code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ (_snake_case , _snake_case ): """simple docstring""" @register_to_config def __init__( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Tuple = None ,lowercase__ : Optional[Any] = None ): super().__init__() __lowercase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowercase = torch.zeros(_UpperCamelCase ,_UpperCamelCase ) else: __lowercase = None __lowercase = torch.nn.Parameter(_UpperCamelCase ) class lowercase_ (_snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE : VQModel SCREAMING_SNAKE_CASE : CLIPTextModel SCREAMING_SNAKE_CASE : CLIPTokenizer SCREAMING_SNAKE_CASE : TransformeraDModel SCREAMING_SNAKE_CASE : LearnedClassifierFreeSamplingEmbeddings SCREAMING_SNAKE_CASE : VQDiffusionScheduler def __init__( self : Union[str, Any] ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : str ,lowercase__ : int ,): super().__init__() self.register_modules( vqvae=_UpperCamelCase ,transformer=_UpperCamelCase ,text_encoder=_UpperCamelCase ,tokenizer=_UpperCamelCase ,scheduler=_UpperCamelCase ,learned_classifier_free_sampling_embeddings=_UpperCamelCase ,) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = len(_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else 1 # get prompt text embeddings __lowercase = self.tokenizer( _UpperCamelCase ,padding='''max_length''' ,max_length=self.tokenizer.model_max_length ,return_tensors='''pt''' ,) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowercase = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=_UpperCamelCase ) # duplicate text embeddings for each generation per prompt __lowercase = prompt_embeds.repeat_interleave(_UpperCamelCase ,dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowercase = self.learned_classifier_free_sampling_embeddings.embeddings __lowercase = negative_prompt_embeds.unsqueeze(0 ).repeat(_UpperCamelCase ,1 ,1 ) else: __lowercase = [''] * batch_size __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( _UpperCamelCase ,padding='''max_length''' ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,return_tensors='''pt''' ,) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowercase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=_UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = negative_prompt_embeds.shape[1] __lowercase = negative_prompt_embeds.repeat(1 ,_UpperCamelCase ,1 ) __lowercase = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,_UpperCamelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Union[str, Any] ,lowercase__ : int ,lowercase__ : Union[str, Any] = 1_0_0 ,lowercase__ : Dict = 5.0 ,lowercase__ : Any = 1.0 ,lowercase__ : List[Any] = 1 ,lowercase__ : List[str] = None ,lowercase__ : str = None ,lowercase__ : int = "pil" ,lowercase__ : List[Any] = True ,lowercase__ : Optional[Any] = None ,lowercase__ : Optional[int] = 1 ,): if isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowercase = 1 elif isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowercase = len(_UpperCamelCase ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_UpperCamelCase )}" ) __lowercase = batch_size * num_images_per_prompt __lowercase = guidance_scale > 1.0 __lowercase = self._encode_prompt(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCamelCase ,_UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_UpperCamelCase )}." ) # get the initial completely masked latents unless the user supplied it __lowercase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowercase = self.transformer.num_vector_embeds - 1 __lowercase = torch.full(_UpperCamelCase ,_UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F" {self.transformer.num_vector_embeds - 1} (inclusive)." ) __lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_UpperCamelCase ,device=self.device ) __lowercase = self.scheduler.timesteps.to(self.device ) __lowercase = latents for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance __lowercase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowercase = self.transformer(_UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,timestep=_UpperCamelCase ).sample if do_classifier_free_guidance: __lowercase = model_output.chunk(2 ) __lowercase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_UpperCamelCase ,dim=1 ,keepdim=_UpperCamelCase ) __lowercase = self.truncate(_UpperCamelCase ,_UpperCamelCase ) # remove `log(0)`'s (`-inf`s) __lowercase = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_UpperCamelCase ,timestep=_UpperCamelCase ,sample=_UpperCamelCase ,generator=_UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) __lowercase = self.vqvae.config.vq_embed_dim __lowercase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowercase = self.vqvae.quantize.get_codebook_entry(_UpperCamelCase ,shape=_UpperCamelCase ) __lowercase = self.vqvae.decode(_UpperCamelCase ,force_not_quantize=_UpperCamelCase ).sample __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Dict ,lowercase__ : Tuple ): __lowercase = torch.sort(_UpperCamelCase ,1 ,descending=_UpperCamelCase ) __lowercase = torch.exp(_UpperCamelCase ) __lowercase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowercase = torch.full_like(keep_mask[:, 0:1, :] ,_UpperCamelCase ) __lowercase = torch.cat((all_true, keep_mask) ,dim=1 ) __lowercase = keep_mask[:, :-1, :] __lowercase = keep_mask.gather(1 ,indices.argsort(1 ) ) __lowercase = log_p_x_0.clone() __lowercase = -torch.inf # -inf = log(0) return rv
104
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = '''efficientformer''' def __init__( self , _UpperCamelCase = [3, 2, 6, 4] , _UpperCamelCase = [4_8, 9_6, 2_2_4, 4_4_8] , _UpperCamelCase = [True, True, True, True] , _UpperCamelCase = 4_4_8 , _UpperCamelCase = 3_2 , _UpperCamelCase = 4 , _UpperCamelCase = 7 , _UpperCamelCase = 5 , _UpperCamelCase = 8 , _UpperCamelCase = 4 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1_6 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 2 , _UpperCamelCase = 1 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1 , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1E-5 , _UpperCamelCase = "gelu" , _UpperCamelCase = 0.02 , _UpperCamelCase = 1E-12 , _UpperCamelCase = 2_2_4 , _UpperCamelCase = 1E-05 , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = hidden_sizes UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[Any] = depths UpperCAmelCase_ : List[Any] = mlp_expansion_ratio UpperCAmelCase_ : List[str] = downsamples UpperCAmelCase_ : List[Any] = dim UpperCAmelCase_ : Tuple = key_dim UpperCAmelCase_ : Optional[int] = attention_ratio UpperCAmelCase_ : str = resolution UpperCAmelCase_ : Dict = pool_size UpperCAmelCase_ : Union[str, Any] = downsample_patch_size UpperCAmelCase_ : List[str] = downsample_stride UpperCAmelCase_ : List[str] = downsample_pad UpperCAmelCase_ : Any = drop_path_rate UpperCAmelCase_ : Dict = num_metaad_blocks UpperCAmelCase_ : Dict = distillation UpperCAmelCase_ : int = use_layer_scale UpperCAmelCase_ : Any = layer_scale_init_value UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Dict = batch_norm_eps
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Dict = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Any: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: if latents is None: UpperCAmelCase_ : str = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase_ : Tuple = latents.to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : int = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> str: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : int = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : Optional[int] = self.image_processor(_UpperCamelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase_ : Tuple = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.image_encoder(_UpperCamelCase )['last_hidden_state'] UpperCAmelCase_ : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase_ : List[str] = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Dict = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 2_5 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 4.0 , _UpperCamelCase = 6_4 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Union[str, Any]: if isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ : Tuple = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : str = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase_ : Optional[int] = len(_UpperCamelCase ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Tuple = self._execution_device UpperCAmelCase_ : str = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : str = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ : int = self.scheduler.timesteps UpperCAmelCase_ : int = self.prior.config.num_embeddings UpperCAmelCase_ : Any = self.prior.config.embedding_dim UpperCAmelCase_ : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase_ : List[Any] = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Optional[Any] = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = [] for i, latent in enumerate(_UpperCamelCase ): print() UpperCAmelCase_ : List[str] = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) UpperCAmelCase_ : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase_ : List[str] = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int=1_3 , lowerCAmelCase__ : Optional[Any]=3_2 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Union[str, Any]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__ : Tuple=[2, 2, 3, 2] , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : int=3_7 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : List[Any]=1_0 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Union[str, Any]=["stage2", "stage3", "stage4"] , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : int=None , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : Union[str, Any] = num_stages _UpperCAmelCase : Dict = hidden_sizes _UpperCAmelCase : Union[str, Any] = depths _UpperCAmelCase : Dict = is_training _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : List[Any] = out_features _UpperCAmelCase : str = num_labels _UpperCAmelCase : Tuple = scope _UpperCAmelCase : List[Any] = num_stages def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=_UpperCamelCase , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = UperNetForSemanticSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase : int = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : List[str] = config_and_inputs _UpperCAmelCase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (UperNetForSemanticSegmentation,) if is_torch_available() else () UpperCamelCase_ : List[str] = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} UpperCamelCase_ : Tuple = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : Any = False UpperCamelCase_ : Dict = False def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = UperNetModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=3_7 ) def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(_UpperCamelCase ) _UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" pass @unittest.skip(reason="UperNet does not have a base model" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="UperNet does not have a base model" ) def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`" ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" pass def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ): _UpperCAmelCase : Tuple = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase : int = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : int = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : int = _config_zero_init(_UpperCamelCase ) _UpperCAmelCase : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="UperNet does not have tied weights" ) def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" pass @slow def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __UpperCAmelCase ( ): _UpperCAmelCase : str = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k", repo_type="dataset", filename="ADE_val_00000001.jpg" ) _UpperCAmelCase : Optional[Any] = Image.open(__snake_case ).convert("RGB" ) return image @require_torch @require_vision @slow class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) _UpperCAmelCase : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(_UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = prepare_img() _UpperCAmelCase : Optional[Any] = processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(**_UpperCamelCase ) _UpperCAmelCase : Any = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase : List[str] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) _UpperCAmelCase : str = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(_UpperCamelCase ) _UpperCAmelCase : Any = prepare_img() _UpperCAmelCase : List[str] = processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(**_UpperCamelCase ) _UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
145
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCAmelCase ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any: if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCAmelCase ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0
"""simple docstring""" from collections.abc import Sequence def __lowerCAmelCase ( lowercase : Sequence[int] | None = None ) -> Union[str, Any]: """simple docstring""" if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) snake_case : Optional[int] = nums[0] for i in range(1 , len(__snake_case ) ): snake_case : Dict = nums[i] snake_case : Optional[Any] = max(__snake_case , ans + num , __snake_case ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __snake_case = int(input("""Enter number of elements : """).strip()) __snake_case = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
203
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( _snake_case ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( _snake_case , _snake_case ): """simple docstring""" snake_case_ = True @register_to_config def __init__( self , lowerCamelCase__ = 3 , lowerCamelCase__ = 3 , lowerCamelCase__ = ("DownEncoderBlock2D",) , lowerCamelCase__ = ("UpDecoderBlock2D",) , lowerCamelCase__ = (64,) , lowerCamelCase__ = 1 , lowerCamelCase__ = "silu" , lowerCamelCase__ = 4 , lowerCamelCase__ = 32 , lowerCamelCase__ = 32 , lowerCamelCase__ = 0.1_82_15 , ) -> List[Any]: '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False ) -> List[str]: '''simple docstring''' if isinstance(_UpperCamelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowercase_ ( self , lowerCamelCase__ = True ) -> int: '''simple docstring''' __lowerCamelCase = use_tiling def lowercase_ ( self ) -> Dict: '''simple docstring''' self.enable_tiling(_UpperCamelCase ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = True def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(_UpperCamelCase , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = True ) -> AutoencoderKLOutput: '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(_UpperCamelCase ) else: __lowerCamelCase = self.encoder(_UpperCamelCase ) __lowerCamelCase = self.quant_conv(_UpperCamelCase ) __lowerCamelCase = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) __lowerCamelCase = self.post_quant_conv(_UpperCamelCase ) __lowerCamelCase = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(_UpperCamelCase ) else: __lowerCamelCase = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = True ) -> AutoencoderKLOutput: '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(_UpperCamelCase ) __lowerCamelCase = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) __lowerCamelCase = [] for i, row in enumerate(_UpperCamelCase ): __lowerCamelCase = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) __lowerCamelCase = torch.cat(_UpperCamelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(_UpperCamelCase ) __lowerCamelCase = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) __lowerCamelCase = [] for i, row in enumerate(_UpperCamelCase ): __lowerCamelCase = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) __lowerCamelCase = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=_UpperCamelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
90
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase () -> Tuple: '''simple docstring''' lowerCAmelCase = 9, 14 # noqa: F841 lowerCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCAmelCase = defaultdict(__snake_case ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCAmelCase = mst(__snake_case ) lowerCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCAmelCase = tuple(answer[:2] ) lowerCAmelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
155
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' import bza UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase_ : str = bytes(__snake_case , 'utf-8' ) with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase_ : Dict = bytes(__snake_case , 'utf-8' ) with gzip.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lza.frame.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__snake_case , 'w' ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' import lzma UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lzma.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' import zipfile UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase_ : List[str] = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict(__snake_case ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: UpperCAmelCase_ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__snake_case , 'rb' ) as f: UpperCAmelCase_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase_ : Dict = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__snake_case , 'wb' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetWriter(__snake_case , schema=__snake_case ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Optional[int] = {'data': DATA} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Tuple = {'data': DATA_DICT_OF_LISTS} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int , __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ['0', '1', '2', '3'] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['0', '1', '2', '3'] UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = ['0', '1', '2', '3'] UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename('unsupported.ext' ) ) f.write(__snake_case , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
29
0
"""simple docstring""" def _snake_case ( snake_case__ : int , snake_case__ : int ): while b: A = b, a % b return a def _snake_case ( snake_case__ : int , snake_case__ : int ): return a if b == 0 else euclidean_gcd_recursive(__snake_case , a % b ) def _snake_case ( ): print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
74
from __future__ import annotations def lowercase__ ( __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position UpperCAmelCase_ : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : Optional[Any] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase__ ( __snake_case : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase__ ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = position if board[y][x] == 0: UpperCAmelCase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True UpperCAmelCase_ : List[Any] = 0 return False def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): UpperCAmelCase_ : Optional[Any] = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[str] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Any = logging.get_logger(__name__) def _a ( UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__ : Tuple = 192 lowerCamelCase__ : str = 768 lowerCamelCase__ : List[Any] = 12 lowerCamelCase__ : Optional[int] = 3 lowerCamelCase__ : Optional[Any] = [800, 1333] lowerCamelCase__ : Dict = False elif yolos_name == "yolos_s_dWr": lowerCamelCase__ : Tuple = 330 lowerCamelCase__ : List[str] = 14 lowerCamelCase__ : Tuple = 6 lowerCamelCase__ : List[str] = 1320 elif "yolos_s" in yolos_name: lowerCamelCase__ : Any = 384 lowerCamelCase__ : Union[str, Any] = 1536 lowerCamelCase__ : List[str] = 12 lowerCamelCase__ : Any = 6 elif "yolos_b" in yolos_name: lowerCamelCase__ : Optional[int] = [800, 1344] lowerCamelCase__ : str = 91 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = 'coco-detection-id2label.json' lowerCamelCase__ : Tuple = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase__ : Optional[Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) lowerCamelCase__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Tuple = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : List[str] = in_proj_weight[-config.hidden_size :, :] lowerCamelCase__ : str = in_proj_bias[-config.hidden_size :] def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" if "backbone" in name: lowerCamelCase__ : List[str] = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: lowerCamelCase__ : List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: lowerCamelCase__ : Dict = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: lowerCamelCase__ : Optional[int] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: lowerCamelCase__ : List[str] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowerCamelCase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: lowerCamelCase__ : List[str] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowerCamelCase__ : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCamelCase__ : Dict = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCamelCase__ : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase__ : List[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase__ : List[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: lowerCamelCase__ : Any = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: lowerCamelCase__ : Dict = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: lowerCamelCase__ : Any = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def _a ( UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[str] = orig_state_dict.pop(__snake_case ) if "qkv" in key: lowerCamelCase__ : Any = key.split('''.''' ) lowerCamelCase__ : Optional[int] = int(key_split[2] ) lowerCamelCase__ : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__ : str = val[:dim, :] lowerCamelCase__ : str = val[ dim : dim * 2, : ] lowerCamelCase__ : int = val[-dim:, :] else: lowerCamelCase__ : List[Any] = val[:dim] lowerCamelCase__ : Optional[Any] = val[dim : dim * 2] lowerCamelCase__ : List[str] = val[-dim:] else: lowerCamelCase__ : List[str] = val return orig_state_dict def _a ( ) -> str: """simple docstring""" lowerCamelCase__ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Any = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : str = get_yolos_config(__snake_case ) # load original state_dict lowerCamelCase__ : Tuple = torch.load(__snake_case , map_location='''cpu''' )['model'] # load 🤗 model lowerCamelCase__ : Optional[Any] = YolosForObjectDetection(__snake_case ) model.eval() lowerCamelCase__ : List[str] = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__ : int = 800 if yolos_name != 'yolos_ti' else 512 lowerCamelCase__ : str = YolosImageProcessor(format='''coco_detection''' , size=__snake_case ) lowerCamelCase__ : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase__ : Optional[Any] = model(**__snake_case ) lowerCamelCase__ : int = outputs.logits, outputs.pred_boxes lowerCamelCase__ : Optional[Any] = None, None if yolos_name == "yolos_ti": lowerCamelCase__ : Optional[Any] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__ : Any = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase__ : Dict = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__ : str = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase__ : Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__ : int = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase__ : Optional[int] = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase__ : str = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __snake_case , atol=1E-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: lowerCamelCase__ : List[str] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('''Pushing to the hub...''' ) lowerCamelCase__ : str = model_mapping[yolos_name] image_processor.push_to_hub(__snake_case , organization='''hustvl''' ) model.push_to_hub(__snake_case , organization='''hustvl''' ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A : Union[str, Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
142
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : list[list[int]] = [[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase_ : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __UpperCAmelCase = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __UpperCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCAmelCase_ ( __snake_case ) -> Tuple: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCAmelCase_ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =np.max(_outputs , axis=-1 , keepdims=__snake_case ) _lowercase =np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__snake_case ) class lowerCamelCase__ ( _snake_case): SCREAMING_SNAKE_CASE__ = '''sigmoid''' SCREAMING_SNAKE_CASE__ = '''softmax''' SCREAMING_SNAKE_CASE__ = '''none''' @add_end_docstrings( _snake_case , r''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class lowerCamelCase__ ( _snake_case): SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = ClassificationFunction.NONE def __init__(self , **UpperCAmelCase ) -> Tuple: super().__init__(**_UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __A (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="" , **UpperCAmelCase ) -> Dict: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" _lowercase =tokenizer_kwargs _lowercase ={} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: _lowercase =self.model.config.return_all_scores if isinstance(_UpperCamelCase , _UpperCamelCase ) or top_k is None: _lowercase =top_k _lowercase =False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , _UpperCamelCase , ) if return_all_scores: _lowercase =None else: _lowercase =1 if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowercase =ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowercase =function_to_apply return preprocess_params, {}, postprocess_params def __call__(self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: _lowercase =super().__call__(*_UpperCamelCase , **_UpperCamelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowercase ='top_k' not in kwargs if isinstance(args[0] , _UpperCamelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __A (self , UpperCAmelCase , **UpperCAmelCase ) -> Dict[str, GenericTensor]: _lowercase =self.framework if isinstance(_UpperCamelCase , _UpperCamelCase ): return self.tokenizer(**_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) == 1 and isinstance(inputs[0] , _UpperCamelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_UpperCamelCase , **_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) def __A (self , UpperCAmelCase ) -> Tuple: return self.model(**_UpperCamelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=True ) -> str: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowercase =ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowercase =ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: _lowercase =self.model.config.function_to_apply else: _lowercase =ClassificationFunction.NONE _lowercase =model_outputs['logits'][0] _lowercase =outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowercase =sigmoid(_UpperCamelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowercase =softmax(_UpperCamelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowercase =outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowercase =[ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(_UpperCamelCase ) ] if not _legacy: dict_scores.sort(key=lambda UpperCAmelCase : x["score"] , reverse=_UpperCamelCase ) if top_k is not None: _lowercase =dict_scores[:top_k] return dict_scores
5
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = {}, {} if padding is not None: UpperCAmelCase_ : List[str] = padding if truncation is not None: UpperCAmelCase_ : Tuple = truncation if top_k is not None: UpperCAmelCase_ : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> int: if isinstance(_UpperCamelCase , (Image.Image, str) ) and isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'question': question} else: UpperCAmelCase_ : List[str] = image UpperCAmelCase_ : Optional[Any] = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : Dict = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=_UpperCamelCase , truncation=_UpperCamelCase ) UpperCAmelCase_ : int = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = self.model(**_UpperCamelCase ) return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=5 ) -> str: if top_k > self.model.config.num_labels: UpperCAmelCase_ : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : List[str] = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ : str = probs.topk(_UpperCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase_ : Optional[Any] = scores.tolist() UpperCAmelCase_ : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase )]
29
0
import heapq def __lowerCamelCase ( lowerCamelCase__ : dict ): '''simple docstring''' lowerCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case , [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices lowerCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowerCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowerCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : str = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
252
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 600851475143 ) -> Tuple: try: _a : Tuple =int(__snake_case ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _a : List[Any] =2 _a : str =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _a : str =i while n % i == 0: _a : List[Any] =n // i i += 1 return int(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
276
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class lowercase_ (_snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = '''retribert''' def __init__( self : List[Any] ,lowercase__ : Any=3_0_5_2_2 ,lowercase__ : Optional[Any]=7_6_8 ,lowercase__ : Optional[Any]=8 ,lowercase__ : List[Any]=1_2 ,lowercase__ : Tuple=3_0_7_2 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : int=0.1 ,lowercase__ : int=0.1 ,lowercase__ : Tuple=5_1_2 ,lowercase__ : Tuple=2 ,lowercase__ : str=0.0_2 ,lowercase__ : int=1e-1_2 ,lowercase__ : Union[str, Any]=True ,lowercase__ : str=1_2_8 ,lowercase__ : Dict=0 ,**lowercase__ : Tuple ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
104
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class _snake_case : def __init__( self ) -> Optional[int]: '''simple docstring''' snake_case_ = {} def lowerCAmelCase__ ( self , a__ , a__ , a__=1 ) -> List[Any]: '''simple docstring''' if self.graph.get(_UpperCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ = [[w, v]] if not self.graph.get(_UpperCamelCase ): snake_case_ = [] def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return list(self.graph ) def lowerCAmelCase__ ( self , a__ , a__ ) -> int: '''simple docstring''' if self.graph.get(_UpperCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_UpperCamelCase ) def lowerCAmelCase__ ( self , a__=-2 , a__=-1 ) -> Union[str, Any]: '''simple docstring''' if s == d: return [] snake_case_ = [] snake_case_ = [] if s == -2: snake_case_ = list(self.graph )[0] stack.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) snake_case_ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_UpperCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_UpperCamelCase ) != 0: snake_case_ = stack[len(_UpperCamelCase ) - 1] else: snake_case_ = ss # check if se have reached the starting point if len(_UpperCamelCase ) == 0: return visited def lowerCAmelCase__ ( self , a__=-1 ) -> Union[str, Any]: '''simple docstring''' if c == -1: snake_case_ = floor(random() * 10_000 ) + 10 for i in range(_UpperCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ = floor(random() * c ) + 1 if n != i: self.add_pair(_UpperCamelCase , _UpperCamelCase , 1 ) def lowerCAmelCase__ ( self , a__=-2 ) -> Tuple: '''simple docstring''' snake_case_ = deque() snake_case_ = [] if s == -2: snake_case_ = list(self.graph )[0] d.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) while d: snake_case_ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase__ ( self , a__ ) -> Any: '''simple docstring''' snake_case_ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCAmelCase__ ( self , a__ ) -> Dict: '''simple docstring''' return len(self.graph[u] ) def lowerCAmelCase__ ( self , a__=-2 ) -> Optional[int]: '''simple docstring''' snake_case_ = [] snake_case_ = [] if s == -2: snake_case_ = list(self.graph )[0] stack.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) snake_case_ = s snake_case_ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_UpperCamelCase ) != 0: snake_case_ = stack[len(_UpperCamelCase ) - 1] else: snake_case_ = ss # check if se have reached the starting point if len(_UpperCamelCase ) == 0: return sorted_nodes def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = list(self.graph )[0] stack.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) snake_case_ = -2 snake_case_ = [] snake_case_ = s snake_case_ = False snake_case_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ = len(_UpperCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ = True if len(_UpperCamelCase ) != 0: snake_case_ = stack[len(_UpperCamelCase ) - 1] else: snake_case_ = False indirect_parents.append(_UpperCamelCase ) snake_case_ = s snake_case_ = ss # check if se have reached the starting point if len(_UpperCamelCase ) == 0: return list(_UpperCamelCase ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = list(self.graph )[0] stack.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) snake_case_ = -2 snake_case_ = [] snake_case_ = s snake_case_ = False snake_case_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ = len(_UpperCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ = True if len(_UpperCamelCase ) != 0: snake_case_ = stack[len(_UpperCamelCase ) - 1] else: snake_case_ = False indirect_parents.append(_UpperCamelCase ) snake_case_ = s snake_case_ = ss # check if se have reached the starting point if len(_UpperCamelCase ) == 0: return False def lowerCAmelCase__ ( self , a__=-2 , a__=-1 ) -> Tuple: '''simple docstring''' snake_case_ = time() self.dfs(_UpperCamelCase , _UpperCamelCase ) snake_case_ = time() return end - begin def lowerCAmelCase__ ( self , a__=-2 ) -> int: '''simple docstring''' snake_case_ = time() self.bfs(_UpperCamelCase ) snake_case_ = time() return end - begin class _snake_case : def __init__( self ) -> str: '''simple docstring''' snake_case_ = {} def lowerCAmelCase__ ( self , a__ , a__ , a__=1 ) -> Any: '''simple docstring''' if self.graph.get(_UpperCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ = [[w, v]] # add the other way if self.graph.get(_UpperCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ = [[w, u]] def lowerCAmelCase__ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' if self.graph.get(_UpperCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_UpperCamelCase ) # the other way round if self.graph.get(_UpperCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_UpperCamelCase ) def lowerCAmelCase__ ( self , a__=-2 , a__=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] snake_case_ = [] snake_case_ = [] if s == -2: snake_case_ = list(self.graph )[0] stack.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) snake_case_ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_UpperCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_UpperCamelCase ) != 0: snake_case_ = stack[len(_UpperCamelCase ) - 1] else: snake_case_ = ss # check if se have reached the starting point if len(_UpperCamelCase ) == 0: return visited def lowerCAmelCase__ ( self , a__=-1 ) -> Any: '''simple docstring''' if c == -1: snake_case_ = floor(random() * 10_000 ) + 10 for i in range(_UpperCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ = floor(random() * c ) + 1 if n != i: self.add_pair(_UpperCamelCase , _UpperCamelCase , 1 ) def lowerCAmelCase__ ( self , a__=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ = deque() snake_case_ = [] if s == -2: snake_case_ = list(self.graph )[0] d.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) while d: snake_case_ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = list(self.graph )[0] stack.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) snake_case_ = -2 snake_case_ = [] snake_case_ = s snake_case_ = False snake_case_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ = len(_UpperCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ = True if len(_UpperCamelCase ) != 0: snake_case_ = stack[len(_UpperCamelCase ) - 1] else: snake_case_ = False indirect_parents.append(_UpperCamelCase ) snake_case_ = s snake_case_ = ss # check if se have reached the starting point if len(_UpperCamelCase ) == 0: return list(_UpperCamelCase ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = list(self.graph )[0] stack.append(_UpperCamelCase ) visited.append(_UpperCamelCase ) snake_case_ = -2 snake_case_ = [] snake_case_ = s snake_case_ = False snake_case_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ = len(_UpperCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ = True if len(_UpperCamelCase ) != 0: snake_case_ = stack[len(_UpperCamelCase ) - 1] else: snake_case_ = False indirect_parents.append(_UpperCamelCase ) snake_case_ = s snake_case_ = ss # check if se have reached the starting point if len(_UpperCamelCase ) == 0: return False def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return list(self.graph ) def lowerCAmelCase__ ( self , a__=-2 , a__=-1 ) -> Any: '''simple docstring''' snake_case_ = time() self.dfs(_UpperCamelCase , _UpperCamelCase ) snake_case_ = time() return end - begin def lowerCAmelCase__ ( self , a__=-2 ) -> Tuple: '''simple docstring''' snake_case_ = time() self.bfs(_UpperCamelCase ) snake_case_ = time() return end - begin
