , nn.Linear ) )
def snake_case__ ( self : Union[str, Any] ):
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(a__ )
__magic_name__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ = [*signature.parameters.keys()]
__magic_name__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a__ )
def snake_case__ ( self : int ):
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = True
for model_class in self.all_model_classes:
__magic_name__ = True
__magic_name__ = False
__magic_name__ = True
__magic_name__ = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
__magic_name__ = model(**self._prepare_for_class(a__ , a__ ) )
__magic_name__ = outputs.attentions
__magic_name__ = len(self.model_tester.depths )
self.assertEqual(len(a__ ) , a__ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__magic_name__ = True
__magic_name__ = config.window_size**2
__magic_name__ = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
__magic_name__ = model(**self._prepare_for_class(a__ , a__ ) )
__magic_name__ = outputs.attentions
self.assertEqual(len(a__ ) , a__ )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__magic_name__ = len(a__ )
# Check attention is always last and order is fine
__magic_name__ = True
__magic_name__ = True
__magic_name__ = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
__magic_name__ = model(**self._prepare_for_class(a__ , a__ ) )
if hasattr(self.model_tester , '''num_hidden_states_types''' ):
__magic_name__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__magic_name__ = 2
self.assertEqual(out_len + added_hidden_states , len(a__ ) )
__magic_name__ = outputs.attentions
self.assertEqual(len(a__ ) , a__ )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def snake_case__ ( self : Any , a__ : Dict , a__ : str , a__ : str , a__ : List[Any] ):
__magic_name__ = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
__magic_name__ = model(**self._prepare_for_class(a__ , a__ ) )
__magic_name__ = outputs.hidden_states
__magic_name__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(a__ ) , a__ )
# Swinv2 has a different seq_length
__magic_name__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__magic_name__ = outputs.reshaped_hidden_states
self.assertEqual(len(a__ ) , a__ )
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = reshaped_hidden_states[0].shape
__magic_name__ = (
reshaped_hidden_states[0].view(a__ , a__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def snake_case__ ( self : List[Any] ):
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__magic_name__ = True
self.check_hidden_states_output(a__ , a__ , a__ , a__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ = True
self.check_hidden_states_output(a__ , a__ , a__ , a__ )
def snake_case__ ( self : Optional[Any] ):
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = 3
__magic_name__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__magic_name__ = True
self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ = True
self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) )
def snake_case__ ( self : str ):
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*a__ )
def snake_case__ ( self : Dict ):
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a__ )
@slow
def snake_case__ ( self : Any ):
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ = SwinvaModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
def snake_case__ ( self : List[str] ):
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = _config_zero_init(a__ )
for model_class in self.all_model_classes:
__magic_name__ = model_class(config=a__ )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def snake_case__ ( self : Optional[Any] ):
return (
AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' )
if is_vision_available()
else None
)
@slow
def snake_case__ ( self : Optional[int] ):
__magic_name__ = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to(
a__ )
__magic_name__ = self.default_image_processor
__magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__magic_name__ = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ )
# forward pass
with torch.no_grad():
__magic_name__ = model(**a__ )
# verify the logits
__magic_name__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , a__ )
__magic_name__ = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(a__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
| 98 | 0 |
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
def merge(_SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_SCREAMING_SNAKE_CASE ) <= 1:
return collection
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : int = input("Enter numbers separated by a comma:\n").strip()
__A : Any = [int(item) for item in user_input.split(",")]
print(*merge_sort(unsorted), sep=",")
| 260 |
"""simple docstring"""
import random
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
