code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class lowerCAmelCase_ ( lowerCAmelCase__ ): __lowerCamelCase : Union[str, Any] = "transfo-xl" __lowerCamelCase : int = ["mems"] __lowerCamelCase : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=267735 , _lowerCAmelCase=[20000, 40000, 200000] , _lowerCAmelCase=1024 , _lowerCAmelCase=1024 , _lowerCAmelCase=16 , _lowerCAmelCase=64 , _lowerCAmelCase=4096 , _lowerCAmelCase=4 , _lowerCAmelCase=False , _lowerCAmelCase=18 , _lowerCAmelCase=1600 , _lowerCAmelCase=1000 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=-1 , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase="normal" , _lowerCAmelCase=0.01 , _lowerCAmelCase=0.01 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0 , **_lowerCAmelCase , ) -> Tuple: _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def _snake_case ( self ) -> Any: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
158
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
0
"""simple docstring""" import qiskit def _A ( UpperCamelCase_ : int = 2) -> qiskit.result.counts.Counts: '''simple docstring''' __lowercase = qubits # Using Aer's simulator __lowercase = qiskit.Aer.get_backend("aer_simulator") # Creating a Quantum Circuit acting on the q register __lowercase = qiskit.QuantumCircuit(UpperCamelCase_, UpperCamelCase_) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1, UpperCamelCase_): # Adding CX (CNOT) gate circuit.cx(i - 1, UpperCamelCase_) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCamelCase_)), list(range(UpperCamelCase_))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __lowercase = qiskit.execute(UpperCamelCase_, UpperCamelCase_, shots=1000) return job.result().get_counts(UpperCamelCase_) if __name__ == "__main__": print(F"Total count for various states are: {quantum_entanglement(3)}")
17
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A_ ( lowerCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'depth_multiplier' ) ) class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=3 , snake_case=32 , snake_case=0.25 , snake_case=8 , snake_case=True , snake_case=1024 , snake_case=32 , snake_case="relu6" , snake_case=0.1 , snake_case=0.02 , snake_case=True , snake_case=True , snake_case=10 , snake_case=None , ): lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = depth_multiplier lowercase = min_depth lowercase = tf_padding lowercase = int(last_hidden_size * depth_multiplier ) lowercase = output_stride lowercase = hidden_act lowercase = classifier_dropout_prob lowercase = use_labels lowercase = is_training lowercase = num_labels lowercase = initializer_range lowercase = scope def SCREAMING_SNAKE_CASE__ ( self ): lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE__ ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): lowercase = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): lowercase = self.num_labels lowercase = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Any = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _UpperCamelCase : List[str] = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Tuple = False _UpperCamelCase : Tuple = False _UpperCamelCase : List[str] = False _UpperCamelCase : Any = False def SCREAMING_SNAKE_CASE__ ( self ): lowercase = MobileNetVaModelTester(self ) lowercase = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_UpperCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): def check_hidden_states_output(snake_case , snake_case , snake_case ): lowercase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 26 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase_ ( ): lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self ): return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(_UpperCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_UpperCAmelCase ) # verify the logits lowercase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
195
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def a_ ( __lowercase : str ) -> str: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _snake_case = k.replace(__lowercase , __lowercase ) if k.startswith('encoder' ): _snake_case = k.replace('.attn' , '.self_attn' ) _snake_case = k.replace('norm1' , 'self_attn_layer_norm' ) _snake_case = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _snake_case = k.replace('norm1' , 'self_attn_layer_norm' ) _snake_case = k.replace('norm2' , 'encoder_attn_layer_norm' ) _snake_case = k.replace('norm3' , 'final_layer_norm' ) return k def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _snake_case = sd.pop(__lowercase ) _snake_case = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _snake_case = v _lowerCamelCase : Union[str, Any] = ['''START'''] @torch.no_grad() def a_ ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : Tuple ) -> int: _snake_case = torch.load(__lowercase , map_location='cpu' ) _snake_case = model['model'] _snake_case = BlenderbotConfig.from_json_file(__lowercase ) _snake_case = BlenderbotForConditionalGeneration(__lowercase ) _snake_case = m.model.state_dict().keys() _snake_case = [] _snake_case = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _snake_case = rename_state_dict_key(__lowercase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _snake_case = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowercase ) m.model.load_state_dict(__lowercase , strict=__lowercase ) m.half() m.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _lowerCamelCase : Dict = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
282
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [torch.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class A__ ( unittest.TestCase ): def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [tf.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowercase = [tf.convert_to_tensor(_UpperCAmelCase )] __lowercase = [torch.tensor(_UpperCAmelCase )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
325