85
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowercase__ ( __snake_case : List[str] , __snake_case : int , __snake_case : Tuple=8 ): '''simple docstring''' UpperCAmelCase_ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase__ ( __snake_case : Any , __snake_case : int=512 , __snake_case : Dict=512 ): '''simple docstring''' UpperCAmelCase_ : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase_ : Dict = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase_ : Any = arr.astype(np.floataa ) / 127.5 - 1 UpperCAmelCase_ : Dict = np.transpose(__snake_case , [2, 0, 1] ) UpperCAmelCase_ : List[str] = torch.from_numpy(__snake_case ).unsqueeze(0 ) return image class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=_UpperCamelCase , scheduler=_UpperCamelCase , movq=_UpperCamelCase , ) UpperCAmelCase_ : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: # get the original timestep using init_timestep UpperCAmelCase_ : Any = min(int(num_inference_steps * strength ) , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Tuple: if not isinstance(_UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : List[str] = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) UpperCAmelCase_ : List[str] = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase_ : List[str] = image else: if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Any = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCamelCase ) ] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase , dim=0 ) else: UpperCAmelCase_ : Union[str, Any] = self.movq.encode(_UpperCamelCase ).latent_dist.sample(_UpperCamelCase ) UpperCAmelCase_ : int = self.movq.config.scaling_factor * init_latents UpperCAmelCase_ : Optional[int] = torch.cat([init_latents] , dim=0 ) UpperCAmelCase_ : Tuple = init_latents.shape UpperCAmelCase_ : List[Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents UpperCAmelCase_ : str = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = init_latents return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : Optional[Any] = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase_ : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = cpu_offload_with_hook(_UpperCamelCase , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) # We'll offload the last model manually. UpperCAmelCase_ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ) -> Dict: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 4.0 , _UpperCamelCase = 0.3 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> str: UpperCAmelCase_ : Any = self._execution_device UpperCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : str = torch.cat(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : int = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : int = negative_image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Tuple = [image] if not all(isinstance(_UpperCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) UpperCAmelCase_ : str = torch.cat([prepare_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in image] , dim=0 ) UpperCAmelCase_ : Any = image.to(dtype=image_embeds.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.movq.encode(_UpperCamelCase )['latents'] UpperCAmelCase_ : List[Any] = latents.repeat_interleave(_UpperCamelCase , dim=0 ) self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase_ , UpperCAmelCase_ : str = downscale_height_and_width(_UpperCamelCase , _UpperCamelCase , self.movq_scale_factor ) UpperCAmelCase_ : Dict = self.prepare_latents( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : str = {'image_embeds': image_embeds} UpperCAmelCase_ : Union[str, Any] = self.unet( sample=_UpperCamelCase , timestep=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , added_cond_kwargs=_UpperCamelCase , return_dict=_UpperCamelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : str = variance_pred.chunk(2 ) UpperCAmelCase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase , )[0] # post-processing UpperCAmelCase_ : Optional[Any] = self.movq.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[str] = image * 0.5 + 0.5 UpperCAmelCase_ : List[Any] = image.clamp(0 , 1 ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : List[Any] = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() _UpperCAmelCase : Union[str, Any] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) _UpperCAmelCase : Optional[Any] = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } _UpperCAmelCase : str = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6_0_0_0, 'return_attention_mask': False, 'do_normalize': True, } _UpperCAmelCase : List[str] = tempfile.mkdtemp() _UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : int = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + "\n" ) # load decoder from hub _UpperCAmelCase : List[Any] = 'hf-internal-testing/ngram-beam-search-decoder' def _lowerCAmelCase ( self : int , **lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(_UpperCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def _lowerCAmelCase ( self : Tuple , **lowerCAmelCase__ : int ) -> List[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def _lowerCAmelCase ( self : Any , **lowerCAmelCase__ : List[str] ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : List[str] = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : List[str] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _UpperCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(_UpperCamelCase , "include" ): WavaVecaProcessorWithLM( tokenizer=_UpperCamelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : Tuple = floats_list((3, 1_0_0_0) ) _UpperCAmelCase : List[str] = feature_extractor(_UpperCamelCase , return_tensors="np" ) _UpperCAmelCase : Any = processor(_UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_decoder() _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : List[Any] = 'This is a test string' _UpperCAmelCase : str = processor(text=_UpperCamelCase ) _UpperCAmelCase : List[str] = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Any=(2, 1_0, 1_6) , lowerCAmelCase__ : int=7_7 ) -> Optional[Any]: """simple docstring""" np.random.seed(_UpperCamelCase ) return np.random.rand(*_UpperCamelCase ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_decoder() _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : int = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) _UpperCAmelCase : Union[str, Any] = processor.decode(_UpperCamelCase ) _UpperCAmelCase : List[Any] = decoder.decode_beams(_UpperCamelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Dict ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_decoder() _UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase : Union[str, Any] = processor.batch_decode(_UpperCamelCase ) else: with get_context(_UpperCamelCase ).Pool() as pool: _UpperCAmelCase : Union[str, Any] = processor.batch_decode(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : List[Any] = list(_UpperCamelCase ) with get_context("fork" ).Pool() as p: _UpperCAmelCase : Dict = decoder.decode_beams_batch(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_UpperCamelCase , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(_UpperCamelCase , decoded_processor.logit_score ) self.assertListEqual(_UpperCamelCase , decoded_processor.lm_score ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Any = self.get_decoder() _UpperCAmelCase : int = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : Any = self._get_dummy_logits() _UpperCAmelCase : List[str] = 1_5 _UpperCAmelCase : str = -20.0 _UpperCAmelCase : List[Any] = -4.0 _UpperCAmelCase : Dict = processor.batch_decode( _UpperCamelCase , beam_width=_UpperCamelCase , beam_prune_logp=_UpperCamelCase , token_min_logp=_UpperCamelCase , ) _UpperCAmelCase : List[str] = decoded_processor_out.text _UpperCAmelCase : Dict = list(_UpperCamelCase ) with get_context("fork" ).Pool() as pool: _UpperCAmelCase : Optional[int] = decoder.decode_beams_batch( _UpperCamelCase , _UpperCamelCase , beam_width=_UpperCamelCase , beam_prune_logp=_UpperCamelCase , token_min_logp=_UpperCamelCase , ) _UpperCAmelCase : Dict = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase : Union[str, Any] = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase : str = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , _UpperCamelCase ) self.assertTrue(np.array_equal(_UpperCamelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _UpperCamelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_UpperCamelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _UpperCamelCase , atol=1e-3 ) ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : List[str] = self.get_decoder() _UpperCAmelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : Optional[Any] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = 2.0 _UpperCAmelCase : List[str] = 5.0 _UpperCAmelCase : Optional[Any] = -20.0 _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Any = processor.batch_decode( _UpperCamelCase , alpha=_UpperCamelCase , beta=_UpperCamelCase , unk_score_offset=_UpperCamelCase , lm_score_boundary=_UpperCamelCase , ) _UpperCAmelCase : Dict = decoded_processor_out.text _UpperCAmelCase : Any = list(_UpperCamelCase ) decoder.reset_params( alpha=_UpperCamelCase , beta=_UpperCamelCase , unk_score_offset=_UpperCamelCase , lm_score_boundary=_UpperCamelCase , ) with get_context("fork" ).Pool() as pool: _UpperCAmelCase : Tuple = decoder.decode_beams_batch( _UpperCamelCase , _UpperCamelCase , ) _UpperCAmelCase : List[Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , _UpperCamelCase ) _UpperCAmelCase : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _UpperCamelCase ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Union[str, Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() _UpperCAmelCase : List[Any] = os.listdir(_UpperCamelCase ) _UpperCAmelCase : List[str] = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = snapshot_download("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(_UpperCamelCase ) _UpperCAmelCase : Any = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Dict = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() _UpperCAmelCase : int = os.listdir(_UpperCamelCase ) _UpperCAmelCase : Dict = os.listdir(_UpperCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Any = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _UpperCAmelCase : Tuple = processor_wavaveca(_UpperCamelCase , return_tensors="np" ) _UpperCAmelCase : List[str] = processor_auto(_UpperCamelCase , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _UpperCAmelCase : Optional[Any] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = processor_wavaveca.batch_decode(_UpperCamelCase ) _UpperCAmelCase : List[str] = processor_auto.batch_decode(_UpperCamelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : List[str] = self.get_decoder() _UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = [d[key] for d in offsets] return retrieved_list def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Tuple = self._get_dummy_logits()[0] _UpperCAmelCase : Union[str, Any] = processor.decode(_UpperCamelCase , output_word_offsets=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : List[Any] = self._get_dummy_logits() _UpperCAmelCase : Any = processor.batch_decode(_UpperCamelCase , output_word_offsets=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase ) ) self.assertListEqual( [" ".join(self.get_from_offsets(_UpperCamelCase , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" import torch _UpperCAmelCase : Optional[Any] = load_dataset("common_voice" , "en" , split="train" , streaming=_UpperCamelCase ) _UpperCAmelCase : Dict = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) _UpperCAmelCase : Any = iter(_UpperCamelCase ) _UpperCAmelCase : int = next(_UpperCamelCase ) _UpperCAmelCase : List[str] = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) _UpperCAmelCase : List[Any] = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase : Dict = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(_UpperCamelCase ).logits.cpu().numpy() _UpperCAmelCase : List[Any] = processor.decode(logits[0] , output_word_offsets=_UpperCamelCase ) _UpperCAmelCase : List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase : Tuple = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] _UpperCAmelCase : List[str] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(" ".join(self.get_from_offsets(_UpperCamelCase , "word" ) ) , _UpperCamelCase ) self.assertEqual(" ".join(self.get_from_offsets(_UpperCamelCase , "word" ) ) , output.text ) # output times _UpperCAmelCase : Tuple = torch.tensor(self.get_from_offsets(_UpperCamelCase , "start_time" ) ) _UpperCAmelCase : List[Any] = torch.tensor(self.get_from_offsets(_UpperCamelCase , "end_time" ) ) # fmt: off _UpperCAmelCase : Tuple = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _UpperCAmelCase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=0.01 ) )
145
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase__ ( __snake_case : List[Any] , __snake_case : List[str]=False ): '''simple docstring''' try: UpperCAmelCase_ : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ : Optional[int] = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ : List[Any] = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value __UpperCAmelCase = parse_flag_from_env('RUN_SLOW', default=False) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skip('Test was skipped' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__snake_case ) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__snake_case ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__snake_case ) def lowercase__ ( __snake_case : Dict=None , __snake_case : Dict=None ): '''simple docstring''' if test_case is None: return partial(__snake_case , version=__snake_case ) return unittest.skipUnless(is_torch_version('>=' , __snake_case ) , F"test requires torch version >= {version}" )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__snake_case ) __UpperCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__snake_case ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = True @classmethod def __UpperCAmelCase ( cls ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = tempfile.mkdtemp() @classmethod def __UpperCAmelCase ( cls ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCAmelCase ( self ) -> str: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = AcceleratorState() UpperCAmelCase_ : str = tensor[None].clone().to(state.device ) UpperCAmelCase_ : List[str] = gather(__snake_case ).cpu() UpperCAmelCase_ : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __snake_case ): return False return True class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : str = returncode UpperCAmelCase_ : Optional[Any] = stdout UpperCAmelCase_ : Optional[Any] = stderr async def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' while True: UpperCAmelCase_ : Dict = await stream.readline() if line: callback(__snake_case ) else: break async def lowercase__ ( __snake_case : Optional[int] , __snake_case : Dict=None , __snake_case : str=None , __snake_case : Dict=None , __snake_case : List[str]=False , __snake_case : Optional[int]=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : str = [] def tee(__snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[int]="" ): UpperCAmelCase_ : List[str] = line.decode('utf-8' ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __snake_case : tee(__snake_case , __snake_case , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __snake_case : tee(__snake_case , __snake_case , sys.stderr , label='stderr:' ) ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[Any]=None , __snake_case : str=None , __snake_case : Tuple=180 , __snake_case : Dict=False , __snake_case : Optional[Any]=True ): '''simple docstring''' UpperCAmelCase_ : str = asyncio.get_event_loop() UpperCAmelCase_ : int = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) UpperCAmelCase_ : int = ' '.join(__snake_case ) if result.returncode > 0: UpperCAmelCase_ : int = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class lowerCamelCase (_snake_case ): '''simple docstring''' pass def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any]=False ): '''simple docstring''' try: UpperCAmelCase_ : List[Any] = subprocess.check_output(__snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__snake_case , 'decode' ): UpperCAmelCase_ : str = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__snake_case )}` failed with the following error:\n\n{e.output.decode()}" ) from e
29
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_snake_case ) , '''Tatoeba directory does not exist.''' ) class _lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Any = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCamelCase ) @slow def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Any = self.resolver.write_model_card("opus-mt-he-en" , dry_run=_UpperCamelCase ) assert mmeta["long_pair"] == "heb-eng"
203
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = "Hello, World!" __A = "en_XX" def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : bool ) -> Optional[int]: """simple docstring""" __lowerCamelCase = Path('data_bin' ) __lowerCamelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__snake_case ).parent ) , checkpoint_file=Path(__snake_case ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(__snake_case ) , bpe='sentencepiece' , sentencepiece_model=str(Path(__snake_case ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(__snake_case ) __lowerCamelCase = xmod.model.encoder.sentence_encoder __lowerCamelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCamelCase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , __snake_case ) __lowerCamelCase = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase = xmod_sent_encoder.embed_tokens.weight __lowerCamelCase = xmod_sent_encoder.embed_positions.weight __lowerCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.weight __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase = model.roberta.encoder.layer[i] __lowerCamelCase = xmod_sent_encoder.layers[i] # self attention __lowerCamelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowerCamelCase = xmod_layer.self_attn.q_proj.weight __lowerCamelCase = xmod_layer.self_attn.q_proj.bias __lowerCamelCase = xmod_layer.self_attn.k_proj.weight __lowerCamelCase = xmod_layer.self_attn.k_proj.bias __lowerCamelCase = xmod_layer.self_attn.v_proj.weight __lowerCamelCase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowerCamelCase = xmod_layer.self_attn.out_proj.weight __lowerCamelCase = xmod_layer.self_attn.out_proj.bias __lowerCamelCase = xmod_layer.self_attn_layer_norm.weight __lowerCamelCase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCamelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias # output __lowerCamelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias __lowerCamelCase = xmod_layer.final_layer_norm.weight __lowerCamelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCamelCase = xmod_layer.adapter_layer_norm.weight __lowerCamelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCamelCase = bert_output.adapter_modules[lang_code] __lowerCamelCase = xmod_layer.adapter_modules[lang_code] __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCamelCase = xmod_sent_encoder.layer_norm.weight __lowerCamelCase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCamelCase = xmod.model.classification_heads['mnli'].dense.weight __lowerCamelCase = xmod.model.classification_heads['mnli'].dense.bias __lowerCamelCase = xmod.model.classification_heads['mnli'].out_proj.weight __lowerCamelCase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowerCamelCase = xmod.model.encoder.lm_head.dense.weight __lowerCamelCase = xmod.model.encoder.lm_head.dense.bias __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.weight __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.bias __lowerCamelCase = xmod.model.encoder.lm_head.weight __lowerCamelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__snake_case ) __lowerCamelCase = model(__snake_case )[0] if classification_head: __lowerCamelCase = xmod.model.classification_heads['mnli'](xmod.extract_features(__snake_case ) ) else: __lowerCamelCase = xmod.model(__snake_case , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowerCamelCase = torch.allclose(__snake_case , __snake_case , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(__snake_case ).mkdir(parents=__snake_case , exist_ok=__snake_case ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __A = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
90
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
29
0
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _snake_case , unittest.TestCase ): _a = ConsistencyModelPipeline _a = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _a = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _a = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def __lowercase ( self : Tuple ): lowerCAmelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def __lowercase ( self : Tuple ): lowerCAmelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def __lowercase ( self : Dict , lowerCAmelCase : Optional[int]=False ): if class_cond: lowerCAmelCase = self.dummy_cond_unet else: lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def __lowercase ( self : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]=0 ): if str(_UpperCamelCase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def __lowercase ( self : Optional[int] ): lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = ConsistencyModelPipeline(**_UpperCamelCase ) lowerCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase = pipe(**_UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components(class_cond=_UpperCamelCase ) lowerCAmelCase = ConsistencyModelPipeline(**_UpperCamelCase ) lowerCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase = 0 lowerCAmelCase = pipe(**_UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase ( self : Optional[Any] ): lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = ConsistencyModelPipeline(**_UpperCamelCase ) lowerCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase = 1 lowerCAmelCase = None lowerCAmelCase = pipe(**_UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase ( self : Any ): lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components(class_cond=_UpperCamelCase ) lowerCAmelCase = ConsistencyModelPipeline(**_UpperCamelCase ) lowerCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase = 1 lowerCAmelCase = None lowerCAmelCase = 0 lowerCAmelCase = pipe(**_UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : int , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Optional[int]="cpu" , lowerCAmelCase : Optional[int]=torch.floataa , lowerCAmelCase : List[Any]=(1, 3, 64, 64) ): lowerCAmelCase = torch.manual_seed(_UpperCamelCase ) lowerCAmelCase = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: lowerCAmelCase = self.get_fixed_latents(seed=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase , shape=_UpperCamelCase ) lowerCAmelCase = latents return inputs def __lowercase ( self : Any , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : List[Any]="cpu" , lowerCAmelCase : Tuple=torch.floataa , lowerCAmelCase : Any=(1, 3, 64, 64) ): if type(_UpperCamelCase ) == str: lowerCAmelCase = torch.device(_UpperCamelCase ) lowerCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) return latents def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase = ConsistencyModelPipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(torch_device=_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase = self.get_inputs() lowerCAmelCase = pipe(**_UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __lowercase ( self : Any ): lowerCAmelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase = ConsistencyModelPipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(torch_device=_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase = self.get_inputs() lowerCAmelCase = 1 lowerCAmelCase = None lowerCAmelCase = pipe(**_UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def __lowercase ( self : str ): lowerCAmelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase = ConsistencyModelPipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(torch_device=_UpperCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase = self.get_inputs(get_fixed_latents=_UpperCamelCase , device=_UpperCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_UpperCamelCase , enable_math=_UpperCamelCase , enable_mem_efficient=_UpperCamelCase ): lowerCAmelCase = pipe(**_UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def __lowercase ( self : List[Any] ): lowerCAmelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase = ConsistencyModelPipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(torch_device=_UpperCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase = self.get_inputs(get_fixed_latents=_UpperCamelCase , device=_UpperCamelCase ) lowerCAmelCase = 1 lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_UpperCamelCase , enable_math=_UpperCamelCase , enable_mem_efficient=_UpperCamelCase ): lowerCAmelCase = pipe(**_UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
155
def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ : Any = head.next, head while fast and fast.next: UpperCAmelCase_ : str = fast.next.next UpperCAmelCase_ : Union[str, Any] = slow.next UpperCAmelCase_ : int = slow.next UpperCAmelCase_ : List[Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ : Tuple = None while second: UpperCAmelCase_ : int = second.next UpperCAmelCase_ : Any = node UpperCAmelCase_ : Optional[Any] = second UpperCAmelCase_ : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Dict = head.next return True def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ : Any = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ : List[str] = [slow.val] while slow.next: UpperCAmelCase_ : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ : int = cur.next return True def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : int = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: UpperCAmelCase_ : List[Any] = [pos] UpperCAmelCase_ : Any = head.next pos += 1 UpperCAmelCase_ : Dict = pos - 1 UpperCAmelCase_ : Optional[int] = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: UpperCAmelCase_ : int = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
29
0
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCAmelCase_ ( _snake_case ): '''simple docstring''' @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched A = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' A = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' A = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache A = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCamelCase ) BertModel.from_pretrained(_UpperCamelCase ) BertTokenizer.from_pretrained(_UpperCamelCase ) pipeline(task='fill-mask' ,model=_UpperCamelCase ) # baseline - just load from_pretrained with normal network A = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed A = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A = '1' A = subprocess.run(_UpperCamelCase ,env=_UpperCamelCase ,check=_UpperCamelCase ,capture_output=_UpperCamelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched A = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' A = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' A = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache A = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCamelCase ) BertModel.from_pretrained(_UpperCamelCase ) BertTokenizer.from_pretrained(_UpperCamelCase ) pipeline(task='fill-mask' ,model=_UpperCamelCase ) # baseline - just load from_pretrained with normal network A = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed A = self.get_env() A = subprocess.run(_UpperCamelCase ,env=_UpperCamelCase ,check=_UpperCamelCase ,capture_output=_UpperCamelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched A = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' A = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' A = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network A = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed A = self.get_env() A = subprocess.run(_UpperCamelCase ,env=_UpperCamelCase ,check=_UpperCamelCase ,capture_output=_UpperCamelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network A = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A = '1' A = subprocess.run(_UpperCamelCase ,env=_UpperCamelCase ,check=_UpperCamelCase ,capture_output=_UpperCamelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = '\nfrom transformers import pipeline\n ' A = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' A = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' A = self.get_env() A = '1' A = [sys.executable, '-c', '\n'.join([load, mock, run] )] A = subprocess.run(_UpperCamelCase ,env=_UpperCamelCase ,check=_UpperCamelCase ,capture_output=_UpperCamelCase ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: A = '\nfrom transformers import AutoModel\n ' A = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network A = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed A = self.get_env() A = subprocess.run(_UpperCamelCase ,env=_UpperCamelCase ,check=_UpperCamelCase ,capture_output=_UpperCamelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A = '1' A = subprocess.run(_UpperCamelCase ,env=_UpperCamelCase ,check=_UpperCamelCase ,capture_output=_UpperCamelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _A : List[str] = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _A : int = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _A : str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : int = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _a ( UpperCAmelCase ) -> Tuple: """simple docstring""" return x[0] def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : List[Any] = get_letter_count(__snake_case ) lowerCamelCase__ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__snake_case ) lowerCamelCase__ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__snake_case ) lowerCamelCase__ : List[str] = ''.join(freq_to_letter[freq] ) lowerCamelCase__ : int = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__snake_case , reverse=__snake_case ) lowerCamelCase__ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__snake_case ) def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : List[Any] = get_frequency_order(__snake_case ) lowerCamelCase__ : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
142
__UpperCAmelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCAmelCase__ = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = True @register_to_config def __init__( self , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = ("DownEncoderBlock2D",) , _UpperCamelCase = ("UpDecoderBlock2D",) , _UpperCamelCase = (6_4,) , _UpperCamelCase = 1 , _UpperCamelCase = "silu" , _UpperCamelCase = 4 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[str] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder UpperCAmelCase_ : Dict = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) UpperCAmelCase_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ : List[Any] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : int = False # only relevant if vae tiling is enabled UpperCAmelCase_ : Optional[int] = self.config.sample_size UpperCAmelCase_ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : Optional[Any] = 0.25 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[str]: if isinstance(_UpperCamelCase , (Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> int: UpperCAmelCase_ : Tuple = use_tiling def __UpperCAmelCase ( self ) -> Dict: self.enable_tiling(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = True def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : Optional[int] = {} def fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): UpperCAmelCase_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : Union[str, Any] = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) UpperCAmelCase_ : str = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : List[str] = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : Any = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): UpperCAmelCase_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : List[str] = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : Any = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : Dict = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : str = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Dict = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=2 ) UpperCAmelCase_ : List[Any] = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Union[str, Any] = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : Optional[Any] = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Union[str, Any] = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = sample UpperCAmelCase_ : Union[str, Any] = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: UpperCAmelCase_ : str = posterior.sample(generator=_UpperCamelCase ) else: UpperCAmelCase_ : int = posterior.mode() UpperCAmelCase_ : Dict = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
29