_UpperCAmelCase = a[left_index]
_UpperCAmelCase = left_index + 1
for j in range(left_index + 1 , _SCREAMING_SNAKE_CASE ):
if a[j] < pivot:
_UpperCAmelCase , _UpperCAmelCase = a[i], a[j]
i += 1
_UpperCAmelCase , _UpperCAmelCase = a[i - 1], a[left_index]
return i - 1
def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
if left < right:
_UpperCAmelCase = random.randint(_SCREAMING_SNAKE_CASE , right - 1 )
_UpperCAmelCase , _UpperCAmelCase = (
a[left],
a[pivot],
) # switches the pivot with the left most bound
_UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
quick_sort_random(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point
quick_sort_random(
_SCREAMING_SNAKE_CASE , pivot_index + 1 , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = input('''Enter numbers separated by a comma:\n''' ).strip()
_UpperCAmelCase = [int(_SCREAMING_SNAKE_CASE ) for item in user_input.split(''',''' )]
quick_sort_random(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) )
print(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 260 | 1 |
'''simple docstring'''
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
a__ : Tuple = 2
class UpperCAmelCase__ :
def __init__( self , *, # begin keyword-only arguments
lowercase="<s>" , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase=None , ) -> List[str]:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = bos, unk, pad, eos
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = {}
__UpperCamelCase = self.add_symbol(lowercase )
__UpperCamelCase = self.add_symbol(lowercase )
__UpperCamelCase = self.add_symbol(lowercase )
__UpperCamelCase = self.add_symbol(lowercase )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(lowercase )
__UpperCamelCase = len(self.symbols )
def __eq__( self , lowercase ) -> Optional[int]:
return self.indices == other.indices
def __getitem__( self , lowercase ) -> int:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self ) -> List[str]:
return len(self.symbols )
def __contains__( self , lowercase ) -> Union[str, Any]:
return sym in self.indices
@classmethod
def __lowerCamelCase ( cls , lowercase ) -> str:
__UpperCamelCase = cls()
d.add_from_file(lowercase )
return d
def __lowerCamelCase ( self , lowercase , lowercase=1 , lowercase=False ) -> Any:
if word in self.indices and not overwrite:
__UpperCamelCase = self.indices[word]
__UpperCamelCase = self.count[idx] + n
return idx
else:
__UpperCamelCase = len(self.symbols )
__UpperCamelCase = idx
self.symbols.append(lowercase )
self.count.append(lowercase )
return idx
def __lowerCamelCase ( self , lowercase ) -> Union[str, Any]:
return 0
def __lowerCamelCase ( self , lowercase ) -> List[str]:
if isinstance(lowercase , lowercase ):
try:
with open(lowercase , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowercase )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(lowercase ) )
return
__UpperCamelCase = f.readlines()
__UpperCamelCase = self._load_meta(lowercase )
for line in lines[indices_start_line:]:
try:
__UpperCamelCase , __UpperCamelCase = line.rstrip().rsplit(""" """ , 1 )
if field == "#fairseq:overwrite":
__UpperCamelCase = True
__UpperCamelCase , __UpperCamelCase = line.rsplit(""" """ , 1 )
else:
__UpperCamelCase = False
__UpperCamelCase = int(lowercase )
__UpperCamelCase = line
if word in self and not overwrite:
raise RuntimeError(
"""Duplicate word found when loading Dictionary: '{}'. """
"""Duplicate words can overwrite earlier ones by adding the """
"""#fairseq:overwrite flag at the end of the corresponding row """
"""in the dictionary file. If using the Camembert model, please """
"""download an updated copy of the model file.""".format(lowercase ) )
self.add_symbol(lowercase , n=lowercase , overwrite=lowercase )
except ValueError:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" )
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = dict((re.sub(R"""@@$""" ,"""""" ,__A ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" ,"""</w>""" ,__A ), v) for k, v in d.items() )
__UpperCamelCase = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[f"{k}</w>"]
__UpperCamelCase = d[k] # restore
return da
def _lowercase ( __A ,__A ):
'''simple docstring'''
if not os.path.exists(__A ):
raise ValueError(f"path {biogpt_checkpoint_path} does not exist!" )
os.makedirs(__A ,exist_ok=__A )
print(f"Writing results to {pytorch_dump_folder_path}" )
# handle various types of models
__UpperCamelCase = os.path.join(__A ,"""checkpoint.pt""" )
if not os.path.isfile(__A ):
raise ValueError(f"path to the file {checkpoint_file} does not exist!" )
__UpperCamelCase = torch.load(__A ,map_location="""cpu""" )
__UpperCamelCase = chkpt["""cfg"""]["""model"""]
# dicts
__UpperCamelCase = os.path.join(__A ,"""dict.txt""" )
if not os.path.isfile(__A ):
raise ValueError(f"path to the file {dict_file} does not exist!" )