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class lowercase__ ( lowerCAmelCase__, unittest.TestCase ): a_ =MarianTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> str: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowerCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["target_spm"] ) lowerCAmelCase__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> MarianTokenizer: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return ( "This is a test", "This is a test", ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = "</s>" lowerCAmelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(_UpperCAmelCase ) , 9 ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = MarianTokenizer.from_pretrained(F"{ORG_NAME}opus-mt-en-de" ) lowerCAmelCase__ = en_de_tokenizer(["I am a small frog"] , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase__ = [38, 121, 14, 697, 38848, 0] self.assertListEqual(_UpperCAmelCase , batch.input_ids[0] ) lowerCAmelCase__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_UpperCAmelCase ) lowerCAmelCase__ = [x.name for x in Path(_UpperCAmelCase ).glob("*" )] self.assertIn("source.spm" , _UpperCAmelCase ) MarianTokenizer.from_pretrained(_UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = tok( ["I am a small frog" * 1000, "I am a small frog"] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = tok(["I am a tiny frog", "I am a small frog"] , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = {"input_ids": [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) lowerCAmelCase__ = "Tämä on testi" lowerCAmelCase__ = "This is a test" lowerCAmelCase__ = [76, 7, 2047, 2] lowerCAmelCase__ = [69, 12, 11, 940, 2] lowerCAmelCase__ = tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase__ = tokenizer(text_target=_UpperCAmelCase ).input_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
340
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase__ ): __magic_name__: Union[str, Any] = ["pixel_values"] def __init__( self : List[str] , _A : bool = True , _A : int = 32 , _A : Tuple=PILImageResampling.BILINEAR , _A : bool = True , **_A : List[str] , ) -> None: """simple docstring""" snake_case_ : Dict = do_resize snake_case_ : List[str] = do_rescale snake_case_ : Tuple = size_divisor snake_case_ : Union[str, Any] = resample super().__init__(**_UpperCAmelCase ) def UpperCAmelCase_ ( self : Union[str, Any] , _A : np.ndarray , _A : int , _A : List[Any] , _A : Optional[ChannelDimension] = None , **_A : int ) -> np.ndarray: """simple docstring""" snake_case_ ,snake_case_ : int = get_image_size(_UpperCAmelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case_ : Any = height // size_divisor * size_divisor snake_case_ : int = width // size_divisor * size_divisor snake_case_ : List[Any] = resize(_UpperCAmelCase , (new_h, new_w) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) return image def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : float , _A : Optional[ChannelDimension] = None , **_A : Tuple ) -> np.ndarray: """simple docstring""" return rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def UpperCAmelCase_ ( self : List[str] , _A : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _A : Optional[bool] = None , _A : Optional[int] = None , _A : str=None , _A : Optional[bool] = None , _A : Optional[Union[TensorType, str]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : List[str] , ) -> BatchFeature: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : int = size_divisor if size_divisor is not None else self.size_divisor snake_case_ : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) snake_case_ : Any = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(_UpperCAmelCase ) for img in images] if do_resize: snake_case_ : List[str] = [self.resize(_UpperCAmelCase , size_divisor=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(_UpperCAmelCase , scale=1 / 255 ) for image in images] snake_case_ : Any = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] snake_case_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
327
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
0
from __future__ import annotations import requests lowerCAmelCase_ = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = "new" , _UpperCamelCase = None ) -> dict: """simple docstring""" snake_case_ : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_UpperCamelCase ) - valid_terms ) ): snake_case_ : Any = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(_UpperCamelCase ) snake_case_ : Dict = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError snake_case_ : List[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_UpperCamelCase )} snake_case_ : str = {} for id_ in range(_UpperCamelCase ): snake_case_ : Dict = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
279
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: for attribute in key.split('.' ): __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowercase = None for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __lowercase = True elif name.split('.' )[0] == "proj": __lowercase = fairseq_model.proj __lowercase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __lowercase = 'weight_g' elif "weight_v" in name: __lowercase = 'weight_v' elif "bias" in name: __lowercase = 'bias' elif "weight" in name: __lowercase = 'weight' else: __lowercase = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: __lowercase = full_name.split('conv_layers.' )[-1] __lowercase = name.split('.' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __lowercase = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: __lowercase = f.readlines() __lowercase = [line.split(' ' )[0] for line in lines] __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]: __lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __lowercase = model[0].eval() # set weights for wav2vec2 encoder __lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE ) __lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) __lowercase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) __lowercase = False # add projection layer __lowercase = nn.Parameter(projection_layer.weight ) __lowercase = nn.Parameter(projection_layer.bias ) __lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = hf_wavavec.config.to_dict() __lowercase = tokenizer.pad_token_id __lowercase = tokenizer.bos_token_id __lowercase = tokenizer.eos_token_id __lowercase = 'speech_to_text_2' __lowercase = 'wav2vec2' __lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
325
0
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class a : def __init__( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=13 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Dict=37 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : str=50 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = use_labels _UpperCAmelCase = scope def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self : List[Any] ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : List[str] ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , **__lowerCAmelCase : Any , ): _UpperCAmelCase = BertGenerationEncoder(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _UpperCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) _UpperCAmelCase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any , ): _UpperCAmelCase = True _UpperCAmelCase = BertGenerationEncoder(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _UpperCAmelCase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) _UpperCAmelCase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , **__lowerCAmelCase : int , ): _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = BertGenerationDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() # first forward pass _UpperCAmelCase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , ) _UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )["""hidden_states"""][0] _UpperCAmelCase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )["""hidden_states"""][0] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , *__lowerCAmelCase : Tuple , ): _UpperCAmelCase = BertGenerationDecoder(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _UpperCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): _snake_case : int = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _snake_case : Tuple = (BertGenerationDecoder,) if is_torch_available() else () _snake_case : Optional[Any] = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = BertGenerationEncoderTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = """bert""" self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) _UpperCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): _UpperCAmelCase = model(_UpperCAmelCase )[0] _UpperCAmelCase = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , _UpperCAmelCase ) _UpperCAmelCase = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) _UpperCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): _UpperCAmelCase = model(_UpperCAmelCase )[0] _UpperCAmelCase = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , _UpperCAmelCase ) _UpperCAmelCase = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
289
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) SCREAMING_SNAKE_CASE : str = str(bin(a__ ) ) binary_number += "0" * shift_amount return binary_number def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) SCREAMING_SNAKE_CASE : List[Any] = str(bin(a__ ) )[2:] if shift_amount >= len(a__ ): return "0b0" SCREAMING_SNAKE_CASE : Optional[int] = binary_number[: len(a__ ) - shift_amount] return "0b" + shifted_binary_number def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if number >= 0: # Get binary representation of positive number SCREAMING_SNAKE_CASE : Dict = '''0''' + str(bin(a__ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number SCREAMING_SNAKE_CASE : Optional[Any] = len(bin(a__ )[3:] ) # Find 2's complement of number SCREAMING_SNAKE_CASE : Optional[int] = bin(abs(a__ ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE : Any = ( '''1''' + '''0''' * (binary_number_length - len(a__ )) + binary_number ) if shift_amount >= len(a__ ): return "0b" + binary_number[0] * len(a__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(a__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
313
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["vqvae"] def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase ) def a__ ( self : Tuple ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00 @torch.no_grad() def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCAmelCase , device=self.device , ) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase ) __lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 2_55) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample( generator=_UpperCAmelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCAmelCase ): __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample'] else: __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] if isinstance(self.scheduler , _UpperCAmelCase ): __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] else: __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_UpperCAmelCase )['sample'] __lowercase = (images / 2 + 0.5).clamp(0 , 1 ) __lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowercase = (images * 2_55).round().astype('uint8' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) ) @torch.no_grad() def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , _UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 2_55) * 2 - 1 __lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor: """simple docstring""" __lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
325
0
import math def _A ( SCREAMING_SNAKE_CASE__ : int ): return math.sqrt(SCREAMING_SNAKE_CASE__ ) * math.sqrt(SCREAMING_SNAKE_CASE__ ) == num def _A ( SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :List[str] = 0 UpperCamelCase :Optional[Any] = n while left <= right: UpperCamelCase :List[str] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCamelCase :List[Any] = mid - 1 else: UpperCamelCase :str = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
259
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
0
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowercase__ ( ): __UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] __UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) _lowercase : Optional[int] = make_dataset() def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): for triplet in permutations(snake_case_ , 3 ): if sum(snake_case_ ) == target: return tuple(sorted(snake_case_ ) ) return (0, 0, 0) def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): arr.sort() __UpperCAmelCase = len(snake_case_ ) for i in range(n - 1 ): __UpperCAmelCase , __UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowercase__ ( ): __UpperCAmelCase = '''\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n''' __UpperCAmelCase = '''\ntriplet_sum1(*dataset)\n''' __UpperCAmelCase = '''\ntriplet_sum2(*dataset)\n''' __UpperCAmelCase = repeat(setup=snake_case_ , stmt=snake_case_ , repeat=5 , number=10_000 ) __UpperCAmelCase = repeat(setup=snake_case_ , stmt=snake_case_ , repeat=5 , number=10_000 ) return (min(snake_case_ ), min(snake_case_ )) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : Optional[int] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
332
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: super().__init__() _lowerCAmelCase = module _lowerCAmelCase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) _lowerCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _snake_case ( self , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __lowerCamelCase : int = "bigscience/bloom-1b7" # Constant values __lowerCamelCase : Any = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 __lowerCamelCase : str = "Hello my name is" __lowerCamelCase : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) __lowerCamelCase : List[Any] = 10 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained(self.model_name ) class lowerCAmelCase_ ( lowerCAmelCase__ ): def _snake_case ( self ) -> Union[str, Any]: super().setUp() # Models and tokenizer _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) def _snake_case ( self ) -> Optional[Any]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> int: _lowerCAmelCase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , "quantization_config" ) ) _lowerCAmelCase = config.to_dict() _lowerCAmelCase = config.to_diff_dict() _lowerCAmelCase = config.to_json_string() def _snake_case ( self ) -> Tuple: from bitsandbytes.nn