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __lowercase : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=2 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , A=10_00 , ) -> Any: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_input_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope lowerCamelCase = range_bbox def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase = bbox[i, j, 3] lowerCamelCase = bbox[i, j, 1] lowerCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase = bbox[i, j, 2] lowerCamelCase = bbox[i, j, 0] lowerCamelCase = t lowerCamelCase = tf.convert_to_tensor(_UpperCamelCase ) lowerCamelCase = None if self.use_input_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , A , A , A , A , A , A , A , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = TFLayoutLMModel(config=_UpperCamelCase ) lowerCamelCase = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) lowerCamelCase = model(_UpperCamelCase , _UpperCamelCase , token_type_ids=_UpperCamelCase ) lowerCamelCase = model(_UpperCamelCase , _UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A , A , A , A , A , A , A , A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = TFLayoutLMForMaskedLM(config=_UpperCamelCase ) lowerCamelCase = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A , A ) -> int: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = TFLayoutLMForSequenceClassification(config=_UpperCamelCase ) lowerCamelCase = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = TFLayoutLMForTokenClassification(config=_UpperCamelCase ) lowerCamelCase = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' lowerCamelCase = TFLayoutLMForQuestionAnswering(config=_UpperCamelCase ) lowerCamelCase = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() ( lowerCamelCase ) = config_and_inputs lowerCamelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class __lowercase ( _snake_case , _snake_case , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) UpperCamelCase : List[Any] = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase : Optional[int] = False UpperCamelCase : Dict = True UpperCamelCase : Dict = 1_0 def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = TFLayoutLMModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def __A ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFLayoutLMModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 lowerCamelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCamelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCamelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCamelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) lowerCamelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCamelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) # test the sequence output on [0, :3, :3] lowerCamelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=1e-3 ) ) # test the pooled output on [1, :3] lowerCamelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _UpperCamelCase , atol=1e-3 ) ) @slow def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) lowerCamelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCamelCase = model( input_ids=_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCamelCase = outputs.loss lowerCamelCase = (2,) self.assertEqual(loss.shape , _UpperCamelCase ) # test the shape of the logits lowerCamelCase = outputs.logits lowerCamelCase = (2, 2) self.assertEqual(logits.shape , _UpperCamelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) lowerCamelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCamelCase = model( input_ids=_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) # test the shape of the logits lowerCamelCase = outputs.logits lowerCamelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _UpperCamelCase ) @slow def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) lowerCamelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCamelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) # test the shape of the logits lowerCamelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _UpperCamelCase ) self.assertEqual(outputs.end_logits.shape , _UpperCamelCase )
252
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase_ : Tuple = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Union[str, Any] = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : List[Any] = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: Union[str, Any] = logging.get_logger(__name__) A__: List[Any] = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class A__ ( _snake_case ): __UpperCamelCase : Union[str, Any] = '''yolos''' def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Tuple=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :Tuple=1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Dict=0.0 , SCREAMING_SNAKE_CASE :Optional[Any]=0.0 , SCREAMING_SNAKE_CASE :int=0.02 , SCREAMING_SNAKE_CASE :List[str]=1e-12 , SCREAMING_SNAKE_CASE :Dict=[5_1_2, 8_6_4] , SCREAMING_SNAKE_CASE :str=1_6 , SCREAMING_SNAKE_CASE :List[str]=3 , SCREAMING_SNAKE_CASE :str=True , SCREAMING_SNAKE_CASE :Union[str, Any]=1_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Optional[Any]=False , SCREAMING_SNAKE_CASE :Optional[int]=1 , SCREAMING_SNAKE_CASE :Optional[int]=5 , SCREAMING_SNAKE_CASE :str=2 , SCREAMING_SNAKE_CASE :Optional[Any]=5 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :str=0.1 , **SCREAMING_SNAKE_CASE :Tuple , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_UpperCamelCase ) _a : List[str] =hidden_size _a : Any =num_hidden_layers _a : List[Any] =num_attention_heads _a : Optional[Any] =intermediate_size _a : Any =hidden_act _a : int =hidden_dropout_prob _a : List[Any] =attention_probs_dropout_prob _a : Tuple =initializer_range _a : Optional[Any] =layer_norm_eps _a : Dict =image_size _a : List[str] =patch_size _a : Optional[Any] =num_channels _a : Union[str, Any] =qkv_bias _a : Optional[int] =num_detection_tokens _a : Dict =use_mid_position_embeddings _a : Union[str, Any] =auxiliary_loss # Hungarian matcher _a : List[str] =class_cost _a : Dict =bbox_cost _a : str =giou_cost # Loss coefficients _a : List[str] =bbox_loss_coefficient _a : Union[str, Any] =giou_loss_coefficient _a : int =eos_coefficient class A__ ( _snake_case ): __UpperCamelCase : List[Any] = version.parse("1.11" ) @property def __UpperCAmelCase ( self :int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCAmelCase ( self :List[Any] ) -> float: '''simple docstring''' return 1e-4 @property def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return 1_2
276
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt'} __UpperCAmelCase = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __UpperCAmelCase = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __UpperCAmelCase = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_INIT_CONFIGURATION _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ConvBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> Dict: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ : Any = getattr(_UpperCamelCase , normalizer_state.pop('type' ) ) UpperCAmelCase_ : str = do_lower_case UpperCAmelCase_ : List[Any] = strip_accents UpperCAmelCase_ : str = tokenize_chinese_chars UpperCAmelCase_ : Tuple = normalizer_class(**_UpperCamelCase ) UpperCAmelCase_ : Any = do_lower_case def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[str]: UpperCAmelCase_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = '''efficientformer''' def __init__( self , _UpperCamelCase = [3, 2, 6, 4] , _UpperCamelCase = [4_8, 9_6, 2_2_4, 4_4_8] , _UpperCamelCase = [True, True, True, True] , _UpperCamelCase = 4_4_8 , _UpperCamelCase = 3_2 , _UpperCamelCase = 4 , _UpperCamelCase = 7 , _UpperCamelCase = 5 , _UpperCamelCase = 8 , _UpperCamelCase = 4 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1_6 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 2 , _UpperCamelCase = 1 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1 , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1E-5 , _UpperCamelCase = "gelu" , _UpperCamelCase = 0.02 , _UpperCamelCase = 1E-12 , _UpperCamelCase = 2_2_4 , _UpperCamelCase = 1E-05 , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = hidden_sizes UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[Any] = depths UpperCAmelCase_ : List[Any] = mlp_expansion_ratio UpperCAmelCase_ : List[str] = downsamples UpperCAmelCase_ : List[Any] = dim UpperCAmelCase_ : Tuple = key_dim UpperCAmelCase_ : Optional[int] = attention_ratio UpperCAmelCase_ : str = resolution UpperCAmelCase_ : Dict = pool_size UpperCAmelCase_ : Union[str, Any] = downsample_patch_size UpperCAmelCase_ : List[str] = downsample_stride UpperCAmelCase_ : List[str] = downsample_pad UpperCAmelCase_ : Any = drop_path_rate UpperCAmelCase_ : Dict = num_metaad_blocks UpperCAmelCase_ : Dict = distillation UpperCAmelCase_ : int = use_layer_scale UpperCAmelCase_ : Any = layer_scale_init_value UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Dict = batch_norm_eps
29
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Any = logging.getLogger() def UpperCamelCase_( snake_case : Path , snake_case : list ): '''simple docstring''' snake_case_ = '\n'.join(__snake_case ) Path(__snake_case ).open("w" ).writelines(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = "patrickvonplaten/t5-tiny-random" _SCREAMING_SNAKE_CASE : Any = "sshleifer/bart-tiny-random" _SCREAMING_SNAKE_CASE : Optional[Any] = "sshleifer/tiny-mbart" _SCREAMING_SNAKE_CASE : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _snake_case ( _snake_case ): def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' snake_case_ = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() snake_case_ = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_UpperCamelCase , _UpperCamelCase ) snake_case_ = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) snake_case_ = 'translation_en_to_de' if model == T5_TINY else 'summarization' snake_case_ = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(_UpperCamelCase , "argv" , _UpperCamelCase ): run_generate() assert Path(_UpperCamelCase ).exists() # os.remove(Path(output_file_name)) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.run_eval_tester(_UpperCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self , a__ ) -> Optional[int]: '''simple docstring''' self.run_eval_tester(_UpperCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self , a__ ) -> Dict: '''simple docstring''' snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' snake_case_ = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() snake_case_ = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } snake_case_ = Path(self.get_auto_remove_tmp_dir() ) snake_case_ = str(tmp_dir / "scores.json" ) snake_case_ = str(tmp_dir / "val.target" ) _dump_articles(_UpperCamelCase , text["en"] ) _dump_articles(_UpperCamelCase , text["de"] ) snake_case_ = 'translation_en_to_de' if model == T5_TINY else 'summarization' snake_case_ = F'\n run_eval_search.py\n {model}\n {str(_UpperCamelCase )}\n {str(_UpperCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(_UpperCamelCase , "argv" , _UpperCamelCase ): with CaptureStdout() as cs: run_search() snake_case_ = [' num_beams | length_penalty', model, 'Best score args'] snake_case_ = ['Info'] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(_UpperCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_UpperCamelCase ).exists() os.remove(Path(_UpperCamelCase ) )
85
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Any: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: if latents is None: UpperCAmelCase_ : str = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase_ : Tuple = latents.to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : int = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> str: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : int = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : Optional[int] = self.image_processor(_UpperCamelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase_ : Tuple = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.image_encoder(_UpperCamelCase )['last_hidden_state'] UpperCAmelCase_ : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase_ : List[str] = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Dict = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 2_5 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 4.0 , _UpperCamelCase = 6_4 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Union[str, Any]: if isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ : Tuple = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : str = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase_ : Optional[int] = len(_UpperCamelCase ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Tuple = self._execution_device UpperCAmelCase_ : str = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : str = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ : int = self.scheduler.timesteps UpperCAmelCase_ : int = self.prior.config.num_embeddings UpperCAmelCase_ : Any = self.prior.config.embedding_dim UpperCAmelCase_ : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase_ : List[Any] = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Optional[Any] = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = [] for i, latent in enumerate(_UpperCamelCase ): print() UpperCAmelCase_ : List[str] = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) UpperCAmelCase_ : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase_ : List[str] = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : Tuple = str(bin(__snake_case ) )[2:] # remove the leading "0b" _UpperCAmelCase : Union[str, Any] = str(bin(__snake_case ) )[2:] # remove the leading "0b" _UpperCAmelCase : List[Any] = max(len(__snake_case ), len(__snake_case ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ), b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
145
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCAmelCase ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any: if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCAmelCase ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
203
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
from __future__ import annotations __A = list[list[int]] # assigning initial values to the grid __A = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase_ ( UpperCamelCase__ : Matrix , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Optional[int]: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase_ ( UpperCamelCase__ : Matrix ) -> Union[str, Any]: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ) -> Optional[int]: """simple docstring""" if location := find_empty_location(__snake_case ): __lowerCamelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__snake_case , __snake_case , __snake_case , __snake_case ): __lowerCamelCase = digit if sudoku(__snake_case ) is not None: return grid __lowerCamelCase = 0 return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ) -> List[str]: """simple docstring""" for row in grid: for cell in row: print(__snake_case , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __A = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
90
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class SCREAMING_SNAKE_CASE__ ( _snake_case ): _a = '''speech_to_text_2''' _a = ['''past_key_values'''] _a = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Any , lowerCAmelCase : Any=1_0000 , lowerCAmelCase : List[Any]=6 , lowerCAmelCase : Union[str, Any]=2048 , lowerCAmelCase : int=4 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]="relu" , lowerCAmelCase : Any=256 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : str=0.02 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : str=2 , lowerCAmelCase : Optional[int]=1024 , **lowerCAmelCase : int , ): lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , )
155
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' import bza UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase_ : str = bytes(__snake_case , 'utf-8' ) with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase_ : Dict = bytes(__snake_case , 'utf-8' ) with gzip.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lza.frame.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__snake_case , 'w' ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' import lzma UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lzma.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' import zipfile UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase_ : List[str] = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict(__snake_case ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: UpperCAmelCase_ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__snake_case , 'rb' ) as f: UpperCAmelCase_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase_ : Dict = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__snake_case , 'wb' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetWriter(__snake_case , schema=__snake_case ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Optional[int] = {'data': DATA} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Tuple = {'data': DATA_DICT_OF_LISTS} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int , __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ['0', '1', '2', '3'] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['0', '1', '2', '3'] UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = ['0', '1', '2', '3'] UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename('unsupported.ext' ) ) f.write(__snake_case , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
29
0
"""simple docstring""" _lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def _snake_case ( snake_case__ : float ): assert type(__snake_case ) in (int, float) and decimal == int(__snake_case ) A = int(__snake_case ) A = '' A = False if decimal < 0: A = True decimal *= -1 while decimal > 0: A = divmod(__snake_case , 16 ) A = values[remainder] + hexadecimal A = '0x' + hexadecimal if negative: A = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
74
from __future__ import annotations def lowercase__ ( __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position UpperCAmelCase_ : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : Optional[Any] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase__ ( __snake_case : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase__ ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = position if board[y][x] == 0: UpperCAmelCase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True UpperCAmelCase_ : List[Any] = 0 return False def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): UpperCAmelCase_ : Optional[Any] = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[str] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _A : Optional[Any] = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 10_00, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _A : Dict = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 10_00, 'block_out_channels': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _A : List[Any] = { 'sample_size': 2_56, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _A : Any = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } _A : Tuple = { 'num_train_timesteps': 2_01, 'sigma_min': 0.002, 'sigma_max': 80.0, } _A : Optional[int] = { 'num_train_timesteps': 1_51, 'sigma_min': 0.002, 'sigma_max': 80.0, } def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> str: """simple docstring""" lowerCamelCase__ : Union[str, Any] = checkpoint[f"{old_prefix}.in_layers.0.weight"] lowerCamelCase__ : str = checkpoint[f"{old_prefix}.in_layers.0.bias"] lowerCamelCase__ : Dict = checkpoint[f"{old_prefix}.in_layers.2.weight"] lowerCamelCase__ : Optional[Any] = checkpoint[f"{old_prefix}.in_layers.2.bias"] lowerCamelCase__ : int = checkpoint[f"{old_prefix}.emb_layers.1.weight"] lowerCamelCase__ : Any = checkpoint[f"{old_prefix}.emb_layers.1.bias"] lowerCamelCase__ : List[str] = checkpoint[f"{old_prefix}.out_layers.0.weight"] lowerCamelCase__ : Tuple = checkpoint[f"{old_prefix}.out_layers.0.bias"] lowerCamelCase__ : Dict = checkpoint[f"{old_prefix}.out_layers.3.weight"] lowerCamelCase__ : Optional[int] = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: lowerCamelCase__ : Tuple = checkpoint[f"{old_prefix}.skip_connection.weight"] lowerCamelCase__ : List[str] = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> str: """simple docstring""" lowerCamelCase__ : Dict = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) lowerCamelCase__ : List[str] = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) lowerCamelCase__ : Dict = checkpoint[f"{old_prefix}.norm.weight"] lowerCamelCase__ : int = checkpoint[f"{old_prefix}.norm.bias"] lowerCamelCase__ : Tuple = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : str = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Any = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) lowerCamelCase__ : Optional[int] = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _a ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : Any = torch.load(__snake_case , map_location='''cpu''' ) lowerCamelCase__ : int = {} lowerCamelCase__ : Optional[int] = checkpoint['time_embed.0.weight'] lowerCamelCase__ : str = checkpoint['time_embed.0.bias'] lowerCamelCase__ : str = checkpoint['time_embed.2.weight'] lowerCamelCase__ : str = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: lowerCamelCase__ : Any = checkpoint['label_emb.weight'] lowerCamelCase__ : Dict = checkpoint['input_blocks.0.0.weight'] lowerCamelCase__ : List[str] = checkpoint['input_blocks.0.0.bias'] lowerCamelCase__ : List[Any] = unet_config['down_block_types'] lowerCamelCase__ : Any = unet_config['layers_per_block'] lowerCamelCase__ : Optional[Any] = unet_config['attention_head_dim'] lowerCamelCase__ : Union[str, Any] = unet_config['block_out_channels'] lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : str = channels_list[0] for i, layer_type in enumerate(__snake_case ): lowerCamelCase__ : List[Any] = channels_list[i] lowerCamelCase__ : Union[str, Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__snake_case ): lowerCamelCase__ : Tuple = f"down_blocks.{i}.resnets.{j}" lowerCamelCase__ : Dict = f"input_blocks.{current_layer}.0" lowerCamelCase__ : Union[str, Any] = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : Optional[int] = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case , has_skip=__snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__snake_case ): lowerCamelCase__ : Optional[int] = f"down_blocks.{i}.resnets.{j}" lowerCamelCase__ : str = f"input_blocks.{current_layer}.0" lowerCamelCase__ : Dict = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : int = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case , has_skip=__snake_case ) lowerCamelCase__ : Dict = f"down_blocks.{i}.attentions.{j}" lowerCamelCase__ : List[Any] = f"input_blocks.{current_layer}.1" lowerCamelCase__ : List[str] = convert_attention( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) current_layer += 1 if i != len(__snake_case ) - 1: lowerCamelCase__ : Dict = f"down_blocks.{i}.downsamplers.0" lowerCamelCase__ : Optional[Any] = f"input_blocks.{current_layer}.0" lowerCamelCase__ : Any = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) current_layer += 1 lowerCamelCase__ : Optional[int] = current_channels # hardcoded the mid-block for now lowerCamelCase__ : int = 'mid_block.resnets.0' lowerCamelCase__ : Optional[Any] = 'middle_block.0' lowerCamelCase__ : Union[str, Any] = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) lowerCamelCase__ : Optional[Any] = 'mid_block.attentions.0' lowerCamelCase__ : Union[str, Any] = 'middle_block.1' lowerCamelCase__ : List[Any] = convert_attention(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) lowerCamelCase__ : int = 'mid_block.resnets.1' lowerCamelCase__ : Dict = 'middle_block.2' lowerCamelCase__ : str = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) lowerCamelCase__ : int = 0 lowerCamelCase__ : Union[str, Any] = unet_config['up_block_types'] for i, layer_type in enumerate(__snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : Dict = f"up_blocks.{i}.resnets.{j}" lowerCamelCase__ : Dict = f"output_blocks.{current_layer}.0" lowerCamelCase__ : Dict = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case , has_skip=__snake_case ) current_layer += 1 if i != len(__snake_case ) - 1: lowerCamelCase__ : Dict = f"up_blocks.{i}.upsamplers.0" lowerCamelCase__ : Optional[Any] = f"output_blocks.{current_layer-1}.1" lowerCamelCase__ : int = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : Optional[int] = f"up_blocks.{i}.resnets.{j}" lowerCamelCase__ : List[Any] = f"output_blocks.{current_layer}.0" lowerCamelCase__ : int = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case , has_skip=__snake_case ) lowerCamelCase__ : List[str] = f"up_blocks.{i}.attentions.{j}" lowerCamelCase__ : Optional[Any] = f"output_blocks.{current_layer}.1" lowerCamelCase__ : Optional[Any] = convert_attention( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) current_layer += 1 if i != len(__snake_case ) - 1: lowerCamelCase__ : List[str] = f"up_blocks.{i}.upsamplers.0" lowerCamelCase__ : List[str] = f"output_blocks.{current_layer-1}.2" lowerCamelCase__ : str = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) lowerCamelCase__ : Optional[Any] = checkpoint['out.0.weight'] lowerCamelCase__ : str = checkpoint['out.0.bias'] lowerCamelCase__ : List[str] = checkpoint['out.2.weight'] lowerCamelCase__ : str = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": _A : str = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') _A : Tuple = parser.parse_args() _A : str = strabool(args.class_cond) _A : Optional[int] = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: _A : str = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Optional[int] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _A : int = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: _A : Optional[int] = None _A : Any = con_pt_to_diffuser(args.unet_path, unet_config) _A : List[Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _A : str = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _A : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') _A : str = CMStochasticIterativeScheduler(**scheduler_config) _A : Union[str, Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
142
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : list[list[int]] = [[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase_ : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __UpperCAmelCase = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __UpperCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=3_2 , UpperCAmelCase=1_6 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=3_2 , UpperCAmelCase=4 , UpperCAmelCase=[0, 1, 2, 3] , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=[1, 3_8_4, 2_4, 2_4] , UpperCAmelCase=True , UpperCAmelCase=None , ) -> List[str]: _lowercase =parent _lowercase =batch_size _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =is_training _lowercase =use_labels _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =backbone_out_indices _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =num_labels _lowercase =backbone_featmap_shape _lowercase =scope _lowercase =is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _lowercase =(image_size // patch_size) ** 2 _lowercase =num_patches + 1 def __A (self ) -> int: _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowercase =self.get_config() return config, pixel_values, labels def __A (self ) -> Any: _lowercase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [9_6, 1_9_2, 3_8_4, 7_6_8], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =DPTModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase =model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =self.num_labels _lowercase =DPTForDepthEstimation(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase =model(_UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _lowercase =self.num_labels _lowercase =DPTForSemanticSegmentation(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase =model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A (self ) -> Optional[Any]: _lowercase =self.prepare_config_and_inputs() _lowercase =config_and_inputs _lowercase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( _snake_case , _snake_case , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[Any]: _lowercase =DPTModelTester(self ) _lowercase =ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=3_7 ) def __A (self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A (self ) -> str: pass def __A (self ) -> Optional[int]: _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __A (self ) -> Dict: _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(_UpperCamelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __A (self ) -> Optional[int]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __A (self ) -> int: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_UpperCamelCase ) def __A (self ) -> List[str]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) def __A (self ) -> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =True if model_class in get_values(_UpperCamelCase ): continue _lowercase =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _lowercase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _lowercase =model(**_UpperCamelCase ).loss loss.backward() def __A (self ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =False _lowercase =True if model_class in get_values(_UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue _lowercase =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _lowercase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _lowercase =model(**_UpperCamelCase ).loss loss.backward() def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =_config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: _lowercase =model_class(config=_UpperCamelCase ) # Skip the check for the backbone _lowercase =[] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _lowercase =[f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A (self ) -> int: pass @slow def __A (self ) -> Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _lowercase =DPTModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __A (self ) -> str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase ='add' with self.assertRaises(_UpperCamelCase ): _lowercase =DPTForDepthEstimation(_UpperCamelCase ) def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Optional[Any]: _lowercase =DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) _lowercase =DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_UpperCamelCase ) _lowercase =prepare_img() _lowercase =image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _lowercase =model(**_UpperCamelCase ) _lowercase =outputs.predicted_depth # verify the predicted depth _lowercase =torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , _UpperCamelCase ) _lowercase =torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , _UpperCamelCase , atol=1e-4 ) )
5
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = {}, {} if padding is not None: UpperCAmelCase_ : List[str] = padding if truncation is not None: UpperCAmelCase_ : Tuple = truncation if top_k is not None: UpperCAmelCase_ : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> int: if isinstance(_UpperCamelCase , (Image.Image, str) ) and isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'question': question} else: UpperCAmelCase_ : List[str] = image UpperCAmelCase_ : Optional[Any] = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : Dict = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=_UpperCamelCase , truncation=_UpperCamelCase ) UpperCAmelCase_ : int = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = self.model(**_UpperCamelCase ) return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=5 ) -> str: if top_k > self.model.config.num_labels: UpperCAmelCase_ : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : List[str] = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ : str = probs.topk(_UpperCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase_ : Optional[Any] = scores.tolist() UpperCAmelCase_ : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase )]
29
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowercase ( _snake_case ): """simple docstring""" UpperCamelCase : Any = DistilBertTokenizer UpperCamelCase : int = DistilBertTokenizerFast UpperCamelCase : Optional[int] = True @slow def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=_UpperCamelCase ) lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_UpperCamelCase ) lowerCamelCase = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) lowerCamelCase = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
252
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version A__: Dict = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize A__: Union[str, Any] = '''\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n''' A__: List[str] = '''\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n''' A__: Tuple = '''\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Any ) -> List[Any]: '''simple docstring''' import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[str]=0.9 , SCREAMING_SNAKE_CASE :Tuple=3 , SCREAMING_SNAKE_CASE :str=0.5 ) -> List[str]: '''simple docstring''' if NLTK_VERSION >= version.Version("""3.6.5""" ): _a : Any =[ meteor_score.single_meteor_score( word_tokenize(_UpperCamelCase ) , word_tokenize(_UpperCamelCase ) , alpha=_UpperCamelCase , beta=_UpperCamelCase , gamma=_UpperCamelCase ) for ref, pred in zip(_UpperCamelCase , _UpperCamelCase ) ] else: _a : Dict =[ meteor_score.single_meteor_score(_UpperCamelCase , _UpperCamelCase , alpha=_UpperCamelCase , beta=_UpperCamelCase , gamma=_UpperCamelCase ) for ref, pred in zip(_UpperCamelCase , _UpperCamelCase ) ] return {"meteor": np.mean(_UpperCamelCase )}
276
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" for i in range(len(__snake_case ) - 1 , 0 , -1 ): __lowercase = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowercase = unsorted[j - 1], unsorted[j] __lowercase = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: __lowercase = unsorted[j + 1], unsorted[j] __lowercase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(f'{cocktail_shaker_sort(unsorted) = }')
104
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _snake_case ( _snake_case ): lowerCAmelCase_ : Tuple = '''trajectory_transformer''' lowerCAmelCase_ : Tuple = ['''past_key_values'''] lowerCAmelCase_ : int = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , a__=100 , a__=5 , a__=1 , a__=1 , a__=249 , a__=6 , a__=17 , a__=25 , a__=4 , a__=4 , a__=128 , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0_0_0_6 , a__=512 , a__=0.0_2 , a__=1e-12 , a__=1 , a__=True , a__=1 , a__=50_256 , a__=50_256 , **a__ , ) -> int: '''simple docstring''' snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
85