__UpperCamelCase = Dictionary.load(__A )
__UpperCamelCase = rewrite_dict_keys(src_dict.indices )
__UpperCamelCase = len(__A )
__UpperCamelCase = os.path.join(__A ,VOCAB_FILES_NAMES["""vocab_file"""] )
print(f"Generating {src_vocab_file} of {src_vocab_size} records" )
with open(__A ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(__A ,ensure_ascii=__A ,indent=__A ) )
# merges_file (bpecodes)
__UpperCamelCase = os.path.join(__A ,"""bpecodes""" )
if not os.path.isfile(__A ):
raise ValueError(f"path to the file {bpecodes_file} does not exist!" )
__UpperCamelCase = os.path.join(__A ,VOCAB_FILES_NAMES["""merges_file"""] )
shutil.copyfile(__A ,__A )
# model config
__UpperCamelCase = os.path.join(__A ,"""config.json""" )
__UpperCamelCase = {
"""activation_dropout""": args["""activation_dropout"""],
"""architectures""": ["""BioGptForCausalLM"""],
"""attention_probs_dropout_prob""": args["""attention_dropout"""],
"""bos_token_id""": 0,
"""eos_token_id""": 2,
"""hidden_act""": args["""activation_fn"""],
"""hidden_dropout_prob""": args["""dropout"""],
"""hidden_size""": args["""decoder_embed_dim"""],
"""initializer_range""": 0.02,
"""intermediate_size""": args["""decoder_ffn_embed_dim"""],
"""layer_norm_eps""": 1E-12,
"""layerdrop""": args["""decoder_layerdrop"""],
"""max_position_embeddings""": args["""max_target_positions"""],
"""model_type""": """biogpt""",
"""num_attention_heads""": args["""decoder_attention_heads"""],
"""num_hidden_layers""": args["""decoder_layers"""],
"""pad_token_id""": 1,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_decoder_input_output_embed"""],
"""vocab_size""": src_vocab_size,
}
# good hparam defaults to start with
print(f"Generating {biogpt_model_config_file}" )
with open(__A ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(__A ,ensure_ascii=__A ,indent=__A ) )
# tokenizer config
__UpperCamelCase = os.path.join(__A ,__A )
__UpperCamelCase = {
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
"""model_max_length""": 1_024,
"""pad_token""": """<pad>""",
"""special_tokens_map_file""": None,
"""tokenizer_class""": """BioGptTokenizer""",
"""unk_token""": """<unk>""",
}
print(f"Generating {biogpt_tokenizer_config_file}" )
with open(__A ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(__A ,ensure_ascii=__A ,indent=__A ) )
# model
__UpperCamelCase = chkpt["""model"""]
# remove unneeded keys
__UpperCamelCase = [
"""decoder.version""",
]
for k in ignore_keys:
model_state_dict.pop(__A ,__A )
__UpperCamelCase = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith("""output_projection.weight""" ):
__UpperCamelCase = model_state_dict.pop(__A )
else:
__UpperCamelCase = model_state_dict.pop(__A )
__UpperCamelCase = BioGptConfig.from_pretrained(__A )
__UpperCamelCase = BioGptForCausalLM(__A )
# check that it loads ok
model_new.load_state_dict(__A )
# save
__UpperCamelCase = os.path.join(__A ,__A )
print(f"Generating {pytorch_weights_dump_path}" )
torch.save(__A ,__A )
print("""Conversion is done!""" )
if __name__ == "__main__":
a__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a__ : List[str] = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 371 |
'''simple docstring'''
def _lowercase ( __A ):
'''simple docstring'''
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 243 | 0 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
_lowerCamelCase : int = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Dict , *UpperCAmelCase__ : str , **UpperCAmelCase__ : int) ->None:
'''simple docstring'''
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class snake_case ( lowercase , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = BlenderbotSmallTokenizer
_lowerCamelCase = False
def snake_case ( self ):
"""simple docstring"""
super().setUp()
lowerCamelCase_ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"]
lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
lowerCamelCase_ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""]
lowerCamelCase_ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"}
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(UpperCamelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(UpperCamelCase ) )
def snake_case ( self , **UpperCamelCase ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = "adapt act apte"
lowerCamelCase_ = "adapt act apte"
return input_text, output_text
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCamelCase_ = "adapt act apte"
lowerCamelCase_ = ["adapt", "act", "ap@@", "te"]
lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
lowerCamelCase_ = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" )
assert tok("sam" ).input_ids == [1384]
lowerCamelCase_ = "I am a small frog."
lowerCamelCase_ = tok([src_text] , padding=UpperCamelCase , truncation=UpperCamelCase )["input_ids"]
lowerCamelCase_ = tok.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" )
lowerCamelCase_ = "I am a small frog ."
lowerCamelCase_ = "."