import Paramsabit _lowerCAmelCase = self.model_fpaa.get_memory_footprint() _lowerCAmelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _lowerCAmelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _snake_case ( self ) -> str: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _lowerCAmelCase = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def _snake_case ( self ) -> str: _lowerCAmelCase = BitsAndBytesConfig() _lowerCAmelCase = True _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map="auto" ) _lowerCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _lowerCAmelCase = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def _snake_case ( self ) -> List[str]: with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _snake_case ( self ) -> Tuple: with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _lowerCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _lowerCAmelCase = self.model_fpaa.to(torch.floataa ) _lowerCAmelCase = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error _lowerCAmelCase = self.model_fpaa.to("cpu" ) # Check this does not throw an error _lowerCAmelCase = self.model_fpaa.half() # Check this does not throw an error _lowerCAmelCase = self.model_fpaa.float() def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=_UpperCAmelCase , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): @classmethod def _snake_case ( cls ) -> Tuple: _lowerCAmelCase = "t5-small" _lowerCAmelCase = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense _lowerCAmelCase = AutoTokenizer.from_pretrained(cls.model_name ) _lowerCAmelCase = "Translate in German: Hello, my dog is cute" def _snake_case ( self ) -> Dict: gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> int: from transformers import TaForConditionalGeneration _lowerCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules _lowerCAmelCase = None # test with `t5-small` _lowerCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) _lowerCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _lowerCAmelCase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` _lowerCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) _lowerCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _lowerCAmelCase = model.generate(**_UpperCAmelCase ) _lowerCAmelCase = modules def _snake_case ( self ) -> Optional[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _lowerCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _lowerCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _lowerCAmelCase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` _lowerCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) _lowerCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _lowerCAmelCase = model.generate(**_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCAmelCase__ ): def _snake_case ( self ) -> Any: super().setUp() # model_name _lowerCAmelCase = "bigscience/bloom-560m" _lowerCAmelCase = "t5-small" # Different types of model _lowerCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) # Sequence classification model _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) # CausalLM model _lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) # Seq2seq model _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map="auto" ) def _snake_case ( self ) -> List[str]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCAmelCase_ ( lowerCAmelCase__ ): def _snake_case ( self ) -> str: super().setUp() def _snake_case ( self ) -> Any: del self.pipe gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> int: _lowerCAmelCase = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _lowerCAmelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCAmelCase_ ( lowerCAmelCase__ ): def _snake_case ( self ) -> Optional[int]: super().setUp() def _snake_case ( self ) -> int: _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _lowerCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch _lowerCAmelCase = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class lowerCAmelCase_ ( lowerCAmelCase__ ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = "facebook/opt-350m" super().setUp() def _snake_case ( self ) -> List[str]: if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters _lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _lowerCAmelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _lowerCAmelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): _lowerCAmelCase = LoRALayer(module.q_proj , rank=16 ) _lowerCAmelCase = LoRALayer(module.k_proj , rank=16 ) _lowerCAmelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch _lowerCAmelCase = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _lowerCAmelCase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCAmelCase_ ( lowerCAmelCase__ ): __lowerCamelCase : Any = "gpt2-xl" __lowerCamelCase : str = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
158
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _lowerCAmelCase ( lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[int] = "roformer" def __init__( self : Any, UpperCAmelCase__ : Optional[Any]=5_0_0_0_0, UpperCAmelCase__ : Tuple=None, UpperCAmelCase__ : Optional[int]=7_6_8, UpperCAmelCase__ : str=1_2, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : Tuple=3_0_7_2, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : List[Any]=0.1, UpperCAmelCase__ : List[Any]=1_5_3_6, UpperCAmelCase__ : Optional[Any]=2, UpperCAmelCase__ : str=0.02, UpperCAmelCase__ : str=1E-12, UpperCAmelCase__ : Any=0, UpperCAmelCase__ : List[str]=False, UpperCAmelCase__ : Tuple=True, **UpperCAmelCase__ : int, ): super().__init__(pad_token_id=_UpperCAmelCase, **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size if embedding_size is None else embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = rotary_value __lowercase = use_cache class _lowerCAmelCase ( lowerCAmelCase__ ): """simple docstring""" @property def _lowercase ( self : Optional[Any] ): if self.task == "multiple-choice": __lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase = {0: "batch", 1: "sequence"} __lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
17
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
from math import isqrt, loga def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = False return [i for i in range(2 , __SCREAMING_SNAKE_CASE ) if is_prime[i]] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 80_0800 , __SCREAMING_SNAKE_CASE = 80_0800 ): lowercase = degree * loga(__SCREAMING_SNAKE_CASE ) lowercase = int(__SCREAMING_SNAKE_CASE ) lowercase = calculate_prime_numbers(__SCREAMING_SNAKE_CASE ) lowercase = 0 lowercase = 0 lowercase = len(__SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
195
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
0
def a_ ( __lowercase : int = 1_000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
282