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowercase__ ( __snake_case : List[str] , __snake_case : int , __snake_case : Tuple=8 ): '''simple docstring''' UpperCAmelCase_ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase__ ( __snake_case : Any , __snake_case : int=512 , __snake_case : Dict=512 ): '''simple docstring''' UpperCAmelCase_ : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase_ : Dict = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase_ : Any = arr.astype(np.floataa ) / 127.5 - 1 UpperCAmelCase_ : Dict = np.transpose(__snake_case , [2, 0, 1] ) UpperCAmelCase_ : List[str] = torch.from_numpy(__snake_case ).unsqueeze(0 ) return image class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=_UpperCamelCase , scheduler=_UpperCamelCase , movq=_UpperCamelCase , ) UpperCAmelCase_ : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: # get the original timestep using init_timestep UpperCAmelCase_ : Any = min(int(num_inference_steps * strength ) , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Tuple: if not isinstance(_UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : List[str] = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) UpperCAmelCase_ : List[str] = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase_ : List[str] = image else: if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Any = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCamelCase ) ] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase , dim=0 ) else: UpperCAmelCase_ : Union[str, Any] = self.movq.encode(_UpperCamelCase ).latent_dist.sample(_UpperCamelCase ) UpperCAmelCase_ : int = self.movq.config.scaling_factor * init_latents UpperCAmelCase_ : Optional[int] = torch.cat([init_latents] , dim=0 ) UpperCAmelCase_ : Tuple = init_latents.shape UpperCAmelCase_ : List[Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents UpperCAmelCase_ : str = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = init_latents return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : Optional[Any] = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase_ : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = cpu_offload_with_hook(_UpperCamelCase , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) # We'll offload the last model manually. UpperCAmelCase_ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ) -> Dict: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 4.0 , _UpperCamelCase = 0.3 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> str: UpperCAmelCase_ : Any = self._execution_device UpperCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : str = torch.cat(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : int = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : int = negative_image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Tuple = [image] if not all(isinstance(_UpperCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) UpperCAmelCase_ : str = torch.cat([prepare_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in image] , dim=0 ) UpperCAmelCase_ : Any = image.to(dtype=image_embeds.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.movq.encode(_UpperCamelCase )['latents'] UpperCAmelCase_ : List[Any] = latents.repeat_interleave(_UpperCamelCase , dim=0 ) self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase_ , UpperCAmelCase_ : str = downscale_height_and_width(_UpperCamelCase , _UpperCamelCase , self.movq_scale_factor ) UpperCAmelCase_ : Dict = self.prepare_latents( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : str = {'image_embeds': image_embeds} UpperCAmelCase_ : Union[str, Any] = self.unet( sample=_UpperCamelCase , timestep=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , added_cond_kwargs=_UpperCamelCase , return_dict=_UpperCamelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : str = variance_pred.chunk(2 ) UpperCAmelCase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase , )[0] # post-processing UpperCAmelCase_ : Optional[Any] = self.movq.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[str] = image * 0.5 + 0.5 UpperCAmelCase_ : List[Any] = image.clamp(0 , 1 ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : List[Any] = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' from collections.abc import Callable import numpy as np def __UpperCAmelCase ( a_: Callable, a_: float, a_: float, a_: float, a_: float ): _UpperCAmelCase : str = int(np.ceil((x_end - xa) / step_size ) ) _UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) _UpperCAmelCase : Union[str, Any] = ya _UpperCAmelCase : List[Any] = xa for k in range(__snake_case ): _UpperCAmelCase : Any = y[k] + step_size * ode_func(__snake_case, y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
145
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase__ ( __snake_case : List[Any] , __snake_case : List[str]=False ): '''simple docstring''' try: UpperCAmelCase_ : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ : Optional[int] = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ : List[Any] = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value __UpperCAmelCase = parse_flag_from_env('RUN_SLOW', default=False) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skip('Test was skipped' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__snake_case ) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__snake_case ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__snake_case ) def lowercase__ ( __snake_case : Dict=None , __snake_case : Dict=None ): '''simple docstring''' if test_case is None: return partial(__snake_case , version=__snake_case ) return unittest.skipUnless(is_torch_version('>=' , __snake_case ) , F"test requires torch version >= {version}" )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__snake_case ) __UpperCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__snake_case ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = True @classmethod def __UpperCAmelCase ( cls ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = tempfile.mkdtemp() @classmethod def __UpperCAmelCase ( cls ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCAmelCase ( self ) -> str: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = AcceleratorState() UpperCAmelCase_ : str = tensor[None].clone().to(state.device ) UpperCAmelCase_ : List[str] = gather(__snake_case ).cpu() UpperCAmelCase_ : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __snake_case ): return False return True class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : str = returncode UpperCAmelCase_ : Optional[Any] = stdout UpperCAmelCase_ : Optional[Any] = stderr async def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' while True: UpperCAmelCase_ : Dict = await stream.readline() if line: callback(__snake_case ) else: break async def lowercase__ ( __snake_case : Optional[int] , __snake_case : Dict=None , __snake_case : str=None , __snake_case : Dict=None , __snake_case : List[str]=False , __snake_case : Optional[int]=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : str = [] def tee(__snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[int]="" ): UpperCAmelCase_ : List[str] = line.decode('utf-8' ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __snake_case : tee(__snake_case , __snake_case , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __snake_case : tee(__snake_case , __snake_case , sys.stderr , label='stderr:' ) ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[Any]=None , __snake_case : str=None , __snake_case : Tuple=180 , __snake_case : Dict=False , __snake_case : Optional[Any]=True ): '''simple docstring''' UpperCAmelCase_ : str = asyncio.get_event_loop() UpperCAmelCase_ : int = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) UpperCAmelCase_ : int = ' '.join(__snake_case ) if result.returncode > 0: UpperCAmelCase_ : int = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class lowerCamelCase (_snake_case ): '''simple docstring''' pass def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any]=False ): '''simple docstring''' try: UpperCAmelCase_ : List[Any] = subprocess.check_output(__snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__snake_case , 'decode' ): UpperCAmelCase_ : str = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__snake_case )}` failed with the following error:\n\n{e.output.decode()}" ) from e
29
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : int = 400_0000 ) -> Any: """simple docstring""" snake_case : int = [0, 1] snake_case : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case : str = 0 for j in range(len(__snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
203
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( _snake_case ): """simple docstring""" snake_case_ = (DDIMParallelScheduler,) snake_case_ = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = { 'num_train_timesteps': 1_000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**_UpperCamelCase ) return config def lowercase_ ( self , **lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(**_UpperCamelCase ) __lowerCamelCase = scheduler_class(**_UpperCamelCase ) __lowerCamelCase = 10, 0.0 __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for t in scheduler.timesteps: __lowerCamelCase = model(_UpperCamelCase , _UpperCamelCase ) __lowerCamelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def lowercase_ ( self ) -> List[str]: '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def lowercase_ ( self ) -> str: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCamelCase ) __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(steps_offset=1 ) __lowerCamelCase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def lowercase_ ( self ) -> int: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def lowercase_ ( self ) -> int: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCamelCase ) def lowercase_ ( self ) -> Any: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_UpperCamelCase ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_UpperCamelCase ) def lowercase_ ( self ) -> str: '''simple docstring''' self.check_over_configs(thresholding=_UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , ) def lowercase_ ( self ) -> int: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=_UpperCamelCase ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_UpperCamelCase , num_inference_steps=_UpperCamelCase ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_UpperCamelCase , eta=_UpperCamelCase ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**_UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**_UpperCamelCase ) __lowerCamelCase = 10, 0.0 scheduler.set_timesteps(_UpperCamelCase ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = self.dummy_sample_deter + 0.1 __lowerCamelCase = self.dummy_sample_deter - 0.1 __lowerCamelCase = samplea.shape[0] __lowerCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCamelCase = torch.arange(_UpperCamelCase )[0:3, None].repeat(1 , _UpperCamelCase ) __lowerCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCamelCase = scheduler.batch_step_no_noise(_UpperCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _UpperCamelCase ) __lowerCamelCase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowerCamelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.full_loop() __lowerCamelCase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowerCamelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.full_loop(prediction_type='v_prediction' ) __lowerCamelCase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowerCamelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def lowercase_ ( self ) -> Tuple: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __lowerCamelCase = self.full_loop(set_alpha_to_one=_UpperCamelCase , beta_start=0.01 ) __lowerCamelCase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowerCamelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __lowerCamelCase = self.full_loop(set_alpha_to_one=_UpperCamelCase , beta_start=0.01 ) __lowerCamelCase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowerCamelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
90
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
29
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a = logging.get_logger(__name__) a = {'vocab_file': 'vocab.txt'} a = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } a = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class SCREAMING_SNAKE_CASE__ ( _snake_case ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ConvBertTokenizer def __init__( self : Any , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : int=True , lowerCAmelCase : Optional[int]="[UNK]" , lowerCAmelCase : List[Any]="[SEP]" , lowerCAmelCase : Union[str, Any]="[PAD]" , lowerCAmelCase : List[Any]="[CLS]" , lowerCAmelCase : Dict="[MASK]" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : int=None , **lowerCAmelCase : Optional[int] , ): super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _UpperCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _UpperCamelCase ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_UpperCamelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_UpperCamelCase ) lowerCAmelCase = do_lower_case def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=None ): lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Any = None ): lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int = None ): lowerCAmelCase = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
155
def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ : Any = head.next, head while fast and fast.next: UpperCAmelCase_ : str = fast.next.next UpperCAmelCase_ : Union[str, Any] = slow.next UpperCAmelCase_ : int = slow.next UpperCAmelCase_ : List[Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ : Tuple = None while second: UpperCAmelCase_ : int = second.next UpperCAmelCase_ : Any = node UpperCAmelCase_ : Optional[Any] = second UpperCAmelCase_ : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Dict = head.next return True def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ : Any = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ : List[str] = [slow.val] while slow.next: UpperCAmelCase_ : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ : int = cur.next return True def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : int = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: UpperCAmelCase_ : List[Any] = [pos] UpperCAmelCase_ : Any = head.next pos += 1 UpperCAmelCase_ : Dict = pos - 1 UpperCAmelCase_ : Optional[int] = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: UpperCAmelCase_ : int = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
29
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _lowercase = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''BeitFeatureExtractor'''] _lowercase = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase="pt" ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : List[str] = {'add_prefix_space': True} if isinstance(__snake_case , __snake_case ) and not line.startswith(''' ''' ) else {} lowerCamelCase__ : str = padding_side return tokenizer( [line] , max_length=__snake_case , padding='''max_length''' if pad_to_max_length else None , truncation=__snake_case , return_tensors=__snake_case , add_special_tokens=__snake_case , **__snake_case , ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , ) -> List[Any]: """simple docstring""" lowerCamelCase__ : str = input_ids.ne(__snake_case ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __SCREAMING_SNAKE_CASE ( _snake_case ): def __init__( self : str , A : Optional[Any] , A : Any , A : Optional[int] , A : int , A : str="train" , A : Dict=None , A : Optional[Any]=None , A : int=None , A : Tuple="" , ) ->Any: super().__init__() lowerCamelCase__ : Optional[Any] = Path(_UpperCamelCase ).joinpath(type_path + '''.source''' ) lowerCamelCase__ : Dict = Path(_UpperCamelCase ).joinpath(type_path + '''.target''' ) lowerCamelCase__ : Optional[Any] = self.get_char_lens(self.src_file ) lowerCamelCase__ : Dict = max_source_length lowerCamelCase__ : List[Any] = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" lowerCamelCase__ : List[Any] = tokenizer lowerCamelCase__ : Tuple = prefix if n_obs is not None: lowerCamelCase__ : int = self.src_lens[:n_obs] lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : List[str] = tgt_lang def __len__( self : str ) ->Dict: return len(self.src_lens ) def __getitem__( self : List[Any] , A : List[str] ) ->Dict[str, torch.Tensor]: lowerCamelCase__ : Union[str, Any] = index + 1 # linecache starts at 1 lowerCamelCase__ : Any = self.prefix + linecache.getline(str(self.src_file ) , _UpperCamelCase ).rstrip('''\n''' ) lowerCamelCase__ : Optional[int] = linecache.getline(str(self.tgt_file ) , _UpperCamelCase ).rstrip('''\n''' ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCamelCase__ : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer ) lowerCamelCase__ : Optional[Any] = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer lowerCamelCase__ : str = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , '''right''' ) lowerCamelCase__ : List[Any] = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , '''right''' ) lowerCamelCase__ : Optional[Any] = source_inputs['input_ids'].squeeze() lowerCamelCase__ : Any = target_inputs['input_ids'].squeeze() lowerCamelCase__ : int = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( A : Any ) ->Optional[int]: return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def __lowerCamelCase ( self : int , A : List[str] ) ->Dict[str, torch.Tensor]: lowerCamelCase__ : List[str] = torch.stack([x['''input_ids'''] for x in batch] ) lowerCamelCase__ : int = torch.stack([x['''attention_mask'''] for x in batch] ) lowerCamelCase__ : Tuple = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCamelCase__ : Tuple = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) lowerCamelCase__ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) lowerCamelCase__ : Union[str, Any] = trim_batch(_UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _A : List[str] = getLogger(__name__) def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" return list(itertools.chain.from_iterable(__snake_case ) ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Union[str, Any] = get_git_info() save_json(__snake_case , os.path.join(__snake_case , '''git_log.json''' ) ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=4 , **UpperCAmelCase ) -> str: """simple docstring""" with open(__snake_case , '''w''' ) as f: json.dump(__snake_case , __snake_case , indent=__snake_case , **__snake_case ) def _a ( UpperCAmelCase ) -> str: """simple docstring""" with open(__snake_case ) as f: return json.load(__snake_case ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : int = git.Repo(search_parent_directories=__snake_case ) lowerCamelCase__ : Tuple = { 'repo_id': str(__snake_case ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" return list(map(__snake_case , __snake_case ) ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" with open(__snake_case , '''wb''' ) as f: return pickle.dump(__snake_case , __snake_case ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" def remove_articles(UpperCAmelCase ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , __snake_case ) def white_space_fix(UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Any = normalize_answer(__snake_case ).split() lowerCamelCase__ : str = normalize_answer(__snake_case ).split() lowerCamelCase__ : Tuple = Counter(__snake_case ) & Counter(__snake_case ) lowerCamelCase__ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 lowerCamelCase__ : List[Any] = 1.0 * num_same / len(__snake_case ) lowerCamelCase__ : Tuple = 1.0 * num_same / len(__snake_case ) lowerCamelCase__ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" return normalize_answer(__snake_case ) == normalize_answer(__snake_case ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" assert len(__snake_case ) == len(__snake_case ) lowerCamelCase__ : Any = 0 for hypo, pred in zip(__snake_case , __snake_case ): em += exact_match_score(__snake_case , __snake_case ) if len(__snake_case ) > 0: em /= len(__snake_case ) return {"em": em} def _a ( UpperCAmelCase ) -> str: """simple docstring""" return model_prefix.startswith('''rag''' ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCamelCase__ : str = 'dropout_rate' for p in extra_params: if getattr(__snake_case , __snake_case , __snake_case ): if not hasattr(__snake_case , __snake_case ) and not hasattr(__snake_case , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(__snake_case ) ) delattr(__snake_case , __snake_case ) continue lowerCamelCase__ : Optional[Any] = p if hasattr(__snake_case , __snake_case ) else equivalent_param[p] setattr(__snake_case , __snake_case , getattr(__snake_case , __snake_case ) ) delattr(__snake_case , __snake_case ) return hparams, config
142
__UpperCAmelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
0
from __future__ import annotations def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
5
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = True @register_to_config def __init__( self , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = ("DownEncoderBlock2D",) , _UpperCamelCase = ("UpDecoderBlock2D",) , _UpperCamelCase = (6_4,) , _UpperCamelCase = 1 , _UpperCamelCase = "silu" , _UpperCamelCase = 4 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[str] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder UpperCAmelCase_ : Dict = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) UpperCAmelCase_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ : List[Any] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : int = False # only relevant if vae tiling is enabled UpperCAmelCase_ : Optional[int] = self.config.sample_size UpperCAmelCase_ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : Optional[Any] = 0.25 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[str]: if isinstance(_UpperCamelCase , (Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> int: UpperCAmelCase_ : Tuple = use_tiling def __UpperCAmelCase ( self ) -> Dict: self.enable_tiling(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = True def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : Optional[int] = {} def fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): UpperCAmelCase_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : Union[str, Any] = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) UpperCAmelCase_ : str = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : List[str] = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : Any = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): UpperCAmelCase_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : List[str] = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : Any = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : Dict = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : str = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Dict = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=2 ) UpperCAmelCase_ : List[Any] = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Union[str, Any] = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : Optional[Any] = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Union[str, Any] = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = sample UpperCAmelCase_ : Union[str, Any] = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: UpperCAmelCase_ : str = posterior.sample(generator=_UpperCamelCase ) else: UpperCAmelCase_ : int = posterior.mode() UpperCAmelCase_ : Dict = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
29
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels UpperCAmelCase : Dict = object() # For specifying empty leaf dict `{}` UpperCAmelCase : List[str] = object() def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] ): '''simple docstring''' lowerCamelCase = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(__snake_case ) - len(__snake_case ) + 1 ): lowerCamelCase = [x.match(__snake_case ) for x, y in zip(__snake_case , ks[i:] )] if matches and all(__snake_case ): return True return False def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' def replace(lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] ): for rule, replacement in rules: if _match(__snake_case , __snake_case ): return replacement return val return replace def __lowerCamelCase ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , __snake_case )), (("transformer", "wte", "embedding"), P("""mp""" , __snake_case )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__snake_case , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , __snake_case )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__snake_case , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , __snake_case )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' lowerCamelCase = _get_partition_rules() lowerCamelCase = _replacement_rules(__snake_case ) lowerCamelCase = {k: _unmatched for k in flatten_dict(__snake_case )} lowerCamelCase = {k: replace(__snake_case , __snake_case ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__snake_case ) )
252
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase_ : Tuple = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Union[str, Any] = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : List[Any] = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ) -> List[Any]: _a : Any =[False] * len(__snake_case ) _a : Dict =[-1] * len(__snake_case ) def dfs(_UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple ): _a : Optional[Any] =True _a : Dict =c for u in graph[v]: if not visited[u]: dfs(__snake_case ,1 - c ) for i in range(len(__snake_case ) ): if not visited[i]: dfs(__snake_case ,0 ) for i in range(len(__snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A__: str = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
276
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt'} __UpperCAmelCase = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __UpperCAmelCase = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __UpperCAmelCase = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_INIT_CONFIGURATION _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ConvBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> Dict: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ : Any = getattr(_UpperCamelCase , normalizer_state.pop('type' ) ) UpperCAmelCase_ : str = do_lower_case UpperCAmelCase_ : List[Any] = strip_accents UpperCAmelCase_ : str = tokenize_chinese_chars UpperCAmelCase_ : Tuple = normalizer_class(**_UpperCamelCase ) UpperCAmelCase_ : Any = do_lower_case def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[str]: UpperCAmelCase_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
29
0
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _A ( A__ , A__=0 ): """simple docstring""" return sorted(__snake_case , key=lambda A__ : x[column] ) def _A ( A__ , A__ , A__=float('''inf''' ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , __snake_case ): __lowercase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __lowercase = current_dis return min_dis def _A ( A__ , A__ , A__=float('''inf''' ) ): """simple docstring""" for i in range(min(6 , points_counts - 1 ) , __snake_case ): for j in range(max(0 , i - 6 ) , __snake_case ): __lowercase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __lowercase = current_dis return min_dis def _A ( A__ , A__ , A__ ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(__snake_case , __snake_case ) # recursion __lowercase = points_counts // 2 __lowercase = closest_pair_of_points_sqr( __snake_case , points_sorted_on_y[:mid] , __snake_case ) __lowercase = closest_pair_of_points_sqr( __snake_case , points_sorted_on_y[mid:] , points_counts - mid ) __lowercase = min(__snake_case , __snake_case ) __lowercase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__snake_case ) __lowercase = dis_between_closest_in_strip( __snake_case , len(__snake_case ) , __snake_case ) return min(__snake_case , __snake_case ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = column_based_sort(__snake_case , column=0 ) __lowercase = column_based_sort(__snake_case , column=1 ) return ( closest_pair_of_points_sqr( __snake_case , __snake_case , __snake_case ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
104
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = '''efficientformer''' def __init__( self , _UpperCamelCase = [3, 2, 6, 4] , _UpperCamelCase = [4_8, 9_6, 2_2_4, 4_4_8] , _UpperCamelCase = [True, True, True, True] , _UpperCamelCase = 4_4_8 , _UpperCamelCase = 3_2 , _UpperCamelCase = 4 , _UpperCamelCase = 7 , _UpperCamelCase = 5 , _UpperCamelCase = 8 , _UpperCamelCase = 4 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1_6 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 2 , _UpperCamelCase = 1 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1 , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1E-5 , _UpperCamelCase = "gelu" , _UpperCamelCase = 0.02 , _UpperCamelCase = 1E-12 , _UpperCamelCase = 2_2_4 , _UpperCamelCase = 1E-05 , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = hidden_sizes UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[Any] = depths UpperCAmelCase_ : List[Any] = mlp_expansion_ratio UpperCAmelCase_ : List[str] = downsamples UpperCAmelCase_ : List[Any] = dim UpperCAmelCase_ : Tuple = key_dim UpperCAmelCase_ : Optional[int] = attention_ratio UpperCAmelCase_ : str = resolution UpperCAmelCase_ : Dict = pool_size UpperCAmelCase_ : Union[str, Any] = downsample_patch_size UpperCAmelCase_ : List[str] = downsample_stride UpperCAmelCase_ : List[str] = downsample_pad UpperCAmelCase_ : Any = drop_path_rate UpperCAmelCase_ : Dict = num_metaad_blocks UpperCAmelCase_ : Dict = distillation UpperCAmelCase_ : int = use_layer_scale UpperCAmelCase_ : Any = layer_scale_init_value UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Dict = batch_norm_eps
29
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class _snake_case ( _snake_case ): lowerCAmelCase_ : Dict = ['''pixel_values'''] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BICUBIC , a__ = True , a__ = 1 / 255 , a__ = True , a__ = None , a__ = None , a__ = True , **a__ , ) -> None: '''simple docstring''' super().__init__(**_UpperCamelCase ) snake_case_ = size if size is not None else {'height': 384, 'width': 384} snake_case_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case_ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case_ = do_convert_rgb def lowerCAmelCase__ ( self , a__ , a__ , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ) -> np.ndarray: '''simple docstring''' snake_case_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) snake_case_ = (size['height'], size['width']) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def lowerCAmelCase__ ( self , a__ , a__ , a__ = None , **a__ , ) -> Dict: '''simple docstring''' return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ = None , **a__ , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def lowerCAmelCase__ ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ) -> PIL.Image.Image: '''simple docstring''' snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = resample if resample is not None else self.resample snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) snake_case_ = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(_UpperCamelCase ) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: snake_case_ = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] snake_case_ = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] snake_case_ = BatchFeature(data={"pixel_values": images} , tensor_type=_UpperCamelCase ) return encoded_outputs
85
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Any: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: if latents is None: UpperCAmelCase_ : str = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase_ : Tuple = latents.to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : int = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> str: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : int = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : Optional[int] = self.image_processor(_UpperCamelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase_ : Tuple = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.image_encoder(_UpperCamelCase )['last_hidden_state'] UpperCAmelCase_ : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase_ : List[str] = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Dict = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 2_5 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 4.0 , _UpperCamelCase = 6_4 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Union[str, Any]: if isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ : Tuple = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : str = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase_ : Optional[int] = len(_UpperCamelCase ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Tuple = self._execution_device UpperCAmelCase_ : str = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : str = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ : int = self.scheduler.timesteps UpperCAmelCase_ : int = self.prior.config.num_embeddings UpperCAmelCase_ : Any = self.prior.config.embedding_dim UpperCAmelCase_ : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase_ : List[Any] = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Optional[Any] = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = [] for i, latent in enumerate(_UpperCamelCase ): print() UpperCAmelCase_ : List[str] = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) UpperCAmelCase_ : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase_ : List[str] = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' from string import ascii_uppercase __a = {char: i for i, char in enumerate(ascii_uppercase)} __a = dict(enumerate(ascii_uppercase)) def __UpperCAmelCase ( a_: str, a_: str ): _UpperCAmelCase : Any = len(__snake_case ) _UpperCAmelCase : Optional[Any] = 0 while True: if x == i: _UpperCAmelCase : List[Any] = 0 if len(__snake_case ) == len(__snake_case ): break key += key[i] i += 1 return key def __UpperCAmelCase ( a_: str, a_: str ): _UpperCAmelCase : List[str] = '' _UpperCAmelCase : List[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: _UpperCAmelCase : Optional[Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __UpperCAmelCase ( a_: str, a_: str ): _UpperCAmelCase : Any = '' _UpperCAmelCase : List[Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = 'THE GERMAN ATTACK' _UpperCAmelCase : Optional[int] = 'SECRET' _UpperCAmelCase : List[Any] = generate_key(__snake_case, __snake_case ) _UpperCAmelCase : str = cipher_text(__snake_case, __snake_case ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(__snake_case, __snake_case )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
145
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCAmelCase ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any: if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCAmelCase ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : List[str] = logging.get_logger() # the current default level is logging.WARNING snake_case : str = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_UpperCamelCase ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Dict = logging.get_verbosity() snake_case : List[str] = logging.get_logger("transformers.models.bart.tokenization_bart" ) snake_case : Dict = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_UpperCamelCase ) as cl: logger.warning(_UpperCamelCase ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_UpperCamelCase ) as cl: logger.warning(_UpperCamelCase ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_UpperCamelCase ) as cl: logger.warning(_UpperCamelCase ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(_UpperCamelCase ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var snake_case : List[str] = logging.get_logger("transformers.models.bart.tokenization_bart" ) snake_case : Tuple = os.getenv("TRANSFORMERS_VERBOSITY" , _UpperCamelCase ) snake_case : List[str] = logging.log_levels[env_level_str] snake_case : Dict = logging.get_verbosity() self.assertEqual( _UpperCamelCase , _UpperCamelCase , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level snake_case : Tuple = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() snake_case : Any = logging.logging.getLogger() with CaptureLogger(_UpperCamelCase ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() snake_case : Optional[Any] = logging.get_logger("transformers.models.bart.tokenization_bart" ) snake_case : Dict = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(_UpperCamelCase ) as cl: logger.warning_advice(_UpperCamelCase ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_UpperCamelCase ) as cl: logger.warning_advice(_UpperCamelCase ) self.assertEqual(cl.out , msg + "\n" ) def __lowerCAmelCase ( ) -> List[Any]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