lowerCamelCase_ = tok(UpperCamelCase )["input_ids"]
lowerCamelCase_ = tok(UpperCamelCase )["input_ids"]
assert encoded[-1] == encoded_dot[0]
| 55 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
__snake_case = logging.get_logger(__name__)
def __lowerCAmelCase ( lowercase : Any ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowercase , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowercase ):
return [[videos]]
raise ValueError(F'Could not make batched video from {videos}' )
class _lowerCAmelCase ( snake_case_ ):
__UpperCAmelCase : Dict = ['''pixel_values''']
def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None:
'''simple docstring'''
super().__init__(**UpperCamelCase__ )
snake_case : int = size if size is not None else {"shortest_edge": 256}
snake_case : List[Any] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
snake_case : Dict = crop_size if crop_size is not None else {"height": 224, "width": 224}
snake_case : Optional[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size" )
snake_case : str = do_resize
snake_case : Union[str, Any] = size
snake_case : int = do_center_crop
snake_case : Optional[int] = crop_size
snake_case : Union[str, Any] = resample
snake_case : Tuple = do_rescale
snake_case : str = rescale_factor
snake_case : Tuple = offset
snake_case : int = do_normalize
snake_case : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray:
'''simple docstring'''
snake_case : Dict = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
if "shortest_edge" in size:
snake_case : Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size["shortest_edge"] , default_to_square=UpperCamelCase__ )
elif "height" in size and "width" in size:
snake_case : Optional[Any] = (size["height"], size["width"])
else:
raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray:
'''simple docstring'''
snake_case : Optional[int] = get_size_dict(UpperCamelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Any:
'''simple docstring'''
snake_case : List[str] = image.astype(np.floataa )
if offset:
snake_case : Optional[int] = image - (scale / 2)
return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
if offset and not do_rescale:
raise ValueError("For offset, do_rescale must also be set to True." )
# All transformations expect numpy arrays.
snake_case : Union[str, Any] = to_numpy_array(UpperCamelCase__ )
if do_resize:
snake_case : Union[str, Any] = self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ )
if do_center_crop:
snake_case : List[str] = self.center_crop(UpperCamelCase__ , size=UpperCamelCase__ )
if do_rescale:
snake_case : int = self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ , offset=UpperCamelCase__ )
if do_normalize:
snake_case : List[Any] = self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ )
snake_case : str = to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ )
return image
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> PIL.Image.Image:
'''simple docstring'''
snake_case : str = do_resize if do_resize is not None else self.do_resize
snake_case : Any = resample if resample is not None else self.resample
snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case : Union[str, Any] = offset if offset is not None else self.offset
snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
snake_case : Optional[Any] = image_mean if image_mean is not None else self.image_mean
snake_case : Any = image_std if image_std is not None else self.image_std
snake_case : Any = size if size is not None else self.size
snake_case : int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
snake_case : int = crop_size if crop_size is not None else self.crop_size
snake_case : Optional[int] = get_size_dict(UpperCamelCase__ , param_name="crop_size" )
if not valid_images(UpperCamelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
snake_case : List[str] = make_batched(UpperCamelCase__ )
snake_case : Dict = [
[
self._preprocess_image(
image=UpperCamelCase__ , do_resize=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , crop_size=UpperCamelCase__ , do_rescale=UpperCamelCase__ , rescale_factor=UpperCamelCase__ , offset=UpperCamelCase__ , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , data_format=UpperCamelCase__ , )
for img in video
]
for video in videos
]
snake_case : List[str] = {"pixel_values": videos}
return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
| 112 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _lowerCAmelCase :
@staticmethod
def lowerCamelCase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
__UpperCAmelCase : List[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
snake_case : List[Any] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
snake_case : int = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple:
'''simple docstring'''
snake_case : str = object_detector(examples[0] , threshold=0.0 )
snake_case : str = len(UpperCamelCase__ )
self.assertGreater(UpperCamelCase__ , 0 )
self.assertEqual(
UpperCamelCase__ , [
{
"score": ANY(UpperCamelCase__ ),
"label": ANY(UpperCamelCase__ ),
"box": {"xmin": ANY(UpperCamelCase__ ), "ymin": ANY(UpperCamelCase__ ), "xmax": ANY(UpperCamelCase__ ), "ymax": ANY(UpperCamelCase__ )},
}
for i in range(UpperCamelCase__ )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def lowerCamelCase ( self ) -> List[Any]:
'''simple docstring'''
pass
@require_torch
def lowerCamelCase ( self ) -> Tuple:
'''simple docstring'''
snake_case : Dict = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
snake_case : Optional[Any] = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , )
self.assertEqual(
nested_simplify(UpperCamelCase__ , decimals=4 ) , [
{"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}},
{"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}},
] , )