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any]=0.999 , UpperCamelCase_ : Optional[Any]="cosine" , ) -> Union[str, Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase_ : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase_ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): lowerCAmelCase__ = i / num_diffusion_timesteps lowerCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase_ ) / alpha_bar_fn(UpperCamelCase_ ) , UpperCamelCase_ ) ) return torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) class lowercase__ ( lowerCAmelCase__, lowerCAmelCase__ ): a_ =[e.name for e in KarrasDiffusionSchedulers] a_ =2 @register_to_config def __init__( self , __UpperCAmelCase = 1000 , __UpperCAmelCase = 0.00_085 , __UpperCAmelCase = 0.012 , __UpperCAmelCase = "linear" , __UpperCAmelCase = None , __UpperCAmelCase = "epsilon" , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = 1.0 , __UpperCAmelCase = "linspace" , __UpperCAmelCase = 0 , )-> str: '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ = torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ = torch.linspace(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ = betas_for_alpha_bar(_UpperCAmelCase , alpha_transform_type="cosine" ) elif beta_schedule == "exp": lowerCAmelCase__ = betas_for_alpha_bar(_UpperCAmelCase , alpha_transform_type="exp" ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowerCAmelCase__ = 1.0 - self.betas lowerCAmelCase__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase__ = use_karras_sigmas def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> Any: '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ = self.timesteps lowerCAmelCase__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ = 1 if len(_UpperCAmelCase ) > 1 else 0 else: lowerCAmelCase__ = timestep.cpu().item() if torch.is_tensor(_UpperCAmelCase ) else timestep lowerCAmelCase__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase ( self )-> Any: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , )-> torch.FloatTensor: '''simple docstring''' lowerCAmelCase__ = self.index_for_timestep(_UpperCAmelCase ) lowerCAmelCase__ = self.sigmas[step_index] lowerCAmelCase__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = num_inference_steps lowerCAmelCase__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ = np.linspace(0 , num_train_timesteps - 1 , _UpperCAmelCase , dtype=_UpperCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(_UpperCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ = (np.arange(_UpperCAmelCase , 0 , -step_ratio )).round().copy().astype(_UpperCAmelCase ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowerCAmelCase__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ = np.log(_UpperCAmelCase ) lowerCAmelCase__ = np.interp(_UpperCAmelCase , np.arange(0 , len(_UpperCAmelCase ) ) , _UpperCAmelCase ) if self.config.use_karras_sigmas: lowerCAmelCase__ = self._convert_to_karras(in_sigmas=_UpperCAmelCase , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ = np.array([self._sigma_to_t(_UpperCAmelCase , _UpperCAmelCase ) for sigma in sigmas] ) lowerCAmelCase__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase ) lowerCAmelCase__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ = torch.from_numpy(_UpperCAmelCase ) lowerCAmelCase__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_UpperCAmelCase ).startswith("mps" ): # mps does not support float64 lowerCAmelCase__ = timesteps.to(_UpperCAmelCase , dtype=torch.floataa ) else: lowerCAmelCase__ = timesteps.to(device=_UpperCAmelCase ) # empty dt and derivative lowerCAmelCase__ = None lowerCAmelCase__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ = defaultdict(_UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = np.log(_UpperCAmelCase ) # get distribution lowerCAmelCase__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ = low_idx + 1 lowerCAmelCase__ = log_sigmas[low_idx] lowerCAmelCase__ = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ = (low - log_sigma) / (low - high) lowerCAmelCase__ = np.clip(_UpperCAmelCase , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ = t.reshape(sigma.shape ) return t def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> torch.FloatTensor: '''simple docstring''' lowerCAmelCase__ = in_sigmas[-1].item() lowerCAmelCase__ = in_sigmas[0].item() lowerCAmelCase__ = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ = np.linspace(0 , 1 , _UpperCAmelCase ) lowerCAmelCase__ = sigma_min ** (1 / rho) lowerCAmelCase__ = sigma_max ** (1 / rho) lowerCAmelCase__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' return self.dt is None def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , )-> Union[SchedulerOutput, Tuple]: '''simple docstring''' lowerCAmelCase__ = self.index_for_timestep(_UpperCAmelCase ) # advance index counter by 1 lowerCAmelCase__ = timestep.cpu().item() if torch.is_tensor(_UpperCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ = self.sigmas[step_index] lowerCAmelCase__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ = self.sigmas[step_index - 1] lowerCAmelCase__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ = 0 lowerCAmelCase__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowerCAmelCase__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ = derivative lowerCAmelCase__ = dt lowerCAmelCase__ = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ = self.dt lowerCAmelCase__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , )-> torch.FloatTensor: '''simple docstring''' lowerCAmelCase__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_UpperCAmelCase ): # mps does not support float64 lowerCAmelCase__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ = self.timesteps.to(original_samples.device ) lowerCAmelCase__ = timesteps.to(original_samples.device ) lowerCAmelCase__ = [self.index_for_timestep(_UpperCAmelCase , _UpperCAmelCase ) for t in timesteps] lowerCAmelCase__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ = sigma.unsqueeze(-1 ) lowerCAmelCase__ = original_samples + noise * sigma return noisy_samples def __len__( self )-> List[Any]: '''simple docstring''' return self.config.num_train_timesteps
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
325