203
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=0.9_99 , UpperCamelCase__ : str="cosine" , ) -> List[str]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCamelCase = [] for i in range(__snake_case ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class __lowerCAmelCase ( _snake_case , _snake_case ): """simple docstring""" snake_case_ = [e.name for e in KarrasDiffusionSchedulers] snake_case_ = 2 @register_to_config def __init__( self , lowerCamelCase__ = 1_000 , lowerCamelCase__ = 0.0_00_85 , lowerCamelCase__ = 0.0_12 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = "linspace" , lowerCamelCase__ = 0 , ) -> Optional[Any]: '''simple docstring''' if trained_betas is not None: __lowerCamelCase = torch.tensor(_UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(_UpperCamelCase ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> List[Any]: '''simple docstring''' if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(_UpperCamelCase ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(_UpperCamelCase ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' __lowerCamelCase = self.index_for_timestep(_UpperCamelCase ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> List[str]: '''simple docstring''' __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , _UpperCamelCase , dtype=_UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , _UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(_UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(_UpperCamelCase , 0 , -step_ratio )).round().copy().astype(_UpperCamelCase ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(_UpperCamelCase ) ).to(_UpperCamelCase ) __lowerCamelCase = np.interp(_UpperCamelCase , np.arange(0 , len(_UpperCamelCase ) ) , _UpperCamelCase ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(_UpperCamelCase ).to(device=_UpperCamelCase ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_UpperCamelCase ).startswith('mps' ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(_UpperCamelCase ).to(_UpperCamelCase , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(_UpperCamelCase ).to(_UpperCamelCase ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(_UpperCamelCase ).to(_UpperCamelCase , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(_UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowercase_ ( self ) -> int: '''simple docstring''' return self.sample is None def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' __lowerCamelCase = self.index_for_timestep(_UpperCamelCase ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(_UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_UpperCamelCase ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(_UpperCamelCase , _UpperCamelCase ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Union[str, Any]: '''simple docstring''' return self.config.num_train_timesteps
90
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
0
"""simple docstring""" def lowercase (snake_case__ : str , snake_case__ : str = " " ) -> Dict: '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = 0 for index, char in enumerate(__snake_case ): if char == separator: split_words.append(string[last_index:index] ) lowerCAmelCase = index + 1 elif index + 1 == len(__snake_case ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
155
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' import bza UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase_ : str = bytes(__snake_case , 'utf-8' ) with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase_ : Dict = bytes(__snake_case , 'utf-8' ) with gzip.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lza.frame.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__snake_case , 'w' ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' import lzma UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lzma.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' import zipfile UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase_ : List[str] = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict(__snake_case ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: UpperCAmelCase_ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__snake_case , 'rb' ) as f: UpperCAmelCase_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase_ : Dict = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__snake_case , 'wb' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetWriter(__snake_case , schema=__snake_case ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Optional[int] = {'data': DATA} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Tuple = {'data': DATA_DICT_OF_LISTS} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int , __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ['0', '1', '2', '3'] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['0', '1', '2', '3'] UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = ['0', '1', '2', '3'] UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename('unsupported.ext' ) ) f.write(__snake_case , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
29
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=_snake_case ): '''simple docstring''' _lowerCamelCase: List[Any] = ['''speech'''] def __init__( self : Optional[Any] ,*A_ : int ,**A_ : str ) -> Optional[Any]: requires_backends(self ,['speech'] ) class lowerCAmelCase_ ( metaclass=_snake_case ): '''simple docstring''' _lowerCamelCase: int = ['''speech'''] def __init__( self : Tuple ,*A_ : int ,**A_ : str ) -> Any: requires_backends(self ,['speech'] )
74
from __future__ import annotations def lowercase__ ( __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position UpperCAmelCase_ : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : Optional[Any] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase__ ( __snake_case : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase__ ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = position if board[y][x] == 0: UpperCAmelCase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True UpperCAmelCase_ : List[Any] = 0 return False def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): UpperCAmelCase_ : Optional[Any] = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[str] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
_A : str = { 'km/h': 1.0, 'm/s': 3.6, 'mph': 1.609_344, 'knot': 1.852, } _A : Dict = { 'km/h': 1.0, 'm/s': 0.277_777_778, 'mph': 0.621_371_192, 'knot': 0.539_956_803, } def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowerCamelCase__ : Optional[int] = ( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(__snake_case )}" ) raise ValueError(__snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
142
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : list[list[int]] = [[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase_ : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __UpperCAmelCase = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __UpperCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" if (ksize % 2) == 0: _lowercase =ksize + 1 _lowercase =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__snake_case ): for x in range(__snake_case ): # distance from center _lowercase =x - ksize // 2 _lowercase =y - ksize // 2 # degree to radiant _lowercase =theta / 180 * np.pi _lowercase =np.cos(_theta ) _lowercase =np.sin(_theta ) # get kernel x _lowercase =cos_theta * px + sin_theta * py # get kernel y _lowercase =-sin_theta * px + cos_theta * py # fill kernel _lowercase =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image UpperCAmelCase__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value UpperCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges UpperCAmelCase__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: UpperCAmelCase__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) UpperCAmelCase__ = out / out.max() * 255 UpperCAmelCase__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
5
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = {}, {} if padding is not None: UpperCAmelCase_ : List[str] = padding if truncation is not None: UpperCAmelCase_ : Tuple = truncation if top_k is not None: UpperCAmelCase_ : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> int: if isinstance(_UpperCamelCase , (Image.Image, str) ) and isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'question': question} else: UpperCAmelCase_ : List[str] = image UpperCAmelCase_ : Optional[Any] = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : Dict = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=_UpperCamelCase , truncation=_UpperCamelCase ) UpperCAmelCase_ : int = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = self.model(**_UpperCamelCase ) return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=5 ) -> str: if top_k > self.model.config.num_labels: UpperCAmelCase_ : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : List[str] = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ : str = probs.topk(_UpperCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase_ : Optional[Any] = scores.tolist() UpperCAmelCase_ : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase )]
29
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __lowercase ( _snake_case ): """simple docstring""" def __A ( self , A ) -> int: '''simple docstring''' with open(_UpperCamelCase , encoding="""utf-8""" ) as input_file: lowerCamelCase = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) lowerCamelCase = input_file.read() lowerCamelCase = regexp.search(_UpperCamelCase ) return match def __A ( self , A ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCamelCase , encoding="""utf-8""" ) as input_file: lowerCamelCase = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) lowerCamelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCamelCase = regexp.finditer(_UpperCamelCase ) lowerCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = Path("""./datasets""" ) lowerCamelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCamelCase ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = Path("""./datasets""" ) lowerCamelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCamelCase ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
252
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A__: Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class A__ ( _snake_case , unittest.TestCase ): __UpperCamelCase : int = XLNetTokenizer __UpperCamelCase : int = XLNetTokenizerFast __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : List[Any] = True def __UpperCAmelCase ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _a : Optional[Any] =XLNetTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' _a : Dict ='<s>' _a : str =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' _a : str =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(_UpperCamelCase ) , 1_0_0_6 ) def __UpperCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' _a : Optional[Any] =XLNetTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _a : Tuple =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) _a : int =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _a : Optional[int] =tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) _a : Union[str, Any] =tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' _a : List[Any] =XLNetTokenizer(_UpperCamelCase , do_lower_case=_UpperCamelCase ) _a : List[str] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def __UpperCAmelCase ( self :str ) -> Any: '''simple docstring''' _a : Dict =XLNetTokenizer(_UpperCamelCase , do_lower_case=_UpperCamelCase ) _a : List[Any] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def __UpperCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' _a : str =XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _a : Union[str, Any] =tokenizer.encode("""sequence builders""" , add_special_tokens=_UpperCamelCase ) _a : List[Any] =tokenizer.encode("""multi-sequence build""" , add_special_tokens=_UpperCamelCase ) _a : Optional[int] =tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) _a : Tuple =tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __UpperCAmelCase ( self :Dict ) -> str: '''simple docstring''' # fmt: off _a : List[Any] ={'input_ids': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
276
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
0
'''simple docstring''' import math import sys def _A ( A__ ): """simple docstring""" __lowercase = '' try: with open(__snake_case , '''rb''' ) as binary_file: __lowercase = binary_file.read() for dat in data: __lowercase = F"{dat:08b}" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def _A ( A__ ): """simple docstring""" __lowercase = {'0': '0', '1': '1'} __lowercase = '', '' __lowercase = len(__snake_case ) for i in range(len(__snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowercase = lexicon[curr_string] result += last_match_id __lowercase = last_match_id + '0' if math.loga(__snake_case ).is_integer(): __lowercase = {} for curr_key in list(__snake_case ): __lowercase = lexicon.pop(__snake_case ) __lowercase = new_lex __lowercase = last_match_id + '1' index += 1 __lowercase = '' return result def _A ( A__ , A__ ): """simple docstring""" __lowercase = 8 try: with open(__snake_case , '''wb''' ) as opened_file: __lowercase = [ to_write[i : i + byte_length] for i in range(0 , len(__snake_case ) , __snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def _A ( A__ ): """simple docstring""" __lowercase = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowercase = data_bits[counter:] __lowercase = data_bits[counter + 1 :] return data_bits def _A ( A__ , A__ ): """simple docstring""" __lowercase = read_file_binary(__snake_case ) __lowercase = remove_prefix(__snake_case ) __lowercase = decompress_data(__snake_case ) write_file_binary(__snake_case , __snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
104
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
0
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _SCREAMING_SNAKE_CASE : Dict = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def UpperCamelCase_( snake_case : int , snake_case : Union[str, Any] ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def UpperCamelCase_( snake_case : Dict ): '''simple docstring''' snake_case_ = _TestCommandArgs(dataset=__snake_case , all_configs=__snake_case , save_infos=__snake_case ) snake_case_ = TestCommand(*__snake_case ) test_command.run() snake_case_ = os.path.join(__snake_case , "README.md" ) assert os.path.exists(__snake_case ) snake_case_ = DatasetInfosDict.from_directory(__snake_case ) snake_case_ = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_3_5_1_5_6_3, "num_examples": 1_0_0_0_0, }, { "name": "validation", "num_bytes": 2_3_8_4_1_8, "num_examples": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: snake_case_ = getattr(dataset_infos["default"] , __snake_case ), getattr(expected_dataset_infos["default"] , __snake_case ) if key == "num_bytes": assert is_apercent_close(__snake_case , __snake_case ) elif key == "splits": assert list(__snake_case ) == list(__snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
85
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowercase__ ( __snake_case : List[str] , __snake_case : int , __snake_case : Tuple=8 ): '''simple docstring''' UpperCAmelCase_ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase__ ( __snake_case : Any , __snake_case : int=512 , __snake_case : Dict=512 ): '''simple docstring''' UpperCAmelCase_ : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase_ : Dict = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase_ : Any = arr.astype(np.floataa ) / 127.5 - 1 UpperCAmelCase_ : Dict = np.transpose(__snake_case , [2, 0, 1] ) UpperCAmelCase_ : List[str] = torch.from_numpy(__snake_case ).unsqueeze(0 ) return image class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=_UpperCamelCase , scheduler=_UpperCamelCase , movq=_UpperCamelCase , ) UpperCAmelCase_ : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: # get the original timestep using init_timestep UpperCAmelCase_ : Any = min(int(num_inference_steps * strength ) , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Tuple: if not isinstance(_UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : List[str] = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) UpperCAmelCase_ : List[str] = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase_ : List[str] = image else: if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Any = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCamelCase ) ] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase , dim=0 ) else: UpperCAmelCase_ : Union[str, Any] = self.movq.encode(_UpperCamelCase ).latent_dist.sample(_UpperCamelCase ) UpperCAmelCase_ : int = self.movq.config.scaling_factor * init_latents UpperCAmelCase_ : Optional[int] = torch.cat([init_latents] , dim=0 ) UpperCAmelCase_ : Tuple = init_latents.shape UpperCAmelCase_ : List[Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents UpperCAmelCase_ : str = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = init_latents return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : Optional[Any] = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase_ : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = cpu_offload_with_hook(_UpperCamelCase , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) # We'll offload the last model manually. UpperCAmelCase_ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ) -> Dict: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 4.0 , _UpperCamelCase = 0.3 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> str: UpperCAmelCase_ : Any = self._execution_device UpperCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : str = torch.cat(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : int = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : int = negative_image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Tuple = [image] if not all(isinstance(_UpperCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) UpperCAmelCase_ : str = torch.cat([prepare_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in image] , dim=0 ) UpperCAmelCase_ : Any = image.to(dtype=image_embeds.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.movq.encode(_UpperCamelCase )['latents'] UpperCAmelCase_ : List[Any] = latents.repeat_interleave(_UpperCamelCase , dim=0 ) self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase_ , UpperCAmelCase_ : str = downscale_height_and_width(_UpperCamelCase , _UpperCamelCase , self.movq_scale_factor ) UpperCAmelCase_ : Dict = self.prepare_latents( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : str = {'image_embeds': image_embeds} UpperCAmelCase_ : Union[str, Any] = self.unet( sample=_UpperCamelCase , timestep=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , added_cond_kwargs=_UpperCamelCase , return_dict=_UpperCamelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : str = variance_pred.chunk(2 ) UpperCAmelCase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase , )[0] # post-processing UpperCAmelCase_ : Optional[Any] = self.movq.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[str] = image * 0.5 + 0.5 UpperCAmelCase_ : List[Any] = image.clamp(0 , 1 ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : List[Any] = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class A__ ( _snake_case ): """simple docstring""" UpperCamelCase_ : str = '''visual_bert''' def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int]=3_0_5_2_2 , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : str=5_1_2 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Optional[int]=1_2 , lowerCAmelCase__ : List[Any]=3_0_7_2 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=5_1_2 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : int=1e-12 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : str=2 , **lowerCAmelCase__ : int , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : Any = visual_embedding_dim _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Any = bypass_transformer _UpperCAmelCase : Union[str, Any] = special_visual_initialize
145
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase__ ( __snake_case : List[Any] , __snake_case : List[str]=False ): '''simple docstring''' try: UpperCAmelCase_ : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ : Optional[int] = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ : List[Any] = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value __UpperCAmelCase = parse_flag_from_env('RUN_SLOW', default=False) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skip('Test was skipped' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__snake_case ) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__snake_case ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__snake_case ) def lowercase__ ( __snake_case : Dict=None , __snake_case : Dict=None ): '''simple docstring''' if test_case is None: return partial(__snake_case , version=__snake_case ) return unittest.skipUnless(is_torch_version('>=' , __snake_case ) , F"test requires torch version >= {version}" )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__snake_case ) __UpperCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__snake_case ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = True @classmethod def __UpperCAmelCase ( cls ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = tempfile.mkdtemp() @classmethod def __UpperCAmelCase ( cls ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCAmelCase ( self ) -> str: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = AcceleratorState() UpperCAmelCase_ : str = tensor[None].clone().to(state.device ) UpperCAmelCase_ : List[str] = gather(__snake_case ).cpu() UpperCAmelCase_ : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __snake_case ): return False return True class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : str = returncode UpperCAmelCase_ : Optional[Any] = stdout UpperCAmelCase_ : Optional[Any] = stderr async def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' while True: UpperCAmelCase_ : Dict = await stream.readline() if line: callback(__snake_case ) else: break async def lowercase__ ( __snake_case : Optional[int] , __snake_case : Dict=None , __snake_case : str=None , __snake_case : Dict=None , __snake_case : List[str]=False , __snake_case : Optional[int]=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : str = [] def tee(__snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[int]="" ): UpperCAmelCase_ : List[str] = line.decode('utf-8' ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __snake_case : tee(__snake_case , __snake_case , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __snake_case : tee(__snake_case , __snake_case , sys.stderr , label='stderr:' ) ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[Any]=None , __snake_case : str=None , __snake_case : Tuple=180 , __snake_case : Dict=False , __snake_case : Optional[Any]=True ): '''simple docstring''' UpperCAmelCase_ : str = asyncio.get_event_loop() UpperCAmelCase_ : int = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) UpperCAmelCase_ : int = ' '.join(__snake_case ) if result.returncode > 0: UpperCAmelCase_ : int = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class lowerCamelCase (_snake_case ): '''simple docstring''' pass def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any]=False ): '''simple docstring''' try: UpperCAmelCase_ : List[Any] = subprocess.check_output(__snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__snake_case , 'decode' ): UpperCAmelCase_ : str = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__snake_case )}` failed with the following error:\n\n{e.output.decode()}" ) from e
29
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : List[str] , lowercase : str , lowercase : int , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : str ) -> Dict: """simple docstring""" if index == r: for j in range(__snake_case ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location snake_case : Tuple = arr[i] combination_util(__snake_case , __snake_case , __snake_case , index + 1 , __snake_case , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCAmelCase ( lowercase : List[str] , lowercase : List[str] , lowercase : Dict ) -> str: """simple docstring""" snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(__snake_case , __snake_case , __snake_case , 0 , __snake_case , 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
203
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
0
def lowerCamelCase_ ( UpperCamelCase__ : dict ) -> Dict: """simple docstring""" __lowerCamelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowerCamelCase = set() return any( node not in visited and depth_first_search(__snake_case , __snake_case , __snake_case , __snake_case ) for node in graph ) def lowerCamelCase_ ( UpperCamelCase__ : dict , UpperCamelCase__ : int , UpperCamelCase__ : set , UpperCamelCase__ : set ) -> Any: """simple docstring""" visited.add(__snake_case ) rec_stk.add(__snake_case ) for node in graph[vertex]: if node not in visited: if depth_first_search(__snake_case , __snake_case , __snake_case , __snake_case ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__snake_case ) return False if __name__ == "__main__": from doctest import testmod testmod()
90
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
29
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = '▁' a = {'vocab_file': 'sentencepiece.bpe.model'} a = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } a = { 'facebook/mbart-large-50-one-to-many-mmt': 1_0_2_4, } # fmt: off a = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class SCREAMING_SNAKE_CASE__ ( _snake_case ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_VOCAB_FILES_MAP _a = ['''input_ids''', '''attention_mask'''] _a = [] _a = [] def __init__( self : Any , lowerCAmelCase : str , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Tuple="<s>" , lowerCAmelCase : Any="<unk>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : List[Any]="<mask>" , lowerCAmelCase : int = None , **lowerCAmelCase : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase = 1 lowerCAmelCase = len(self.sp_model ) lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase = src_lang if src_lang is not None else 'en_XX' lowerCAmelCase = self.lang_code_to_id[self._src_lang] lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowercase ( self : str ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowercase ( self : Optional[Any] ): return self._src_lang @src_lang.setter def __lowercase ( self : List[Any] , lowerCAmelCase : Tuple ): lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self : Optional[Any] , lowerCAmelCase : Tuple ): lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : List[str] , lowerCAmelCase : Dict ): return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __lowercase ( self : int , lowerCAmelCase : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowercase ( self : Any , lowerCAmelCase : int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowercase ( self : Optional[Any] , lowerCAmelCase : int ): lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) lowerCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def __lowercase ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , """wb""" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __lowercase ( self : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] = None , lowerCAmelCase : Optional[Any] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) lowerCAmelCase = [1] * len(self.prefix_tokens ) lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def __lowercase ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCAmelCase = src_lang lowerCAmelCase = self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase = self.convert_tokens_to_ids(_UpperCamelCase ) lowerCAmelCase = tgt_lang_id return inputs def __lowercase ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple = "en_XX" , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = "ro_RO" , **lowerCAmelCase : Any , ): lowerCAmelCase = src_lang lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def __lowercase ( self : str ): return self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self : Optional[int] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self : Tuple , lowerCAmelCase : int ): lowerCAmelCase = self.lang_code_to_id[src_lang] lowerCAmelCase = [self.cur_lang_code_id] lowerCAmelCase = [self.eos_token_id] def __lowercase ( self : str , lowerCAmelCase : str ): lowerCAmelCase = self.lang_code_to_id[tgt_lang] lowerCAmelCase = [self.cur_lang_code_id] lowerCAmelCase = [self.eos_token_id]
155
def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ : Any = head.next, head while fast and fast.next: UpperCAmelCase_ : str = fast.next.next UpperCAmelCase_ : Union[str, Any] = slow.next UpperCAmelCase_ : int = slow.next UpperCAmelCase_ : List[Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ : Tuple = None while second: UpperCAmelCase_ : int = second.next UpperCAmelCase_ : Any = node UpperCAmelCase_ : Optional[Any] = second UpperCAmelCase_ : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Dict = head.next return True def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ : Any = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ : List[str] = [slow.val] while slow.next: UpperCAmelCase_ : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ : int = cur.next return True def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : int = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: UpperCAmelCase_ : List[Any] = [pos] UpperCAmelCase_ : Any = head.next pos += 1 UpperCAmelCase_ : Dict = pos - 1 UpperCAmelCase_ : Optional[int] = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: UpperCAmelCase_ : int = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
29
0
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Dict="shi-labs/oneformer_demo" ): with open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) as f: A = json.load(__snake_case ) A = {} A = [] A = [] for key, info in class_info.items(): A = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(__snake_case ) ) A = thing_ids A = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple ,A_ : Union[str, Any] ,A_ : str=7 ,A_ : int=3 ,A_ : Tuple=30 ,A_ : Optional[Any]=400 ,A_ : int=None ,A_ : List[str]=True ,A_ : Union[str, Any]=True ,A_ : List[str]=[0.5, 0.5, 0.5] ,A_ : Union[str, Any]=[0.5, 0.5, 0.5] ,A_ : List[Any]=10 ,A_ : Tuple=False ,A_ : str=255 ,A_ : Union[str, Any]="shi-labs/oneformer_demo" ,A_ : Any="ade20k_panoptic.json" ,A_ : Optional[Any]=10 ,) -> Tuple: A = parent A = batch_size A = num_channels A = min_resolution A = max_resolution A = do_resize A = {'shortest_edge': 32, 'longest_edge': 1333} if size is None else size A = do_normalize A = image_mean A = image_std A = class_info_file A = prepare_metadata(_UpperCamelCase ,_UpperCamelCase ) A = num_text A = repo_path # for the post_process_functions A = 2 A = 10 A = 10 A = 3 A = 4 A = num_labels A = do_reduce_labels A = ignore_index def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Tuple ,A_ : List[Any]=False ) -> Dict: if not batched: A = image_inputs[0] if isinstance(_UpperCamelCase ,Image.Image ): A = image.size else: A = image.shape[1], image.shape[2] if w < h: A = int(self.size['shortest_edge'] * h / w ) A = self.size['shortest_edge'] elif w > h: A = self.size['shortest_edge'] A = int(self.size['shortest_edge'] * w / h ) else: A = self.size['shortest_edge'] A = self.size['shortest_edge'] else: A = [] for image in image_inputs: A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A = max(_UpperCamelCase ,key=lambda A_ : item[0] )[0] A = max(_UpperCamelCase ,key=lambda A_ : item[1] )[1] return expected_height, expected_width def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) ,masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) ,) @require_torch @require_vision class lowerCAmelCase_ ( _snake_case , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: str = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCamelCase: Union[str, Any] = image_processing_class def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: A = OneFormerImageProcessorTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : int ) -> int: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,'image_mean' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'image_std' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'do_resize' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'size' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'ignore_index' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'class_info_file' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'num_text' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'repo_path' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'metadata' ) ) self.assertTrue(hasattr(_UpperCamelCase ,'do_reduce_labels' ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: pass def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processing_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input A = image_processor(image_inputs[0] ,['semantic'] ,return_tensors='pt' ).pixel_values A = self.image_processing_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,) # Test batched A = self.image_processing_tester.get_expected_values(_UpperCamelCase ,batched=_UpperCamelCase ) A = image_processor( _UpperCamelCase ,['semantic'] * len(_UpperCamelCase ) ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) ,) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processing_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input A = image_processor(image_inputs[0] ,['semantic'] ,return_tensors='pt' ).pixel_values A = self.image_processing_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,) # Test batched A = self.image_processing_tester.get_expected_values(_UpperCamelCase ,batched=_UpperCamelCase ) A = image_processor( _UpperCamelCase ,['semantic'] * len(_UpperCamelCase ) ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) ,) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processing_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input A = image_processor(image_inputs[0] ,['semantic'] ,return_tensors='pt' ).pixel_values A = self.image_processing_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,) # Test batched A = self.image_processing_tester.get_expected_values(_UpperCamelCase ,batched=_UpperCamelCase ) A = image_processor( _UpperCamelCase ,['semantic'] * len(_UpperCamelCase ) ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) ,) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any]=False ,A_ : List[Any]=False ,A_ : str="np" ) -> Dict: A = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A = self.image_processing_tester.num_labels A = None A = None A = prepare_image_inputs(self.image_processing_tester ,equal_resolution=_UpperCamelCase ) if with_segmentation_maps: A = num_labels if is_instance_map: A = list(range(_UpperCamelCase ) ) * 2 A = dict(enumerate(_UpperCamelCase ) ) A = [ np.random.randint(0 ,high * 2 ,(img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A = [Image.fromarray(_UpperCamelCase ) for annotation in annotations] A = image_processor( _UpperCamelCase ,['semantic'] * len(_UpperCamelCase ) ,_UpperCamelCase ,return_tensors='pt' ,instance_id_to_semantic_id=_UpperCamelCase ,pad_and_return_pixel_mask=_UpperCamelCase ,) return inputs def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: def common(A_ : str=False ,A_ : Optional[Any]=None ): A = self.comm_get_image_processor_inputs( with_segmentation_maps=_UpperCamelCase ,is_instance_map=_UpperCamelCase ,segmentation_type=_UpperCamelCase ) A = inputs['mask_labels'] A = inputs['class_labels'] A = inputs['pixel_values'] A = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ): self.assertEqual(mask_label.shape[0] ,class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] ,pixel_values.shape[2:] ) self.assertEqual(len(_UpperCamelCase ) ,self.image_processing_tester.num_text ) common() common(is_instance_map=_UpperCamelCase ) common(is_instance_map=_UpperCamelCase ,segmentation_type='pil' ) common(is_instance_map=_UpperCamelCase ,segmentation_type='pil' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = np.zeros((20, 50) ) A = 1 A = 1 A = 1 A = binary_mask_to_rle(_UpperCamelCase ) self.assertEqual(len(_UpperCamelCase ) ,4 ) self.assertEqual(rle[0] ,21 ) self.assertEqual(rle[1] ,45 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = self.image_processing_class( num_labels=self.image_processing_tester.num_classes ,max_seq_length=77 ,task_seq_length=77 ,class_info_file='ade20k_panoptic.json' ,num_text=self.image_processing_tester.num_text ,repo_path='shi-labs/oneformer_demo' ,) A = self.image_processing_tester.get_fake_oneformer_outputs() A = fature_extractor.post_process_semantic_segmentation(_UpperCamelCase ) self.assertEqual(len(_UpperCamelCase ) ,self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape ,( self.image_processing_tester.height, self.image_processing_tester.width, ) ,) A = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A = fature_extractor.post_process_semantic_segmentation(_UpperCamelCase ,target_sizes=_UpperCamelCase ) self.assertEqual(segmentation[0].shape ,target_sizes[0] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = self.image_processing_class( num_labels=self.image_processing_tester.num_classes ,max_seq_length=77 ,task_seq_length=77 ,class_info_file='ade20k_panoptic.json' ,num_text=self.image_processing_tester.num_text ,repo_path='shi-labs/oneformer_demo' ,) A = self.image_processing_tester.get_fake_oneformer_outputs() A = image_processor.post_process_instance_segmentation(_UpperCamelCase ,threshold=0 ) self.assertTrue(len(_UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) ,_UpperCamelCase ) self.assertEqual( el['segmentation'].shape ,(self.image_processing_tester.height, self.image_processing_tester.width) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.image_processing_class( num_labels=self.image_processing_tester.num_classes ,max_seq_length=77 ,task_seq_length=77 ,class_info_file='ade20k_panoptic.json' ,num_text=self.image_processing_tester.num_text ,repo_path='shi-labs/oneformer_demo' ,) A = self.image_processing_tester.get_fake_oneformer_outputs() A = image_processor.post_process_panoptic_segmentation(_UpperCamelCase ,threshold=0 ) self.assertTrue(len(_UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) ,_UpperCamelCase ) self.assertEqual( el['segmentation'].shape ,(self.image_processing_tester.height, self.image_processing_tester.width) )