snake_case : Dict = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(UpperCamelCase__ , decimals=4 ) , [
[
{"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}},
{"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}},
]
] , )
@require_torch
@slow
def lowerCamelCase ( self ) -> str:
'''simple docstring'''
snake_case : Optional[int] = pipeline("zero-shot-object-detection" )
snake_case : Tuple = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(UpperCamelCase__ , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}},
{"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}},
] , )
snake_case : List[Any] = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(UpperCamelCase__ , decimals=4 ) , [
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}},
{"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}},
],
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}},
{"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def lowerCamelCase ( self ) -> str:
'''simple docstring'''
pass
@require_torch
@slow
def lowerCamelCase ( self ) -> List[Any]:
'''simple docstring'''
snake_case : Optional[Any] = 0.2
snake_case : List[str] = pipeline("zero-shot-object-detection" )
snake_case : List[Any] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=UpperCamelCase__ , )
self.assertEqual(
nested_simplify(UpperCamelCase__ , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}},
{"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}},
] , )
@require_torch
@slow
def lowerCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
snake_case : List[Any] = 2
snake_case : Optional[Any] = pipeline("zero-shot-object-detection" )
snake_case : Optional[int] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=UpperCamelCase__ , )
self.assertEqual(
nested_simplify(UpperCamelCase__ , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}},
{"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}},
] , )
| 112 | 1 |
import datasets
lowerCAmelCase__ :int = '''\
@InProceedings{conneau2018xnli,
author = "Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin",
title = "XNLI: Evaluating Cross-lingual Sentence Representations",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing",
year = "2018",
publisher = "Association for Computational Linguistics",
location = "Brussels, Belgium",
}
'''
lowerCAmelCase__ :Union[str, Any] = '''\
XNLI is a subset of a few thousand examples from MNLI which has been translated
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
'''
lowerCAmelCase__ :Optional[Any] = '''
Computes XNLI score which is just simple accuracy.
Args:
predictions: Predicted labels.
references: Ground truth labels.
Returns:
\'accuracy\': accuracy
Examples:
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> xnli_metric = datasets.load_metric("xnli")
>>> results = xnli_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
'''
def lowerCAmelCase__ ( a__: str , a__: Dict ) -> Any:
'''simple docstring'''
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a ( datasets.Metric ):
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}
| 329 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_pad
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
if not batched:
_UpperCAmelCase = image_inputs[0]
if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ):
_UpperCAmelCase , _UpperCAmelCase = image.size
else:
_UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCAmelCase = int(self.size['shortest_edge'] * h / w )
_UpperCAmelCase = self.size['shortest_edge']
elif w > h:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = int(self.size['shortest_edge'] * w / h )
else:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = self.size['shortest_edge']
else:
_UpperCAmelCase = []
for image in image_inputs:
_UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0]
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : str = DeformableDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DeformableDetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'image_id': 39769, 'annotations': target}
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor()
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
@slow
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target}
_UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' )
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify masks
_UpperCAmelCase = 822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
| 329 | 1 |
'''simple docstring'''
import os
def __lowerCamelCase ( __lowerCAmelCase : str = "matrix.txt" ) -> int:
with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as in_file:
snake_case = in_file.read()
snake_case = [[int(__lowerCAmelCase ) for cell in row.split(""",""" )] for row in data.strip().splitlines()]
snake_case = [[0 for cell in row] for row in grid]
snake_case = len(grid[0] )
snake_case = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )]
snake_case = grid[0][0]
for i in range(1 , __lowerCAmelCase ):
snake_case = grid[0][i] + dp[0][i - 1]
for i in range(1 , __lowerCAmelCase ):
snake_case = grid[i][0] + dp[i - 1][0]
for i in range(1 , __lowerCAmelCase ):
for j in range(1 , __lowerCAmelCase ):
snake_case = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] )
return dp[-1][-1]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""multiplicative_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""multiplicative_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 1
for i in range(0 , len(__lowerCAmelCase ) ):
total *= numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""additive_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""additive_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 0
for i in range(0 , len(__lowerCAmelCase ) ):
total += numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.