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } _SCREAMING_SNAKE_CASE = { """AI-Sweden/gpt-sw3-126m""": 20_48, """AI-Sweden/gpt-sw3-350m""": 20_48, """AI-Sweden/gpt-sw3-1.6b""": 20_48, """AI-Sweden/gpt-sw3-6.7b""": 20_48, """AI-Sweden/gpt-sw3-20b""": 20_48, } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase__ ): __magic_name__: Union[str, Any] = VOCAB_FILES_NAMES __magic_name__: str = PRETRAINED_VOCAB_FILES_MAP __magic_name__: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Any = ["input_ids", "attention_mask"] def __init__( self : int , _A : Any , _A : str=False , _A : Tuple=False , _A : Any=False , _A : Dict=None , _A : Optional[int]=None , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Dict[str, Any]] = None , **_A : Optional[Any] , ) -> None: """simple docstring""" snake_case_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ : Any = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) snake_case_ : Any = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing snake_case_ : Dict = '<|endoftext|>' if eos_token is None else eos_token snake_case_ : str = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: snake_case_ : List[Any] = unk_token if pad_token is None else pad_token snake_case_ : str = eos_token if bos_token is None else bos_token else: snake_case_ : List[Any] = '<pad>' if pad_token is None else pad_token snake_case_ : Dict = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) snake_case_ : str = do_lower_case snake_case_ : Any = remove_space snake_case_ : Optional[Any] = keep_accents snake_case_ : Optional[Any] = vocab_file snake_case_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) # Used for whitespace normalization in input texts # fmt : off snake_case_ : Optional[int] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing snake_case_ : Union[str, Any] = re.compile( F"""[{''.join(map(_UpperCAmelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = self.__dict__.copy() snake_case_ : int = None return state def __setstate__( self : List[Any] , _A : str ) -> Tuple: """simple docstring""" snake_case_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case_ : str = {} snake_case_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase_ ( self : Dict ) -> int: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase_ ( self : List[Any] , _A : str ) -> str: """simple docstring""" snake_case_ : Optional[int] = self.non_printing_characters_re.sub('' , _UpperCAmelCase ) # Normalize whitespaces snake_case_ : Optional[Any] = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization snake_case_ : List[str] = unicodedata.normalize('NFC' , _UpperCAmelCase ) return text def UpperCAmelCase_ ( self : List[str] , _A : str , **_A : Optional[int] ) -> List[str]: """simple docstring""" snake_case_ : int = self.preprocess_text(_UpperCAmelCase ) return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def UpperCAmelCase_ ( self : int , _A : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(_UpperCAmelCase ) def UpperCAmelCase_ ( self : List[Any] , _A : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(_UpperCAmelCase ) @staticmethod def UpperCAmelCase_ ( _A : str ) -> str: """simple docstring""" return out_string def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[str] ) -> str: """simple docstring""" snake_case_ : int = [] snake_case_ : Tuple = '' snake_case_ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token snake_case_ : int = True snake_case_ : Optional[int] = [] else: current_sub_tokens.append(_UpperCAmelCase ) snake_case_ : Union[str, Any] = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict[str, int]: """simple docstring""" snake_case_ : List[str] = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self : Any , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ : Dict = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: snake_case_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, List[str]] , _A : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ : Optional[int] = self.preprocess_text(_UpperCAmelCase ) snake_case_ : Optional[int] = self.sp_model.encode(_UpperCAmelCase ) else: snake_case_ : Tuple = [self.preprocess_text(_UpperCAmelCase ) for t in text] snake_case_ : List[str] = self.sp_model.encode(_UpperCAmelCase ) if return_tensors is True or return_tensors == "pt": snake_case_ : List[str] = torch.tensor(_UpperCAmelCase ) return token_ids def UpperCAmelCase_ ( self : str , _A : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(_UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[int] , _A : "Conversation" ) -> List[int]: """simple docstring""" snake_case_ : Dict = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] snake_case_ : Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(_UpperCAmelCase ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=_UpperCAmelCase )
327
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
from ...processing_utils import ProcessorMixin class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCamelCase_ : List[Any] = "WhisperFeatureExtractor" lowerCamelCase_ : List[str] = "WhisperTokenizer" def __init__(self , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' super().__init__(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Union[str, Any] = self.feature_extractor snake_case_ : Optional[Any] = False def lowerCamelCase (self , __magic_name__=None , __magic_name__=None , __magic_name__=True ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=_UpperCAmelCase , language=_UpperCAmelCase , no_timestamps=_UpperCAmelCase ) def __call__(self , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase ) snake_case_ : List[Any] = kwargs.pop('''audio''' , _UpperCAmelCase ) snake_case_ : List[Any] = kwargs.pop('''sampling_rate''' , _UpperCAmelCase ) snake_case_ : List[str] = kwargs.pop('''text''' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: snake_case_ : Optional[Any] = args[0] snake_case_ : List[Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: snake_case_ : List[str] = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None: snake_case_ : Optional[int] = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: snake_case_ : str = encodings['''input_ids'''] return inputs def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase (self , __magic_name__ , __magic_name__="np" ) -> str: '''simple docstring''' return self.tokenizer.get_prompt_ids(_UpperCAmelCase , return_tensors=_UpperCAmelCase )
279
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split('/' ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __lowercase = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
325
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def __UpperCAmelCase ( lowercase="ro" ,lowercase="en" ,lowercase="wmt16" ,lowercase=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) _UpperCAmelCase = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) _UpperCAmelCase = datasets.load_dataset(lowercase ,lowercase ) if save_dir is None: _UpperCAmelCase = f'''{dataset}-{pair}''' _UpperCAmelCase = Path(lowercase ) save_dir.mkdir(exist_ok=lowercase ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets _UpperCAmelCase = """val""" if split == """validation""" else split _UpperCAmelCase = save_dir.joinpath(f'''{fn}.source''' ) _UpperCAmelCase = save_dir.joinpath(f'''{fn}.target''' ) _UpperCAmelCase = src_path.open("""w+""" ) _UpperCAmelCase = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _UpperCAmelCase = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