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
import qiskit def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" lowerCamelCase__ : Any = qiskit.Aer.get_backend('''aer_simulator''' ) lowerCamelCase__ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCamelCase__ : Optional[int] = qiskit.execute(__snake_case , __snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__snake_case ) if __name__ == "__main__": _A : Union[str, Any] = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
142
__UpperCAmelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase__ ( _snake_case): SCREAMING_SNAKE_CASE__ = '''data2vec-audio''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_6 , UpperCAmelCase=1_9 , UpperCAmelCase=5 , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=0 , UpperCAmelCase="sum" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Any: super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) _lowercase =hidden_size _lowercase =feat_extract_activation _lowercase =list(_UpperCamelCase ) _lowercase =list(_UpperCamelCase ) _lowercase =list(_UpperCamelCase ) _lowercase =conv_bias _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =conv_pos_kernel_size _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =vocab_size _lowercase =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length _lowercase =mask_feature_min_masks # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(_UpperCamelCase ) _lowercase =list(_UpperCamelCase ) _lowercase =list(_UpperCamelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> str: return math.prod(self.conv_stride )
5
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = True @register_to_config def __init__( self , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = ("DownEncoderBlock2D",) , _UpperCamelCase = ("UpDecoderBlock2D",) , _UpperCamelCase = (6_4,) , _UpperCamelCase = 1 , _UpperCamelCase = "silu" , _UpperCamelCase = 4 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[str] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder UpperCAmelCase_ : Dict = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) UpperCAmelCase_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ : List[Any] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : int = False # only relevant if vae tiling is enabled UpperCAmelCase_ : Optional[int] = self.config.sample_size UpperCAmelCase_ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : Optional[Any] = 0.25 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[str]: if isinstance(_UpperCamelCase , (Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> int: UpperCAmelCase_ : Tuple = use_tiling def __UpperCAmelCase ( self ) -> Dict: self.enable_tiling(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = True def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : Optional[int] = {} def fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): UpperCAmelCase_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : Union[str, Any] = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) UpperCAmelCase_ : str = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : List[str] = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : Any = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): UpperCAmelCase_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : List[str] = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : Any = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : Dict = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : str = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Dict = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=2 ) UpperCAmelCase_ : List[Any] = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Union[str, Any] = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : Optional[Any] = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Union[str, Any] = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = sample UpperCAmelCase_ : Union[str, Any] = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: UpperCAmelCase_ : str = posterior.sample(generator=_UpperCamelCase ) else: UpperCAmelCase_ : int = posterior.mode() UpperCAmelCase_ : Dict = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
29
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase : Optional[int] = 16 UpperCAmelCase : Optional[int] = 32 def __lowerCamelCase ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : int = 16 ): '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase__ : Tuple ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase = datasets.map( __snake_case , batched=__snake_case , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase = 16 elif accelerator.mixed_precision != "no": lowerCamelCase = 8 else: lowerCamelCase = None return tokenizer.pad( __snake_case , padding="""longest""" , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase : Any = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __snake_case ) == "1": lowerCamelCase = 2 # New Code # lowerCamelCase = int(args.gradient_accumulation_steps ) lowerCamelCase = int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__snake_case ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config['lr'] lowerCamelCase = int(config["""num_epochs"""] ) lowerCamelCase = int(config["""seed"""] ) lowerCamelCase = int(config["""batch_size"""] ) lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(__snake_case ) lowerCamelCase = get_dataloaders(__snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase = AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler lowerCamelCase = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() with LocalSGD( accelerator=__snake_case , model=__snake_case , local_sgd_steps=__snake_case , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__snake_case ): lowerCamelCase = model(**__snake_case ) lowerCamelCase = output.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase = model(**__snake_case ) lowerCamelCase = outputs.logits.argmax(dim=-1 ) lowerCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __snake_case ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__snake_case , default=__snake_case , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__snake_case , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__snake_case , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCamelCase = parser.parse_args() lowerCamelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
252
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase_ : Tuple = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Union[str, Any] = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : List[Any] = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A__ : def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[Any]=1_3 , SCREAMING_SNAKE_CASE :str=7 , SCREAMING_SNAKE_CASE :int=6 , SCREAMING_SNAKE_CASE :Dict=1_7 , SCREAMING_SNAKE_CASE :Dict=2_3 , SCREAMING_SNAKE_CASE :List[Any]=1_1 , SCREAMING_SNAKE_CASE :int=True , ) -> int: '''simple docstring''' _a : Dict =parent _a : str =batch_size _a : List[Any] =seq_length _a : Any =act_dim _a : Dict =state_dim _a : List[str] =hidden_size _a : List[Any] =max_length _a : Optional[Any] =is_training def __UpperCAmelCase ( self :List[Any] ) -> Tuple: '''simple docstring''' _a : Union[str, Any] =floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a : Optional[Any] =floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a : Tuple =floats_tensor((self.batch_size, self.seq_length, 1) ) _a : Optional[Any] =floats_tensor((self.batch_size, self.seq_length, 1) ) _a : str =ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) _a : Optional[Any] =random_attention_mask((self.batch_size, self.seq_length) ) _a : Dict =self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self :List[str] ) -> Optional[Any]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str , ) -> List[str]: '''simple docstring''' _a : List[str] =DecisionTransformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _a : Dict =model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self :Any ) -> Optional[Any]: '''simple docstring''' _a : List[Any] =self.prepare_config_and_inputs() ( _a ) : List[str] =config_and_inputs _a : Any ={ 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): __UpperCamelCase : int = (DecisionTransformerModel,) if is_torch_available() else () __UpperCamelCase : Tuple = () __UpperCamelCase : Any = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __UpperCamelCase : List[Any] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[str] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[str] = False __UpperCamelCase : int = False __UpperCamelCase : int = False __UpperCamelCase : List[str] = False __UpperCamelCase : List[Any] = False def __UpperCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' _a : str =DecisionTransformerModelTester(self ) _a : str =ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self :Optional[Any] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self :List[str] ) -> Any: '''simple docstring''' _a : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) @slow def __UpperCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : int =DecisionTransformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] =model_class(_UpperCamelCase ) _a : Optional[int] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Union[str, Any] =[*signature.parameters.keys()] _a : List[str] =[ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(_UpperCamelCase )] , _UpperCamelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' _a : Optional[Any] =2 # number of steps of autoregressive prediction we will perform _a : Optional[Any] =1_0 # defined by the RL environment, may be normalized _a : Tuple =DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) _a : int =model.to(_UpperCamelCase ) _a : int =model.config torch.manual_seed(0 ) _a : str =torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCamelCase , dtype=torch.floataa ) # env.reset() _a : Tuple =torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_UpperCamelCase ) _a : Tuple =torch.tensor(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a : Optional[int] =state _a : str =torch.zeros(1 , 0 , config.act_dim , device=_UpperCamelCase , dtype=torch.floataa ) _a : List[Any] =torch.zeros(1 , 0 , device=_UpperCamelCase , dtype=torch.floataa ) _a : Optional[int] =torch.tensor(0 , device=_UpperCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_UpperCamelCase ): _a : Union[str, Any] =torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCamelCase )] , dim=1 ) _a : Tuple =torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCamelCase )] , dim=1 ) _a : List[str] =torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a : Optional[int] =model( states=_UpperCamelCase , actions=_UpperCamelCase , rewards=_UpperCamelCase , returns_to_go=_UpperCamelCase , timesteps=_UpperCamelCase , attention_mask=_UpperCamelCase , return_dict=_UpperCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _a : Union[str, Any] =( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) _a : List[str] =action_pred[0, -1] _a : Tuple =torch.cat([states, state] , dim=1 ) _a : Tuple =returns_to_go[0, -1] - reward _a : Optional[Any] =torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a : Optional[Any] =torch.cat( [timesteps, torch.ones((1, 1) , device=_UpperCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
276
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt'} __UpperCAmelCase = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __UpperCAmelCase = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __UpperCAmelCase = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_INIT_CONFIGURATION _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ConvBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> Dict: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ : Any = getattr(_UpperCamelCase , normalizer_state.pop('type' ) ) UpperCAmelCase_ : str = do_lower_case UpperCAmelCase_ : List[Any] = strip_accents UpperCAmelCase_ : str = tokenize_chinese_chars UpperCAmelCase_ : Tuple = normalizer_class(**_UpperCamelCase ) UpperCAmelCase_ : Any = do_lower_case def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[str]: UpperCAmelCase_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
29
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : int=None ,**lowercase__ : Tuple ): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) __lowercase = model __lowercase = kwargs.get('''model_save_dir''' ,_UpperCamelCase ) __lowercase = kwargs.get('''latest_model_name''' ,_UpperCamelCase ) def __call__( self : Union[str, Any] ,**lowercase__ : Union[str, Any] ): __lowercase = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase ,_UpperCamelCase ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : str ,lowercase__ : Optional[int]=None ,lowercase__ : str=None ): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) __lowercase = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase ,providers=[provider] ,sess_options=_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ,lowercase__ : List[Any] = None ,**lowercase__ : Dict ): __lowercase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowercase = self.model_save_dir.joinpath(self.latest_model_name ) __lowercase = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase ,_UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowercase = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): __lowercase = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase ,_UpperCamelCase ) except shutil.SameFileError: pass def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : str ,**lowercase__ : Any ,): if os.path.isfile(_UpperCamelCase ): logger.error(F"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase ,exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase ,**_UpperCamelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] = None ,lowercase__ : List[str] = None ,lowercase__ : str = False ,lowercase__ : Dict = None ,lowercase__ : str = None ,lowercase__ : Dict = None ,lowercase__ : Any = None ,**lowercase__ : Optional[int] ,): __lowercase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): __lowercase = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase ,_UpperCamelCase ) ,provider=_UpperCamelCase ,sess_options=_UpperCamelCase ) __lowercase = Path(_UpperCamelCase ) # load model from hub else: # download model __lowercase = hf_hub_download( repo_id=_UpperCamelCase ,filename=_UpperCamelCase ,use_auth_token=_UpperCamelCase ,revision=_UpperCamelCase ,cache_dir=_UpperCamelCase ,force_download=_UpperCamelCase ,) __lowercase = Path(_UpperCamelCase ).parent __lowercase = Path(_UpperCamelCase ).name __lowercase = OnnxRuntimeModel.load_model(_UpperCamelCase ,provider=_UpperCamelCase ,sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase ,**_UpperCamelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any ,lowercase__ : Optional[Any] ,lowercase__ : Dict = True ,lowercase__ : Dict = None ,lowercase__ : int = None ,**lowercase__ : str ,): __lowercase = None if len(str(_UpperCamelCase ).split('''@''' ) ) == 2: __lowercase = model_id.split('''@''' ) return cls._from_pretrained( model_id=_UpperCamelCase ,revision=_UpperCamelCase ,cache_dir=_UpperCamelCase ,force_download=_UpperCamelCase ,use_auth_token=_UpperCamelCase ,**_UpperCamelCase ,)
104
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = '''efficientformer''' def __init__( self , _UpperCamelCase = [3, 2, 6, 4] , _UpperCamelCase = [4_8, 9_6, 2_2_4, 4_4_8] , _UpperCamelCase = [True, True, True, True] , _UpperCamelCase = 4_4_8 , _UpperCamelCase = 3_2 , _UpperCamelCase = 4 , _UpperCamelCase = 7 , _UpperCamelCase = 5 , _UpperCamelCase = 8 , _UpperCamelCase = 4 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1_6 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 2 , _UpperCamelCase = 1 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1 , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1E-5 , _UpperCamelCase = "gelu" , _UpperCamelCase = 0.02 , _UpperCamelCase = 1E-12 , _UpperCamelCase = 2_2_4 , _UpperCamelCase = 1E-05 , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = hidden_sizes UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[Any] = depths UpperCAmelCase_ : List[Any] = mlp_expansion_ratio UpperCAmelCase_ : List[str] = downsamples UpperCAmelCase_ : List[Any] = dim UpperCAmelCase_ : Tuple = key_dim UpperCAmelCase_ : Optional[int] = attention_ratio UpperCAmelCase_ : str = resolution UpperCAmelCase_ : Dict = pool_size UpperCAmelCase_ : Union[str, Any] = downsample_patch_size UpperCAmelCase_ : List[str] = downsample_stride UpperCAmelCase_ : List[str] = downsample_pad UpperCAmelCase_ : Any = drop_path_rate UpperCAmelCase_ : Dict = num_metaad_blocks UpperCAmelCase_ : Dict = distillation UpperCAmelCase_ : int = use_layer_scale UpperCAmelCase_ : Any = layer_scale_init_value UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Dict = batch_norm_eps
29
0
'''simple docstring''' import operator def UpperCamelCase_( snake_case : list , snake_case : bool = False , snake_case : list | None = None ): '''simple docstring''' snake_case_ = operator.lt if reverse else operator.gt snake_case_ = solution or [] if not arr: return solution snake_case_ = [arr.pop(0 )] for i, item in enumerate(__snake_case ): if _operator(__snake_case , sublist[-1] ): sublist.append(__snake_case ) arr.pop(__snake_case ) # merging sublist into solution list if not solution: solution.extend(__snake_case ) else: while sublist: snake_case_ = sublist.pop(0 ) for i, xx in enumerate(__snake_case ): if not _operator(__snake_case , __snake_case ): solution.insert(__snake_case , __snake_case ) break else: solution.append(__snake_case ) strand_sort(__snake_case , __snake_case , __snake_case ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
85
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Any: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: if latents is None: UpperCAmelCase_ : str = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase_ : Tuple = latents.to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : int = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> str: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : int = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : Optional[int] = self.image_processor(_UpperCamelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase_ : Tuple = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.image_encoder(_UpperCamelCase )['last_hidden_state'] UpperCAmelCase_ : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase_ : List[str] = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Dict = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 2_5 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 4.0 , _UpperCamelCase = 6_4 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Union[str, Any]: if isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ : Tuple = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : str = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase_ : Optional[int] = len(_UpperCamelCase ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Tuple = self._execution_device UpperCAmelCase_ : str = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : str = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ : int = self.scheduler.timesteps UpperCAmelCase_ : int = self.prior.config.num_embeddings UpperCAmelCase_ : Any = self.prior.config.embedding_dim UpperCAmelCase_ : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase_ : List[Any] = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Optional[Any] = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = [] for i, latent in enumerate(_UpperCamelCase ): print() UpperCAmelCase_ : List[str] = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) UpperCAmelCase_ : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase_ : List[str] = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A__ ( _snake_case , _snake_case , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = IFInpaintingPipeline UpperCamelCase_ : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return self._get_dummy_components() def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any]=0 ) -> int: """simple docstring""" if str(_UpperCamelCase ).startswith("mps" ): _UpperCAmelCase : List[Any] = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase : Any = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _UpperCAmelCase : Any = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _UpperCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" self._test_save_load_local() def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
145
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCAmelCase ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any: if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCAmelCase ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( _snake_case ): __UpperCAmelCase : UNetaDModel __UpperCAmelCase : ScoreSdeVeScheduler def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__( self , UpperCamelCase__ = 1 , UpperCamelCase__ = 2000 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' snake_case : List[Any] = self.unet.config.sample_size snake_case : Optional[Any] = (batch_size, 3, img_size, img_size) snake_case : Dict = self.unet snake_case : Optional[Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase ) * self.scheduler.init_noise_sigma snake_case : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(_UpperCamelCase ) self.scheduler.set_sigmas(_UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case : str = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): snake_case : str = self.unet(_UpperCamelCase , _UpperCamelCase ).sample snake_case : Tuple = self.scheduler.step_correct(_UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample # prediction step snake_case : str = model(_UpperCamelCase , _UpperCamelCase ).sample snake_case : List[Any] = self.scheduler.step_pred(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) snake_case : Any = output.prev_sample, output.prev_sample_mean snake_case : Any = sample_mean.clamp(0 , 1 ) snake_case : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Tuple = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_UpperCamelCase )
203
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" return abs(__snake_case ) if a == 0 else greatest_common_divisor(b % a , __snake_case ) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase = y, x % y return abs(__snake_case ) def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" try: __lowerCamelCase = input('Enter two integers separated by comma (,): ' ).split(',' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(__snake_case , __snake_case )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__snake_case , __snake_case )}""" ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
90
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
0
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a = logging.get_logger(__name__) # pylint: disable=invalid-name a = 2_5_6 class SCREAMING_SNAKE_CASE__ ( _snake_case ): _a = ['''melgan'''] def __init__( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : List[Any] , ): super().__init__() # From MELGAN lowerCAmelCase = math.log(1e-5 ) # Matches MelGAN training. lowerCAmelCase = 4.0 # Largest value for most examples lowerCAmelCase = 128 self.register_modules( notes_encoder=_UpperCamelCase , continuous_encoder=_UpperCamelCase , decoder=_UpperCamelCase , scheduler=_UpperCamelCase , melgan=_UpperCamelCase , ) def __lowercase ( self : int , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=(-1.0, 1.0) , lowerCAmelCase : Any=False ): lowerCAmelCase = output_range if clip: lowerCAmelCase = torch.clip(_UpperCamelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowerCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict=(-1.0, 1.0) , lowerCAmelCase : Optional[Any]=False ): lowerCAmelCase = input_range lowerCAmelCase = torch.clip(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if clip else outputs # Scale to [0, 1]. lowerCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __lowercase ( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple ): lowerCAmelCase = input_tokens > 0 lowerCAmelCase = self.notes_encoder( encoder_input_tokens=_UpperCamelCase , encoder_inputs_mask=_UpperCamelCase ) lowerCAmelCase = self.continuous_encoder( encoder_inputs=_UpperCamelCase , encoder_inputs_mask=_UpperCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Any ): lowerCAmelCase = noise_time if not torch.is_tensor(_UpperCamelCase ): lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCamelCase ) and len(timesteps.shape ) == 0: lowerCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowerCAmelCase = self.decoder( encodings_and_masks=_UpperCamelCase , decoder_input_tokens=_UpperCamelCase , decoder_noise_time=_UpperCamelCase ) return logits @torch.no_grad() def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] = None , lowerCAmelCase : Tuple = 100 , lowerCAmelCase : Any = True , lowerCAmelCase : List[str] = "numpy" , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCamelCase , _UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCamelCase )}.''' ) lowerCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowerCAmelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) lowerCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCamelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCamelCase ): if i == 0: lowerCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowerCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCamelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowerCAmelCase = ones lowerCAmelCase = self.scale_features( _UpperCamelCase , output_range=[-1.0, 1.0] , clip=_UpperCamelCase ) lowerCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCamelCase , continuous_mask=_UpperCamelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowerCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCamelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase = self.decode( encodings_and_masks=_UpperCamelCase , input_tokens=_UpperCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample lowerCAmelCase = self.scale_to_features(_UpperCamelCase , input_range=[-1.0, 1.0] ) lowerCAmelCase = mel[:1] lowerCAmelCase = mel.cpu().float().numpy() lowerCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCamelCase , _UpperCamelCase ) logger.info("""Generated segment""" , _UpperCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.""" ) if output_type == "numpy": lowerCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowerCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCamelCase )
155
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' import bza UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase_ : str = bytes(__snake_case , 'utf-8' ) with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase_ : Dict = bytes(__snake_case , 'utf-8' ) with gzip.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lza.frame.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__snake_case , 'w' ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' import lzma UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lzma.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' import zipfile UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase_ : List[str] = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict(__snake_case ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: UpperCAmelCase_ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__snake_case , 'rb' ) as f: UpperCAmelCase_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase_ : Dict = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__snake_case , 'wb' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetWriter(__snake_case , schema=__snake_case ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Optional[int] = {'data': DATA} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Tuple = {'data': DATA_DICT_OF_LISTS} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int , __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ['0', '1', '2', '3'] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['0', '1', '2', '3'] UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = ['0', '1', '2', '3'] UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename('unsupported.ext' ) ) f.write(__snake_case , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
29
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _snake_case ): '''simple docstring''' def __init__( self : Optional[int] ,*A_ : str ,**A_ : Union[str, Any] ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
74
from __future__ import annotations def lowercase__ ( __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position UpperCAmelCase_ : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : Optional[Any] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase__ ( __snake_case : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase__ ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = position if board[y][x] == 0: UpperCAmelCase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True UpperCAmelCase_ : List[Any] = 0 return False def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): UpperCAmelCase_ : Optional[Any] = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[str] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : int = torch.load(__snake_case , map_location='''cpu''' ) lowerCamelCase__ : List[str] = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCamelCase__ : int = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCamelCase__ : str = v else: lowerCamelCase__ : List[Any] = v lowerCamelCase__ : Optional[Any] = chkpt['params'] lowerCamelCase__ : int = {n: v for n, v in config.items() if not isinstance(__snake_case , (torch.FloatTensor, numpy.ndarray) )} lowerCamelCase__ : Optional[Any] = chkpt['dico_word2id'] lowerCamelCase__ : str = {s + '</w>' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model lowerCamelCase__ : Union[str, Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase__ : str = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCamelCase__ : str = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(__snake_case , __snake_case ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , indent=2 ) + '''\n''' ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , indent=2 ) + '''\n''' ) if __name__ == "__main__": _A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _A : Union[str, Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
142
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : list[list[int]] = [[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase_ : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __UpperCAmelCase = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __UpperCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class lowerCamelCase__ ( _snake_case): SCREAMING_SNAKE_CASE__ = '''ctrl''' SCREAMING_SNAKE_CASE__ = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self , UpperCAmelCase=2_4_6_5_3_4 , UpperCAmelCase=2_5_6 , UpperCAmelCase=1_2_8_0 , UpperCAmelCase=8_1_9_2 , UpperCAmelCase=4_8 , UpperCAmelCase=1_6 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-6 , UpperCAmelCase=0.02 , UpperCAmelCase=True , **UpperCAmelCase , ) -> Union[str, Any]: _lowercase =vocab_size _lowercase =n_positions _lowercase =n_embd _lowercase =n_layer _lowercase =n_head _lowercase =dff _lowercase =resid_pdrop _lowercase =embd_pdrop _lowercase =layer_norm_epsilon _lowercase =initializer_range _lowercase =use_cache super().__init__(**_UpperCamelCase )
5