289
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def UpperCAmelCase_( a__ , a__=() , a__=None , a__="no" , a__="29500" ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : int = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE : Optional[int] = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE : Any = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: SCREAMING_SNAKE_CASE : Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , a__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: SCREAMING_SNAKE_CASE : int = 8 SCREAMING_SNAKE_CASE : str = PrepareForLaunch(a__ , distributed_type='''TPU''' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(a__ , args=a__ , nprocs=a__ , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*a__ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a__ , master_addr='''127.0.01''' , master_port=a__ , mixed_precision=a__ ): SCREAMING_SNAKE_CASE : Optional[Any] = PrepareForLaunch(a__ , distributed_type='''MULTI_GPU''' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(a__ , args=a__ , nprocs=a__ , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*a__ ) def UpperCAmelCase_( a__ , a__=() , a__=2 ): """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a__ , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): SCREAMING_SNAKE_CASE : Dict = PrepareForLaunch(a__ , debug=a__ ) start_processes(a__ , args=a__ , nprocs=a__ , start_method='''fork''' )
313
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 10 @require_sentencepiece @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[Any] = True def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase ) __lowercase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = '<pad>' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCAmelCase ) , 10_01 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , ) __lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A__ ( unittest.TestCase ): lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase__ : Dict = "C'est trop cool" lowerCAmelCase__ : List[Any] = "Esto es genial" @classmethod def a__ ( cls : Any ) -> Optional[int]: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a__ ( self : Tuple ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def a__ ( self : str ) -> int: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) __lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2] __lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = 'fr' __lowercase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowercase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
325
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ ( lowerCAmelCase__ ): """simple docstring""" UpperCamelCase_ : int ="naver-clova-ix/donut-base-finetuned-docvqa" UpperCamelCase_ : List[Any] =( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) UpperCamelCase_ : Union[str, Any] ="document_qa" UpperCamelCase_ : Any =AutoProcessor UpperCamelCase_ : Union[str, Any] =VisionEncoderDecoderModel UpperCamelCase_ : Optional[Any] =["image", "text"] UpperCamelCase_ : List[Any] =["text"] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase :Any = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCamelCase :Optional[int] = task_prompt.replace('''{user_input}''' , _UpperCAmelCase ) UpperCamelCase :Dict = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='''pt''' ).input_ids UpperCamelCase :Optional[Any] = self.pre_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Tuple = self.pre_processor.batch_decode(_UpperCAmelCase )[0] UpperCamelCase :Dict = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) UpperCamelCase :Any = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) UpperCamelCase :Union[str, Any] = re.sub(r'''<.*?>''' , '''''' , _UpperCAmelCase , count=1 ).strip() # remove first task start token UpperCamelCase :Dict = self.pre_processor.tokenajson(_UpperCAmelCase ) return sequence["answer"]
259
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = version.parse("1.12" ) @property def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : int ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : str ) -> int: """simple docstring""" return 12 def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
325
0
"""simple docstring""" def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :int ): if len(snake_case_ ) != len(snake_case_ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __UpperCAmelCase = [p / w for p, w in zip(snake_case_ , snake_case_ )] # Creating a copy of the list and sorting profit/weight in ascending order __UpperCAmelCase = sorted(snake_case_ ) # declaring useful variables __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __UpperCAmelCase = sorted_profit_by_weight[length - i - 1] __UpperCAmelCase = profit_by_weight.index(snake_case_ ) __UpperCAmelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) _lowercase : str = [int(x) for x in input('Input profits separated by spaces: ').split()] _lowercase : str = [int(x) for x in input('Input weights separated by spaces: ').split()] _lowercase : Any = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
332
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any: """simple docstring""" super().__init__() __lowercase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowercase = config.num_channels def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowercase = self.embedder(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_state * attention return hidden_state class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() __lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def a__ ( self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = self.layers(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int: """simple docstring""" super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_UpperCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = RegNetConfig lowerCAmelCase__ : Optional[int] = "regnet" lowerCAmelCase__ : Dict = "pixel_values" lowerCAmelCase__ : List[str] = True def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = value SCREAMING_SNAKE_CASE__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_UpperCAmelCase ) __lowercase = RegNetEncoder(_UpperCAmelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_UpperCAmelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = 'single_label_classification' else: __lowercase = 'multi_label_classification' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
325