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = {}, {} if padding is not None: UpperCAmelCase_ : List[str] = padding if truncation is not None: UpperCAmelCase_ : Tuple = truncation if top_k is not None: UpperCAmelCase_ : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> int: if isinstance(_UpperCamelCase , (Image.Image, str) ) and isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'question': question} else: UpperCAmelCase_ : List[str] = image UpperCAmelCase_ : Optional[Any] = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : Dict = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=_UpperCamelCase , truncation=_UpperCamelCase ) UpperCAmelCase_ : int = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = self.model(**_UpperCamelCase ) return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=5 ) -> str: if top_k > self.model.config.num_labels: UpperCAmelCase_ : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : List[str] = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ : str = probs.topk(_UpperCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase_ : Optional[Any] = scores.tolist() UpperCAmelCase_ : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase )]
29
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCAmelCase : Dict = TypeVar("T") class __lowercase ( Generic[T] ): """simple docstring""" def __init__( self , A , A ) -> None: '''simple docstring''' lowerCamelCase = None lowerCamelCase = len(_UpperCamelCase ) lowerCamelCase = [any_type for _ in range(self.N )] + arr lowerCamelCase = fnc self.build() def __A ( self ) -> None: '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): lowerCamelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self , A , A ) -> None: '''simple docstring''' p += self.N lowerCamelCase = v while p > 1: lowerCamelCase = p // 2 lowerCamelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self , A , A ) -> T | None: # noqa: E741 '''simple docstring''' lowerCamelCase = l + self.N, r + self.N lowerCamelCase = None while l <= r: if l % 2 == 1: lowerCamelCase = self.st[l] if res is None else self.fn(_UpperCamelCase , self.st[l] ) if r % 2 == 0: lowerCamelCase = self.st[r] if res is None else self.fn(_UpperCamelCase , self.st[r] ) lowerCamelCase = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCAmelCase : Tuple = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] UpperCAmelCase : Tuple = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } UpperCAmelCase : Optional[int] = SegmentTree(test_array, min) UpperCAmelCase : Tuple = SegmentTree(test_array, max) UpperCAmelCase : Optional[int] = SegmentTree(test_array, lambda a, b: a + b) def __lowerCamelCase ( ): '''simple docstring''' for i in range(len(__snake_case ) ): for j in range(__snake_case , len(__snake_case ) ): lowerCamelCase = reduce(__snake_case , test_array[i : j + 1] ) lowerCamelCase = reduce(__snake_case , test_array[i : j + 1] ) lowerCamelCase = reduce(lambda lowerCamelCase__ , lowerCamelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__snake_case , __snake_case ) assert max_range == max_segment_tree.query(__snake_case , __snake_case ) assert sum_range == sum_segment_tree.query(__snake_case , __snake_case ) test_all_segments() for index, value in test_updates.items(): UpperCAmelCase : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
252
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Optional[Any] = logging.get_logger(__name__) A__: Tuple = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( _snake_case ): __UpperCamelCase : str = '''time_series_transformer''' __UpperCamelCase : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str = None , SCREAMING_SNAKE_CASE :Optional[Any] = None , SCREAMING_SNAKE_CASE :Union[str, Any] = "student_t" , SCREAMING_SNAKE_CASE :int = "nll" , SCREAMING_SNAKE_CASE :List[str] = 1 , SCREAMING_SNAKE_CASE :Optional[int] = [1, 2, 3, 4, 5, 6, 7] , SCREAMING_SNAKE_CASE :Optional[int] = "mean" , SCREAMING_SNAKE_CASE :Optional[int] = 0 , SCREAMING_SNAKE_CASE :Tuple = 0 , SCREAMING_SNAKE_CASE :Union[str, Any] = 0 , SCREAMING_SNAKE_CASE :Any = 0 , SCREAMING_SNAKE_CASE :List[Any] = None , SCREAMING_SNAKE_CASE :int = None , SCREAMING_SNAKE_CASE :Dict = 3_2 , SCREAMING_SNAKE_CASE :Dict = 3_2 , SCREAMING_SNAKE_CASE :Union[str, Any] = 2 , SCREAMING_SNAKE_CASE :List[str] = 2 , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :List[str] = 2 , SCREAMING_SNAKE_CASE :Optional[int] = True , SCREAMING_SNAKE_CASE :Tuple = "gelu" , SCREAMING_SNAKE_CASE :List[Any] = 6_4 , SCREAMING_SNAKE_CASE :str = 0.1 , SCREAMING_SNAKE_CASE :Dict = 0.1 , SCREAMING_SNAKE_CASE :Dict = 0.1 , SCREAMING_SNAKE_CASE :Union[str, Any] = 0.1 , SCREAMING_SNAKE_CASE :Optional[int] = 0.1 , SCREAMING_SNAKE_CASE :Union[str, Any] = 1_0_0 , SCREAMING_SNAKE_CASE :int = 0.02 , SCREAMING_SNAKE_CASE :Optional[Any]=True , **SCREAMING_SNAKE_CASE :Any , ) -> Optional[int]: '''simple docstring''' # time series specific configuration _a : Any =prediction_length _a : int =context_length or prediction_length _a : Tuple =distribution_output _a : Optional[int] =loss _a : Optional[Any] =input_size _a : List[Any] =num_time_features _a : str =lags_sequence _a : Union[str, Any] =scaling _a : List[Any] =num_dynamic_real_features _a : Tuple =num_static_real_features _a : Tuple =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) _a : str =cardinality else: _a : List[str] =[0] if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) _a : Any =embedding_dimension else: _a : str =[min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _a : int =num_parallel_samples # Transformer architecture configuration _a : str =input_size * len(_UpperCamelCase ) + self._number_of_features _a : Optional[Any] =d_model _a : List[Any] =encoder_attention_heads _a : List[Any] =decoder_attention_heads _a : int =encoder_ffn_dim _a : Any =decoder_ffn_dim _a : Dict =encoder_layers _a : Tuple =decoder_layers _a : Union[str, Any] =dropout _a : Optional[Any] =attention_dropout _a : Optional[Any] =activation_dropout _a : List[str] =encoder_layerdrop _a : List[str] =decoder_layerdrop _a : int =activation_function _a : List[Any] =init_std _a : Optional[Any] =use_cache super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
276
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } lowerCAmelCase__ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 3 lowerCAmelCase__ = 4 class lowercase_ (_snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Union[str, Any] = '''left''' def __init__( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : List[str]=False ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[Any]=False ,lowercase__ : List[str]="<s>" ,lowercase__ : List[str]="</s>" ,lowercase__ : Union[str, Any]="<unk>" ,lowercase__ : Tuple="<sep>" ,lowercase__ : Union[str, Any]="<pad>" ,lowercase__ : Any="<cls>" ,lowercase__ : Dict="<mask>" ,lowercase__ : List[str]=["<eop>", "<eod>"] ,lowercase__ : Optional[Any] = None ,**lowercase__ : Tuple ,): # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCamelCase ,remove_space=_UpperCamelCase ,keep_accents=_UpperCamelCase ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,additional_special_tokens=_UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCamelCase ,) __lowercase = 3 __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : Optional[Any] ,lowercase__ : Dict ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ): if self.remove_space: __lowercase = ' '.join(inputs.strip().split() ) else: __lowercase = inputs __lowercase = outputs.replace('''``''' ,'''"''' ).replace('''\'\'''' ,'''"''' ) if not self.keep_accents: __lowercase = unicodedata.normalize('''NFKD''' ,_UpperCamelCase ) __lowercase = ''.join([c for c in outputs if not unicodedata.combining(_UpperCamelCase )] ) if self.do_lower_case: __lowercase = outputs.lower() return outputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[int] ): __lowercase = self.preprocess_text(_UpperCamelCase ) __lowercase = self.sp_model.encode(_UpperCamelCase ,out_type=_UpperCamelCase ) __lowercase = [] for piece in pieces: if len(_UpperCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __lowercase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCamelCase ,'''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowercase = cur_pieces[1:] else: __lowercase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCamelCase ) else: new_pieces.append(_UpperCamelCase ) return new_pieces def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ): return self.sp_model.PieceToId(_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[str] ): return self.sp_model.IdToPiece(_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): __lowercase = ''.join(_UpperCamelCase ).replace(_UpperCamelCase ,''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Any = False ,lowercase__ : int = None ,lowercase__ : Any = True ,**lowercase__ : List[Any] ,): __lowercase = kwargs.pop('''use_source_tokenizer''' ,_UpperCamelCase ) __lowercase = self.convert_ids_to_tokens(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase = [] __lowercase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) __lowercase = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __lowercase = ''.join(_UpperCamelCase ) __lowercase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : Dict = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Any ,lowercase__ : Any = None ,lowercase__ : Tuple = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase ) if token_ids_a is not None: return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1, 1] return ([0] * len(_UpperCamelCase )) + [1, 1] def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] = None ): __lowercase = [self.sep_token_id] __lowercase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[Any] ,lowercase__ : str = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _UpperCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
104
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _SCREAMING_SNAKE_CASE : Tuple = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): lowerCAmelCase_ : bool = None lowerCAmelCase_ : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): lowerCAmelCase_ : int = datasets.Audio() lowerCAmelCase_ : Optional[int] = '''audio''' lowerCAmelCase_ : int = AudioFolderConfig lowerCAmelCase_ : List[str] # definition at the bottom of the script lowerCAmelCase_ : Dict = AudioClassification(audio_column="audio" , label_column="label" ) _SCREAMING_SNAKE_CASE : List[Any] = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] _SCREAMING_SNAKE_CASE : Tuple = AUDIO_EXTENSIONS
85
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowercase__ ( __snake_case : List[str] , __snake_case : int , __snake_case : Tuple=8 ): '''simple docstring''' UpperCAmelCase_ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase__ ( __snake_case : Any , __snake_case : int=512 , __snake_case : Dict=512 ): '''simple docstring''' UpperCAmelCase_ : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase_ : Dict = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase_ : Any = arr.astype(np.floataa ) / 127.5 - 1 UpperCAmelCase_ : Dict = np.transpose(__snake_case , [2, 0, 1] ) UpperCAmelCase_ : List[str] = torch.from_numpy(__snake_case ).unsqueeze(0 ) return image class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=_UpperCamelCase , scheduler=_UpperCamelCase , movq=_UpperCamelCase , ) UpperCAmelCase_ : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: # get the original timestep using init_timestep UpperCAmelCase_ : Any = min(int(num_inference_steps * strength ) , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Tuple: if not isinstance(_UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : List[str] = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) UpperCAmelCase_ : List[str] = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase_ : List[str] = image else: if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Any = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCamelCase ) ] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase , dim=0 ) else: UpperCAmelCase_ : Union[str, Any] = self.movq.encode(_UpperCamelCase ).latent_dist.sample(_UpperCamelCase ) UpperCAmelCase_ : int = self.movq.config.scaling_factor * init_latents UpperCAmelCase_ : Optional[int] = torch.cat([init_latents] , dim=0 ) UpperCAmelCase_ : Tuple = init_latents.shape UpperCAmelCase_ : List[Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents UpperCAmelCase_ : str = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = init_latents return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : Optional[Any] = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase_ : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = cpu_offload_with_hook(_UpperCamelCase , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) # We'll offload the last model manually. UpperCAmelCase_ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ) -> Dict: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 4.0 , _UpperCamelCase = 0.3 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> str: UpperCAmelCase_ : Any = self._execution_device UpperCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : str = torch.cat(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : int = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : int = negative_image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Tuple = [image] if not all(isinstance(_UpperCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) UpperCAmelCase_ : str = torch.cat([prepare_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in image] , dim=0 ) UpperCAmelCase_ : Any = image.to(dtype=image_embeds.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.movq.encode(_UpperCamelCase )['latents'] UpperCAmelCase_ : List[Any] = latents.repeat_interleave(_UpperCamelCase , dim=0 ) self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase_ , UpperCAmelCase_ : str = downscale_height_and_width(_UpperCamelCase , _UpperCamelCase , self.movq_scale_factor ) UpperCAmelCase_ : Dict = self.prepare_latents( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : str = {'image_embeds': image_embeds} UpperCAmelCase_ : Union[str, Any] = self.unet( sample=_UpperCamelCase , timestep=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , added_cond_kwargs=_UpperCamelCase , return_dict=_UpperCamelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : str = variance_pred.chunk(2 ) UpperCAmelCase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase , )[0] # post-processing UpperCAmelCase_ : Optional[Any] = self.movq.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[str] = image * 0.5 + 0.5 UpperCAmelCase_ : List[Any] = image.clamp(0 , 1 ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : List[Any] = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __a = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['ViTFeatureExtractor'] __a = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase__ ( __snake_case : List[Any] , __snake_case : List[str]=False ): '''simple docstring''' try: UpperCAmelCase_ : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ : Optional[int] = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ : List[Any] = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value __UpperCAmelCase = parse_flag_from_env('RUN_SLOW', default=False) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skip('Test was skipped' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__snake_case ) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__snake_case ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__snake_case ) def lowercase__ ( __snake_case : Dict=None , __snake_case : Dict=None ): '''simple docstring''' if test_case is None: return partial(__snake_case , version=__snake_case ) return unittest.skipUnless(is_torch_version('>=' , __snake_case ) , F"test requires torch version >= {version}" )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__snake_case ) __UpperCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__snake_case ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = True @classmethod def __UpperCAmelCase ( cls ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = tempfile.mkdtemp() @classmethod def __UpperCAmelCase ( cls ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCAmelCase ( self ) -> str: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = AcceleratorState() UpperCAmelCase_ : str = tensor[None].clone().to(state.device ) UpperCAmelCase_ : List[str] = gather(__snake_case ).cpu() UpperCAmelCase_ : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __snake_case ): return False return True class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : str = returncode UpperCAmelCase_ : Optional[Any] = stdout UpperCAmelCase_ : Optional[Any] = stderr async def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' while True: UpperCAmelCase_ : Dict = await stream.readline() if line: callback(__snake_case ) else: break async def lowercase__ ( __snake_case : Optional[int] , __snake_case : Dict=None , __snake_case : str=None , __snake_case : Dict=None , __snake_case : List[str]=False , __snake_case : Optional[int]=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : str = [] def tee(__snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[int]="" ): UpperCAmelCase_ : List[str] = line.decode('utf-8' ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __snake_case : tee(__snake_case , __snake_case , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __snake_case : tee(__snake_case , __snake_case , sys.stderr , label='stderr:' ) ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[Any]=None , __snake_case : str=None , __snake_case : Tuple=180 , __snake_case : Dict=False , __snake_case : Optional[Any]=True ): '''simple docstring''' UpperCAmelCase_ : str = asyncio.get_event_loop() UpperCAmelCase_ : int = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) UpperCAmelCase_ : int = ' '.join(__snake_case ) if result.returncode > 0: UpperCAmelCase_ : int = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class lowerCamelCase (_snake_case ): '''simple docstring''' pass def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any]=False ): '''simple docstring''' try: UpperCAmelCase_ : List[Any] = subprocess.check_output(__snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__snake_case , 'decode' ): UpperCAmelCase_ : str = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__snake_case )}` failed with the following error:\n\n{e.output.decode()}" ) from e
29
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __snake_case = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def __lowerCAmelCase ( lowercase : str = "dhaka" , lowercase : int = 5 ) -> List[str]: """simple docstring""" snake_case : Optional[int] = min(__snake_case , 50 ) # Prevent abuse! snake_case : Dict = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } snake_case : Any = requests.get("https://www.google.com/search" , params=__snake_case , headers=__snake_case ) snake_case : Dict = BeautifulSoup(html.text , "html.parser" ) snake_case : Any = ''.join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) snake_case : int = json.dumps(__snake_case ) snake_case : List[Any] = json.loads(__snake_case ) snake_case : Union[str, Any] = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , __snake_case , ) if not matched_google_image_data: return 0 snake_case : Union[str, Any] = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(__snake_case ) , ) snake_case : Optional[int] = re.findall( R"(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , __snake_case , ) for index, fixed_full_res_image in enumerate(__snake_case ): if index >= max_images: return index snake_case : Optional[int] = bytes(__snake_case , "ascii" ).decode( "unicode-escape" ) snake_case : Union[str, Any] = bytes(__snake_case , "ascii" ).decode( "unicode-escape" ) snake_case : Union[str, Any] = urllib.request.build_opener() snake_case : Dict = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(__snake_case ) snake_case : Union[str, Any] = F'query_{query.replace(" " , "_" )}' if not os.path.exists(__snake_case ): os.makedirs(__snake_case ) urllib.request.urlretrieve( # noqa: S310 __snake_case , F'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: __snake_case = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print("""Please provide a search term.""") raise
203
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
29
0
"""simple docstring""" def lowercase (snake_case__ : int = 1_000_000 ) -> Dict: '''simple docstring''' lowerCAmelCase = set(range(3 , __snake_case , 2 ) ) primes.add(2 ) for p in range(3 , __snake_case , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __snake_case , __snake_case ) ) ) lowerCAmelCase = [float(__snake_case ) for n in range(limit + 1 )] for p in primes: for n in range(__snake_case , limit + 1 , __snake_case ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
155
def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ : Any = head.next, head while fast and fast.next: UpperCAmelCase_ : str = fast.next.next UpperCAmelCase_ : Union[str, Any] = slow.next UpperCAmelCase_ : int = slow.next UpperCAmelCase_ : List[Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ : Tuple = None while second: UpperCAmelCase_ : int = second.next UpperCAmelCase_ : Any = node UpperCAmelCase_ : Optional[Any] = second UpperCAmelCase_ : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Dict = head.next return True def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ : Any = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ : List[str] = [slow.val] while slow.next: UpperCAmelCase_ : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ : int = cur.next return True def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : int = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: UpperCAmelCase_ : List[Any] = [pos] UpperCAmelCase_ : Any = head.next pos += 1 UpperCAmelCase_ : Dict = pos - 1 UpperCAmelCase_ : Optional[int] = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: UpperCAmelCase_ : int = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
29
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCAmelCase_ ( _snake_case ): '''simple docstring''' _lowerCamelCase: Optional[int] = '''efficientformer''' def __init__( self : List[Any] ,A_ : Tuple = [3, 2, 6, 4] ,A_ : Dict = [48, 96, 224, 448] ,A_ : Any = [True, True, True, True] ,A_ : Optional[Any] = 448 ,A_ : List[Any] = 32 ,A_ : int = 4 ,A_ : Optional[int] = 7 ,A_ : List[str] = 5 ,A_ : Union[str, Any] = 8 ,A_ : List[Any] = 4 ,A_ : Optional[Any] = 0.0 ,A_ : str = 16 ,A_ : Any = 3 ,A_ : int = 3 ,A_ : Union[str, Any] = 3 ,A_ : Union[str, Any] = 2 ,A_ : int = 1 ,A_ : List[Any] = 0.0 ,A_ : Tuple = 1 ,A_ : List[str] = True ,A_ : Dict = True ,A_ : Optional[Any] = 1e-5 ,A_ : Optional[int] = "gelu" ,A_ : Optional[Any] = 0.02 ,A_ : int = 1e-12 ,A_ : Union[str, Any] = 224 ,A_ : Any = 1e-05 ,**A_ : List[str] ,) -> None: super().__init__(**_UpperCamelCase ) A = hidden_act A = hidden_dropout_prob A = hidden_sizes A = num_hidden_layers A = num_attention_heads A = initializer_range A = layer_norm_eps A = patch_size A = num_channels A = depths A = mlp_expansion_ratio A = downsamples A = dim A = key_dim A = attention_ratio A = resolution A = pool_size A = downsample_patch_size A = downsample_stride A = downsample_pad A = drop_path_rate A = num_metaad_blocks A = distillation A = use_layer_scale A = layer_scale_init_value A = image_size A = batch_norm_eps
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _A : Any = get_tests_dir('fixtures') class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : Tuple ) ->int: # A mock response for an HTTP head request to emulate server down lowerCamelCase__ : Optional[int] = mock.Mock() lowerCamelCase__ : Any = 5_0_0 lowerCamelCase__ : str = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : List[str] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head: lowerCamelCase__ : Tuple = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self : Dict ) ->Tuple: # This test is for deprecated behavior and can be removed in v5 lowerCamelCase__ : int = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @classmethod def __lowerCamelCase ( cls : Optional[Any] ) ->Tuple: lowerCamelCase__ : Any = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def __lowerCamelCase ( cls : List[str] ) ->Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : Any = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCamelCase , repo_id='''test-feature-extractor''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) lowerCamelCase__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) lowerCamelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCamelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) lowerCamelCase__ : List[str] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __lowerCamelCase ( self : Tuple ) ->int: CustomFeatureExtractor.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) lowerCamelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained( F"{USER}/test-dynamic-feature-extractor" , trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
142
__UpperCAmelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowerCamelCase__ ( _snake_case): SCREAMING_SNAKE_CASE__ = '''xlnet''' SCREAMING_SNAKE_CASE__ = ['''mems'''] SCREAMING_SNAKE_CASE__ = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self , UpperCAmelCase=3_2_0_0_0 , UpperCAmelCase=1_0_2_4 , UpperCAmelCase=2_4 , UpperCAmelCase=1_6 , UpperCAmelCase=4_0_9_6 , UpperCAmelCase="gelu" , UpperCAmelCase=True , UpperCAmelCase="bi" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=False , UpperCAmelCase="last" , UpperCAmelCase=True , UpperCAmelCase="tanh" , UpperCAmelCase=0.1 , UpperCAmelCase=5 , UpperCAmelCase=5 , UpperCAmelCase=5 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Any: _lowercase =vocab_size _lowercase =d_model _lowercase =n_layer _lowercase =n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) _lowercase =d_model // n_head _lowercase =ff_activation _lowercase =d_inner _lowercase =untie_r _lowercase =attn_type _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =dropout _lowercase =mem_len _lowercase =reuse_len _lowercase =bi_data _lowercase =clamp_len _lowercase =same_length _lowercase =summary_type _lowercase =summary_use_proj _lowercase =summary_activation _lowercase =summary_last_dropout _lowercase =start_n_top _lowercase =end_n_top _lowercase =bos_token_id _lowercase =pad_token_id _lowercase =eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , _UpperCamelCase , ) _lowercase =kwargs['use_cache'] _lowercase =use_mems_eval _lowercase =use_mems_train super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def __A (self ) -> Tuple: logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def __A (self , UpperCAmelCase ) -> Optional[int]: # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
5
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = True @register_to_config def __init__( self , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = ("DownEncoderBlock2D",) , _UpperCamelCase = ("UpDecoderBlock2D",) , _UpperCamelCase = (6_4,) , _UpperCamelCase = 1 , _UpperCamelCase = "silu" , _UpperCamelCase = 4 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[str] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder UpperCAmelCase_ : Dict = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) UpperCAmelCase_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ : List[Any] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : int = False # only relevant if vae tiling is enabled UpperCAmelCase_ : Optional[int] = self.config.sample_size UpperCAmelCase_ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : Optional[Any] = 0.25 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[str]: if isinstance(_UpperCamelCase , (Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> int: UpperCAmelCase_ : Tuple = use_tiling def __UpperCAmelCase ( self ) -> Dict: self.enable_tiling(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = True def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : Optional[int] = {} def fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): UpperCAmelCase_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : Union[str, Any] = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) UpperCAmelCase_ : str = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : List[str] = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : Any = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): UpperCAmelCase_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : List[str] = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : Any = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : Dict = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : str = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Dict = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=2 ) UpperCAmelCase_ : List[Any] = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Union[str, Any] = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : Optional[Any] = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Union[str, Any] = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = sample UpperCAmelCase_ : Union[str, Any] = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: UpperCAmelCase_ : str = posterior.sample(generator=_UpperCamelCase ) else: UpperCAmelCase_ : int = posterior.mode() UpperCAmelCase_ : Dict = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
29
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCAmelCase : int = logging.get_logger(__name__) @dataclass class __lowercase : """simple docstring""" def __init__( self , A=False , A=False , A=6.0 , A=None , A=False , A=False , A=None , A="fp4" , A=False , **A , ) -> Optional[int]: '''simple docstring''' lowerCamelCase = load_in_abit lowerCamelCase = load_in_abit lowerCamelCase = llm_inta_threshold lowerCamelCase = llm_inta_skip_modules lowerCamelCase = llm_inta_enable_fpaa_cpu_offload lowerCamelCase = llm_inta_has_fpaa_weight lowerCamelCase = bnb_abit_quant_type lowerCamelCase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowerCamelCase = torch.floataa elif isinstance(_UpperCamelCase , _UpperCamelCase ): lowerCamelCase = getattr(_UpperCamelCase , _UpperCamelCase ) elif isinstance(_UpperCamelCase , torch.dtype ): lowerCamelCase = bnb_abit_compute_dtype else: raise ValueError("""bnb_4bit_compute_dtype must be a string or a torch.dtype""" ) self.post_init() def __A ( self ) -> int: '''simple docstring''' if not isinstance(self.llm_inta_threshold , _UpperCamelCase ): raise ValueError("""llm_int8_threshold must be a float""" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _UpperCamelCase ): raise ValueError("""llm_int8_skip_modules must be a list of strings""" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _UpperCamelCase ): raise ValueError("""llm_int8_enable_fp32_cpu_offload must be a boolean""" ) if not isinstance(self.llm_inta_has_fpaa_weight , _UpperCamelCase ): raise ValueError("""llm_int8_has_fp16_weight must be a boolean""" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("""bnb_4bit_compute_dtype must be torch.dtype""" ) if not isinstance(self.bnb_abit_quant_type , _UpperCamelCase ): raise ValueError("""bnb_4bit_quant_type must be a string""" ) if not isinstance(self.bnb_abit_use_double_quant , _UpperCamelCase ): raise ValueError("""bnb_4bit_use_double_quant must be a boolean""" ) if self.load_in_abit and not version.parse(importlib.metadata.version("""bitsandbytes""" ) ) >= version.parse( """0.39.0""" ): raise ValueError( """4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version""" ) def __A ( self ) -> str: '''simple docstring''' return self.load_in_abit or self.load_in_abit def __A ( self ) -> List[str]: '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __A ( cls , A , A , **A ) -> Tuple: '''simple docstring''' lowerCamelCase = cls(**_UpperCamelCase ) lowerCamelCase = [] for key, value in kwargs.items(): if hasattr(_UpperCamelCase , _UpperCamelCase ): setattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) to_remove.append(_UpperCamelCase ) for key in to_remove: kwargs.pop(_UpperCamelCase , _UpperCamelCase ) if return_unused_kwargs: return config, kwargs else: return config def __A ( self , A ) -> int: '''simple docstring''' with open(_UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: lowerCamelCase = self.to_dict() lowerCamelCase = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + '\n' writer.write(_UpperCamelCase ) def __A ( self ) -> Dict[str, Any]: '''simple docstring''' lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = str(output["""bnb_4bit_compute_dtype"""] ).split(""".""" )[1] return output def __repr__( self ) -> Optional[Any]: '''simple docstring''' return F'{self.__class__.__name__} {self.to_json_string()}' def __A ( self , A = True ) -> str: '''simple docstring''' if use_diff is True: lowerCamelCase = self.to_diff_dict() else: lowerCamelCase = self.to_dict() return json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + "\n" def __A ( self ) -> Dict[str, Any]: '''simple docstring''' lowerCamelCase = self.to_dict() # get the default config dict lowerCamelCase = BitsAndBytesConfig().to_dict() lowerCamelCase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowerCamelCase = value return serializable_config_dict
252
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase_ : Tuple = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Union[str, Any] = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : List[Any] = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : tuple[int, int] ,_UpperCAmelCase : int ) -> Union[str, Any]: _a : Tuple =position _a : str =[ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _a : Optional[Any] =[] for position in positions: _a : Tuple =position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list[int]] ) -> Optional[Any]: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list[int]] ,_UpperCAmelCase : tuple[int, int] ,_UpperCAmelCase : int ) -> Tuple: if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case ,len(__snake_case ) ): _a : Any =position if board[y][x] == 0: _a : Optional[Any] =curr + 1 if open_knight_tour_helper(__snake_case ,__snake_case ,curr + 1 ): return True _a : List[Any] =0 return False def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> Dict: _a : str =[[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): _a : Optional[Any] =1 if open_knight_tour_helper(__snake_case ,(i, j) ,1 ): return board _a : List[Any] =0 _a : List[str] =F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
276
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt'} __UpperCAmelCase = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __UpperCAmelCase = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __UpperCAmelCase = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_INIT_CONFIGURATION _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ConvBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> Dict: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ : Any = getattr(_UpperCamelCase , normalizer_state.pop('type' ) ) UpperCAmelCase_ : str = do_lower_case UpperCAmelCase_ : List[Any] = strip_accents UpperCAmelCase_ : str = tokenize_chinese_chars UpperCAmelCase_ : Tuple = normalizer_class(**_UpperCamelCase ) UpperCAmelCase_ : Any = do_lower_case def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[str]: UpperCAmelCase_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
29
0
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowercase_ (unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('''foo.json''',)] ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Tuple ): __lowercase = GenerationConfig( do_sample=_UpperCamelCase ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCamelCase ,config_name=_UpperCamelCase ) __lowercase = GenerationConfig.from_pretrained(_UpperCamelCase ,config_name=_UpperCamelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample ,_UpperCamelCase ) self.assertEqual(loaded_config.temperature ,0.7 ) self.assertEqual(loaded_config.length_penalty ,1.0 ) self.assertEqual(loaded_config.bad_words_ids ,[[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k ,5_0 ) self.assertEqual(loaded_config.max_length ,2_0 ) self.assertEqual(loaded_config.max_time ,_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoConfig.from_pretrained('''gpt2''' ) __lowercase = GenerationConfig.from_model_config(_UpperCamelCase ) __lowercase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_UpperCamelCase ,_UpperCamelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id ,default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id ,model_config.eos_token_id ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = GenerationConfig() __lowercase = { 'max_new_tokens': 1_0_2_4, 'foo': 'bar', } __lowercase = copy.deepcopy(_UpperCamelCase ) __lowercase = generation_config.update(**_UpperCamelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens ,1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_UpperCamelCase ,{'''foo''': '''bar'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = GenerationConfig() __lowercase = 'bar' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(_UpperCamelCase ) __lowercase = GenerationConfig.from_pretrained(_UpperCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo ,'''bar''' ) __lowercase = GenerationConfig.from_model_config(_UpperCamelCase ) assert not hasattr(_UpperCamelCase ,'''foo''' ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = GenerationConfig() self.assertEqual(default_config.temperature ,1.0 ) self.assertEqual(default_config.do_sample ,_UpperCamelCase ) self.assertEqual(default_config.num_beams ,1 ) __lowercase = GenerationConfig( do_sample=_UpperCamelCase ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) self.assertEqual(config.temperature ,0.7 ) self.assertEqual(config.do_sample ,_UpperCamelCase ) self.assertEqual(config.num_beams ,1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCamelCase ) __lowercase = GenerationConfig.from_pretrained(_UpperCamelCase ,temperature=1.0 ) self.assertEqual(loaded_config.temperature ,1.0 ) self.assertEqual(loaded_config.do_sample ,_UpperCamelCase ) self.assertEqual(loaded_config.num_beams ,1 ) # default value @is_staging_test class lowercase_ (unittest.TestCase ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple ): __lowercase = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ): try: delete_repo(token=cls._token ,repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = GenerationConfig( do_sample=_UpperCamelCase ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('''test-generation-config''' ,use_auth_token=self._token ) __lowercase = GenerationConfig.from_pretrained(F"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase ,getattr(_UpperCamelCase ,_UpperCamelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCamelCase ,repo_id='''test-generation-config''' ,push_to_hub=_UpperCamelCase ,use_auth_token=self._token ) __lowercase = GenerationConfig.from_pretrained(F"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase ,getattr(_UpperCamelCase ,_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = GenerationConfig( do_sample=_UpperCamelCase ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('''valid_org/test-generation-config-org''' ,use_auth_token=self._token ) __lowercase = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase ,getattr(_UpperCamelCase ,_UpperCamelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCamelCase ,repo_id='''valid_org/test-generation-config-org''' ,push_to_hub=_UpperCamelCase ,use_auth_token=self._token ) __lowercase = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase ,getattr(_UpperCamelCase ,_UpperCamelCase ) )
104
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = '''efficientformer''' def __init__( self , _UpperCamelCase = [3, 2, 6, 4] , _UpperCamelCase = [4_8, 9_6, 2_2_4, 4_4_8] , _UpperCamelCase = [True, True, True, True] , _UpperCamelCase = 4_4_8 , _UpperCamelCase = 3_2 , _UpperCamelCase = 4 , _UpperCamelCase = 7 , _UpperCamelCase = 5 , _UpperCamelCase = 8 , _UpperCamelCase = 4 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1_6 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = 2 , _UpperCamelCase = 1 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1 , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1E-5 , _UpperCamelCase = "gelu" , _UpperCamelCase = 0.02 , _UpperCamelCase = 1E-12 , _UpperCamelCase = 2_2_4 , _UpperCamelCase = 1E-05 , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = hidden_sizes UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[Any] = depths UpperCAmelCase_ : List[Any] = mlp_expansion_ratio UpperCAmelCase_ : List[str] = downsamples UpperCAmelCase_ : List[Any] = dim UpperCAmelCase_ : Tuple = key_dim UpperCAmelCase_ : Optional[int] = attention_ratio UpperCAmelCase_ : str = resolution UpperCAmelCase_ : Dict = pool_size UpperCAmelCase_ : Union[str, Any] = downsample_patch_size UpperCAmelCase_ : List[str] = downsample_stride UpperCAmelCase_ : List[str] = downsample_pad UpperCAmelCase_ : Any = drop_path_rate UpperCAmelCase_ : Dict = num_metaad_blocks UpperCAmelCase_ : Dict = distillation UpperCAmelCase_ : int = use_layer_scale UpperCAmelCase_ : Any = layer_scale_init_value UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Dict = batch_norm_eps
29
0
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def UpperCamelCase_( snake_case : np.ndarray ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def UpperCamelCase_( snake_case : np.ndarray , snake_case : np.ndarray , snake_case : int ): '''simple docstring''' snake_case_ = np.nan for i in range(__snake_case ): snake_case_ = features[:, labels == i] snake_case_ = data.mean(1 ) # Centralize the data of class i snake_case_ = data - column_reshape(__snake_case ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__snake_case , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case_ = np.dot(__snake_case , centered_data.T ) return covariance_sum / features.shape[1] def UpperCamelCase_( snake_case : np.ndarray , snake_case : np.ndarray , snake_case : int ): '''simple docstring''' snake_case_ = features.mean(1 ) snake_case_ = np.nan for i in range(__snake_case ): snake_case_ = features[:, labels == i] snake_case_ = data.shape[1] snake_case_ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__snake_case ) - column_reshape(__snake_case ) , (column_reshape(__snake_case ) - column_reshape(__snake_case )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case_ = device_data * np.dot( column_reshape(__snake_case ) - column_reshape(__snake_case ) , (column_reshape(__snake_case ) - column_reshape(__snake_case )).T , ) return covariance_sum / features.shape[1] def UpperCamelCase_( snake_case : np.ndarray , snake_case : int ): '''simple docstring''' if features.any(): snake_case_ = features.mean(1 ) # Center the dataset snake_case_ = features - np.reshape(__snake_case , (data_mean.size, 1) ) snake_case_ = np.dot(__snake_case , centered_data.T ) / features.shape[1] snake_case_ = np.linalg.eigh(__snake_case ) # Take all the columns in the reverse order (-1), and then takes only the first snake_case_ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space snake_case_ = np.dot(filtered_eigenvectors.T , __snake_case ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=__snake_case ) logging.error("Dataset empty" ) raise AssertionError def UpperCamelCase_( snake_case : np.ndarray , snake_case : np.ndarray , snake_case : int , snake_case : int ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: snake_case_ = eigh( covariance_between_classes(__snake_case , __snake_case , __snake_case ) , covariance_within_classes(__snake_case , __snake_case , __snake_case ) , ) snake_case_ = eigenvectors[:, ::-1][:, :dimensions] snake_case_ = np.linalg.svd(__snake_case ) snake_case_ = svd_matrix[:, 0:dimensions] snake_case_ = np.dot(filtered_svd_matrix.T , __snake_case ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=__snake_case ) logging.error("Dataset empty" ) raise AssertionError def UpperCamelCase_( ): '''simple docstring''' snake_case_ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) snake_case_ = np.array([0, 0, 0, 1, 1] ) snake_case_ = 2 snake_case_ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__snake_case ) as error_info: snake_case_ = linear_discriminant_analysis( __snake_case , __snake_case , __snake_case , __snake_case ) if isinstance(__snake_case , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def UpperCamelCase_( ): '''simple docstring''' snake_case_ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) snake_case_ = 2 snake_case_ = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(__snake_case ) as error_info: snake_case_ = principal_component_analysis(__snake_case , __snake_case ) if not np.allclose(__snake_case , __snake_case ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
85
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Any: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: if latents is None: UpperCAmelCase_ : str = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase_ : Tuple = latents.to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : int = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> str: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : int = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : Optional[int] = self.image_processor(_UpperCamelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase_ : Tuple = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.image_encoder(_UpperCamelCase )['last_hidden_state'] UpperCAmelCase_ : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase_ : List[str] = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Dict = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 2_5 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 4.0 , _UpperCamelCase = 6_4 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Union[str, Any]: if isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ : Tuple = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : str = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase_ : Optional[int] = len(_UpperCamelCase ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Tuple = self._execution_device UpperCAmelCase_ : str = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : str = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ : int = self.scheduler.timesteps UpperCAmelCase_ : int = self.prior.config.num_embeddings UpperCAmelCase_ : Any = self.prior.config.embedding_dim UpperCAmelCase_ : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase_ : List[Any] = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Optional[Any] = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = [] for i, latent in enumerate(_UpperCamelCase ): print() UpperCAmelCase_ : List[str] = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) UpperCAmelCase_ : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase_ : List[str] = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __a = logging.get_logger(__name__) # pylint: disable=invalid-name __a = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class A__ ( _snake_case ): """simple docstring""" UpperCamelCase_ : Union[PIL.Image.Image, np.ndarray] class A__ ( _snake_case ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , ) -> Any: """simple docstring""" super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" if latents is None: _UpperCAmelCase : str = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) _UpperCAmelCase : Tuple = latents.to(_UpperCamelCase ) _UpperCAmelCase : Tuple = latents * scheduler.init_noise_sigma return latents def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=0 ) -> Union[str, Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : int = torch.device(F"""cuda:{gpu_id}""" ) _UpperCAmelCase : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , ) -> str: """simple docstring""" if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): _UpperCAmelCase : int = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): _UpperCAmelCase : Optional[int] = self.image_processor(_UpperCamelCase , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _UpperCAmelCase : Tuple = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) _UpperCAmelCase : Optional[Any] = self.image_encoder(_UpperCamelCase )['last_hidden_state'] _UpperCAmelCase : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCAmelCase : List[str] = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase : Dict = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str = 1 , lowerCAmelCase__ : Optional[int] = 2_5 , lowerCAmelCase__ : int = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Dict = 4.0 , lowerCAmelCase__ : str = 6_4 , lowerCAmelCase__ : Dict = "pil" , lowerCAmelCase__ : Optional[Any] = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(_UpperCamelCase , PIL.Image.Image ): _UpperCAmelCase : Tuple = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): _UpperCAmelCase : str = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}""" ) _UpperCAmelCase : Tuple = self._execution_device _UpperCAmelCase : str = batch_size * num_images_per_prompt _UpperCAmelCase : str = guidance_scale > 1.0 _UpperCAmelCase : str = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) _UpperCAmelCase : int = self.scheduler.timesteps _UpperCAmelCase : int = self.prior.config.num_embeddings _UpperCAmelCase : Any = self.prior.config.embedding_dim _UpperCAmelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCAmelCase : List[Any] = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : int = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance _UpperCAmelCase : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCAmelCase : str = noise_pred.chunk(2 ) _UpperCAmelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCAmelCase : List[str] = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) _UpperCAmelCase : List[Any] = [] for i, latent in enumerate(_UpperCamelCase ): print() _UpperCAmelCase : List[str] = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_UpperCamelCase ) _UpperCAmelCase : Optional[int] = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) _UpperCAmelCase : Dict = images.cpu().numpy() if output_type == "pil": _UpperCAmelCase : List[str] = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
145
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCAmelCase ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any: if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCAmelCase ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _lowerCAmelCase ( _snake_case , unittest.TestCase ): __UpperCAmelCase : str = BertJapaneseTokenizer __UpperCAmelCase : Dict = False __UpperCAmelCase : int = True def lowerCamelCase ( self ) -> str: '''simple docstring''' super().setUp() snake_case : str = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : List[Any] = 'こんにちは、世界。 \nこんばんは、世界。' snake_case : List[Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowerCamelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : int = self.get_input_output_texts(_UpperCamelCase ) snake_case : int = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) snake_case : Tuple = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) return text, ids def lowerCamelCase ( self ) -> Dict: '''simple docstring''' pass # TODO add if relevant def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Any = self.tokenizer_class(self.vocab_file ) snake_case : Dict = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(_UpperCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(_UpperCamelCase ) snake_case : List[str] = 'こんにちは、世界。\nこんばんは、世界。' snake_case : List[Any] = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case : Optional[Any] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_UpperCamelCase , "wb" ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , "rb" ) as handle: snake_case : str = pickle.load(_UpperCamelCase ) snake_case : Union[str, Any] = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' try: snake_case : List[str] = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' try: snake_case : Optional[int] = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Dict = MecabTokenizer(do_lower_case=_UpperCamelCase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCamelCase ( self ) -> str: '''simple docstring''' try: snake_case : int = MecabTokenizer( do_lower_case=_UpperCamelCase , normalize_text=_UpperCamelCase , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Any = MecabTokenizer(normalize_text=_UpperCamelCase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(_UpperCamelCase ) snake_case : Any = 'こんにちは、世界。\nこんばんは、世界。' snake_case : List[Any] = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case : Dict = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_UpperCamelCase , "wb" ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , "rb" ) as handle: snake_case : Tuple = pickle.load(_UpperCamelCase ) snake_case : Optional[int] = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_sudachi def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Tuple = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Tuple = SudachiTokenizer(do_lower_case=_UpperCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : List[str] = SudachiTokenizer(normalize_text=_UpperCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[Any] = SudachiTokenizer(trim_whitespace=_UpperCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(_UpperCamelCase ) snake_case : Union[str, Any] = 'こんにちは、世界。\nこんばんは、世界。' snake_case : Optional[Any] = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case : int = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_UpperCamelCase , "wb" ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , "rb" ) as handle: snake_case : str = pickle.load(_UpperCamelCase ) snake_case : Dict = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_jumanpp def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : int = JumanppTokenizer(do_lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = JumanppTokenizer(normalize_text=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[Any] = JumanppTokenizer(trim_whitespace=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] snake_case : Any = {} for i, token in enumerate(_UpperCamelCase ): snake_case : Union[str, Any] = i snake_case : List[Any] = WordpieceTokenizer(vocab=_UpperCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Union[str, Any] = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) snake_case : str = tokenizer.subword_tokenizer snake_case : Union[str, Any] = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(_UpperCamelCase , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) snake_case : Any = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(_UpperCamelCase , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) snake_case : Optional[Any] = tokenizer.encode("ありがとう。" , add_special_tokens=_UpperCamelCase ) snake_case : str = tokenizer.encode("どういたしまして。" , add_special_tokens=_UpperCamelCase ) snake_case : int = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _lowerCAmelCase ( _snake_case , unittest.TestCase ): __UpperCAmelCase : Dict = BertJapaneseTokenizer __UpperCAmelCase : Any = False def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' super().setUp() snake_case : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCamelCase ( self , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **_UpperCamelCase ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = 'こんにちは、世界。 \nこんばんは、世界。' snake_case : Optional[int] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowerCamelCase ( self ) -> Dict: '''simple docstring''' pass # TODO add if relevant def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def lowerCamelCase ( self ) -> str: '''simple docstring''' pass # TODO add if relevant def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) snake_case : Optional[Any] = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( _UpperCamelCase , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] snake_case : Dict = {} for i, token in enumerate(_UpperCamelCase ): snake_case : Any = i snake_case : int = CharacterTokenizer(vocab=_UpperCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) snake_case : Dict = tokenizer.encode("ありがとう。" , add_special_tokens=_UpperCamelCase ) snake_case : Dict = tokenizer.encode("どういたしまして。" , add_special_tokens=_UpperCamelCase ) snake_case : Any = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = 'cl-tohoku/bert-base-japanese' snake_case : List[str] = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = 'cl-tohoku/bert-base-japanese' with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(_UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) snake_case : List[Any] = 'bert-base-cased' with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(_UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
203
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
import math import random def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> List[Any]: """simple docstring""" if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __A = 0.0_2 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Dict: """simple docstring""" __lowerCamelCase = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__snake_case ): # Forward propagation __lowerCamelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __lowerCamelCase = (expected / 100) - layer_a # Error delta __lowerCamelCase = layer_1_error * sigmoid_function(__snake_case , __snake_case ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __A = int(input("Expected value: ")) __A = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
90
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _snake_case ): def __init__( self : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : str ): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
155
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' import bza UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase_ : str = bytes(__snake_case , 'utf-8' ) with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase_ : Dict = bytes(__snake_case , 'utf-8' ) with gzip.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lza.frame.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__snake_case , 'w' ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' import lzma UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lzma.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' import zipfile UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase_ : List[str] = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict(__snake_case ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: UpperCAmelCase_ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__snake_case , 'rb' ) as f: UpperCAmelCase_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase_ : Dict = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__snake_case , 'wb' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetWriter(__snake_case , schema=__snake_case ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Optional[int] = {'data': DATA} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Tuple = {'data': DATA_DICT_OF_LISTS} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int , __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ['0', '1', '2', '3'] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['0', '1', '2', '3'] UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = ['0', '1', '2', '3'] UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename('unsupported.ext' ) ) f.write(__snake_case , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
29
0
"""simple docstring""" def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : int ): A = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _snake_case ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
74
from __future__ import annotations def lowercase__ ( __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position UpperCAmelCase_ : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : Optional[Any] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase__ ( __snake_case : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase__ ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = position if board[y][x] == 0: UpperCAmelCase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True UpperCAmelCase_ : List[Any] = 0 return False def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): UpperCAmelCase_ : Optional[Any] = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[str] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
from math import sqrt def _a ( UpperCAmelCase = 1000000 ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : int = 0 lowerCamelCase__ : int = 0 lowerCamelCase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__snake_case , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'''{solution() = }''')
142
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : list[list[int]] = [[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase_ : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __UpperCAmelCase = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __UpperCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
from math import factorial, radians def UpperCAmelCase_ ( __snake_case , __snake_case = 18 , __snake_case = 10 ) -> List[Any]: """simple docstring""" _lowercase =angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians _lowercase =radians(__snake_case ) _lowercase =angle_in_radians _lowercase =3 _lowercase =-1 for _ in range(__snake_case ): result += (b * (angle_in_radians**a)) / factorial(__snake_case ) _lowercase =-b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__snake_case , __snake_case ) if __name__ == "__main__": __import__('''doctest''').testmod()
5
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = {}, {} if padding is not None: UpperCAmelCase_ : List[str] = padding if truncation is not None: UpperCAmelCase_ : Tuple = truncation if top_k is not None: UpperCAmelCase_ : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> int: if isinstance(_UpperCamelCase , (Image.Image, str) ) and isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'question': question} else: UpperCAmelCase_ : List[str] = image UpperCAmelCase_ : Optional[Any] = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : Dict = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=_UpperCamelCase , truncation=_UpperCamelCase ) UpperCAmelCase_ : int = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = self.model(**_UpperCamelCase ) return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=5 ) -> str: if top_k > self.model.config.num_labels: UpperCAmelCase_ : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : List[str] = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ : str = probs.topk(_UpperCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase_ : Optional[Any] = scores.tolist() UpperCAmelCase_ : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase )]
29
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str]=False ): '''simple docstring''' try: lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCamelCase = default else: # KEY is set, convert it to True or False. try: lowerCamelCase = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase : Union[str, Any] = parse_flag_from_env("RUN_SLOW", default=False) def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Dict=None , lowerCamelCase__ : Dict=None ): '''simple docstring''' if test_case is None: return partial(__snake_case , version=__snake_case ) return unittest.skipUnless(is_torch_version(""">=""" , __snake_case ) , f'test requires torch version >= {version}' )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__snake_case ) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__snake_case ) UpperCAmelCase : List[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__snake_case ) class __lowercase ( unittest.TestCase ): """simple docstring""" UpperCamelCase : Union[str, Any] = True @classmethod def __A ( cls ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() @classmethod def __A ( cls ) -> List[str]: '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __A ( self ) -> str: '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase ) class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self , A ) -> Any: '''simple docstring''' lowerCamelCase = mocks if isinstance(_UpperCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = AcceleratorState() lowerCamelCase = tensor[None].clone().to(state.device ) lowerCamelCase = gather(__snake_case ).cpu() lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __snake_case ): return False return True class __lowercase : """simple docstring""" def __init__( self , A , A , A ) -> Any: '''simple docstring''' lowerCamelCase = returncode lowerCamelCase = stdout lowerCamelCase = stderr async def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ): '''simple docstring''' while True: lowerCamelCase = await stream.readline() if line: callback(__snake_case ) else: break async def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Optional[int]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(__snake_case ) ) lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCamelCase = [] lowerCamelCase = [] def tee(lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int]="" ): lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase__ : tee(__snake_case , __snake_case , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase__ : tee(__snake_case , __snake_case , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Tuple=180 , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Optional[Any]=True ): '''simple docstring''' lowerCamelCase = asyncio.get_event_loop() lowerCamelCase = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) lowerCamelCase = ' '.join(__snake_case ) if result.returncode > 0: lowerCamelCase = '\n'.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class __lowercase ( _snake_case ): """simple docstring""" pass def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any]=False ): '''simple docstring''' try: lowerCamelCase = subprocess.check_output(__snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__snake_case , """decode""" ): lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(__snake_case )}` failed with the following error:\n\n{e.output.decode()}' ) from e
252
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A__: Optional[int] = '''\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n''' A__: Any = '''\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n''' A__: str = '''\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Dict ) -> Optional[Any]: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Union[str, Any]="binary" ) -> List[Any]: _a : str =simple_accuracy(__snake_case ,__snake_case ) _a : Dict =float(fa_score(y_true=__snake_case ,y_pred=__snake_case ,average=__snake_case ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[str] ) -> Optional[Any]: _a : Tuple ={} for id_pred, label in zip(__snake_case ,__snake_case ): _a : str =F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" _a : Tuple =id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : List[str] =[(pred, label)] _a : List[str] =[], [] for question, preds_labels in question_map.items(): _a : str =zip(*__snake_case ) _a : List[Any] =fa_score(y_true=__snake_case ,y_pred=__snake_case ,average="""macro""" ) fas.append(__snake_case ) _a : int =int(sum(pred == label for pred, label in preds_labels ) == len(__snake_case ) ) ems.append(__snake_case ) _a : int =float(sum(__snake_case ) / len(__snake_case ) ) _a : Optional[int] =sum(__snake_case ) / len(__snake_case ) _a : List[str] =float(fa_score(y_true=__snake_case ,y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCAmelCase ( self :Dict ) -> Any: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def __UpperCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Dict ) -> Optional[int]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_UpperCamelCase , _UpperCamelCase )} elif self.config_name == "cb": return acc_and_fa(_UpperCamelCase , _UpperCamelCase , fa_avg="""macro""" ) elif self.config_name == "record": _a : str =[ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] _a : Any ={pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(_UpperCamelCase , _UpperCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(_UpperCamelCase , _UpperCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_UpperCamelCase , _UpperCamelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
276
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ (_snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = CLIPTokenizer SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[int] = False def SCREAMING_SNAKE_CASE ( self : Dict ): super().setUp() # fmt: off __lowercase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowercase = dict(zip(_UpperCamelCase ,range(len(_UpperCamelCase ) ) ) ) __lowercase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] __lowercase = {'unk_token': '<unk>'} __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,**lowercase__ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,**lowercase__ : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = 'lower newer' __lowercase = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) __lowercase = 'lower newer' __lowercase = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] __lowercase = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,_UpperCamelCase ) @require_ftfy def SCREAMING_SNAKE_CASE ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.tokenizer_class.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) __lowercase = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) __lowercase = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' __lowercase = tokenizer_s.tokenize(_UpperCamelCase ) __lowercase = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __lowercase = 'xa\u0303y' + ' ' + 'x\xe3y' __lowercase = tokenizer_s.tokenize(_UpperCamelCase ) __lowercase = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) # Test that the tokenization is identical on unicode of space type __lowercase = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __lowercase = tokenizer_s.tokenize(_UpperCamelCase ) __lowercase = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) # Test that the tokenization is identical on unicode of line break type __lowercase = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __lowercase = tokenizer_s.tokenize(_UpperCamelCase ) __lowercase = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __lowercase = F"{text_of_1_token} {text_of_1_token}" __lowercase = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase ,use_fast=_UpperCamelCase ,) __lowercase = tokenizer_r(_UpperCamelCase ,return_offsets_mapping=_UpperCamelCase ,add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) ,) __lowercase = F" {text}" __lowercase = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase ,use_fast=_UpperCamelCase ,) __lowercase = tokenizer_r(_UpperCamelCase ,return_offsets_mapping=_UpperCamelCase ,add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_UpperCamelCase ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def SCREAMING_SNAKE_CASE ( self : Tuple ): super().test_tokenization_python_rust_equals() def SCREAMING_SNAKE_CASE ( self : str ): # CLIP always lower cases letters pass
104
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
0