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 7 if "tiny" in model_name: _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 6, 2) _lowerCAmelCase = (3, 6, 12, 24) elif "small" in model_name: _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (3, 6, 12, 24) elif "base" in model_name: _lowerCAmelCase = 128 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (4, 8, 16, 32) _lowerCAmelCase = 12 _lowerCAmelCase = 512 elif "large" in model_name: _lowerCAmelCase = 192 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (6, 12, 24, 48) _lowerCAmelCase = 12 _lowerCAmelCase = 768 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "ade20k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = SwinConfig( embed_dim=SCREAMING_SNAKE_CASE_ , depths=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , window_size=SCREAMING_SNAKE_CASE_ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) _lowerCAmelCase = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE_ , auxiliary_in_channels=SCREAMING_SNAKE_CASE_ , num_labels=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = val def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) _lowerCAmelCase = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[:dim, :] _lowerCAmelCase = in_proj_bias[: dim] _lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] _lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] _lowerCAmelCase = in_proj_weight[ -dim :, : ] _lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = x.shape _lowerCAmelCase = x.reshape(SCREAMING_SNAKE_CASE_ , 4 , in_channel // 4 ) _lowerCAmelCase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return x def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = x.shape _lowerCAmelCase = x.reshape(SCREAMING_SNAKE_CASE_ , in_channel // 4 , 4 ) _lowerCAmelCase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return x def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = x.shape[0] _lowerCAmelCase = x.reshape(4 , in_channel // 4 ) _lowerCAmelCase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE_ ) return x def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = x.shape[0] _lowerCAmelCase = x.reshape(in_channel // 4 , 4 ) _lowerCAmelCase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE_ ) return x def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" , file_name=SCREAMING_SNAKE_CASE_ )[ "state_dict" ] for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE_ , param.shape ) _lowerCAmelCase = get_upernet_config(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "bn" in key: _lowerCAmelCase = key.replace("bn" , "batch_norm" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _lowerCAmelCase = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE_ ) if "norm" in key: _lowerCAmelCase = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify on image _lowerCAmelCase = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert("RGB" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _lowerCAmelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": _lowerCAmelCase = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": _lowerCAmelCase = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": _lowerCAmelCase = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f'''upernet-swin-{size}''' for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
158
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _a = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A_ ( lowerCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() lowercase = 5 # Realm tok lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowercase = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE__ ( self ): lowercase = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def SCREAMING_SNAKE_CASE__ ( self ): lowercase = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=_UpperCAmelCase , ) return block_records def SCREAMING_SNAKE_CASE__ ( self ): lowercase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_config() lowercase = self.get_dummy_retriever() lowercase = retriever.tokenizer lowercase = np.array([0, 3] , dtype='long' ) lowercase = tokenizer(['Test question'] ).input_ids lowercase = tokenizer( ['the fourth'] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids lowercase = config.reader_seq_len lowercase , lowercase , lowercase , lowercase = retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np' ) self.assertEqual(len(_UpperCAmelCase ) , 2 ) self.assertEqual(len(_UpperCAmelCase ) , 2 ) self.assertEqual(len(_UpperCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_config() lowercase = self.get_dummy_retriever() lowercase = retriever.tokenizer lowercase = np.array([0, 3, 5] , dtype='long' ) lowercase = tokenizer(['Test question'] ).input_ids lowercase = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids lowercase = config.reader_seq_len lowercase , lowercase , lowercase , lowercase = retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np' ) self.assertEqual([False, True, True] , _UpperCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _UpperCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path lowercase = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , B'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: lowercase = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) lowercase = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , B'This is the first record' )
195
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowercase : Optional[int] , lowercase : List[str] , lowercase : bool = True , lowercase : bool = False ): '''simple docstring''' _snake_case = scheduler _snake_case = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] _snake_case = split_batches _snake_case = step_with_optimizer _snake_case = GradientState() def A ( self : Optional[int] , *lowercase : int , **lowercase : str ): '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _snake_case = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def A ( self : Optional[int] ): '''simple docstring''' return self.scheduler.get_last_lr() def A ( self : List[str] ): '''simple docstring''' return self.scheduler.state_dict() def A ( self : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' self.scheduler.load_state_dict(_UpperCAmelCase ) def A ( self : Dict ): '''simple docstring''' return self.scheduler.get_lr() def A ( self : Union[str, Any] , *lowercase : Union[str, Any] , **lowercase : List[str] ): '''simple docstring''' return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
282
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [torch.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class A__ ( unittest.TestCase ): def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [tf.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowercase = [tf.convert_to_tensor(_UpperCAmelCase )] __lowercase = [torch.tensor(_UpperCAmelCase )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
325
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowercase__ ( lowerCAmelCase__ ): a_ ="decision_transformer" a_ =["past_key_values"] a_ ={ "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , )-> str: '''simple docstring''' lowerCAmelCase__ = state_dim lowerCAmelCase__ = act_dim lowerCAmelCase__ = hidden_size lowerCAmelCase__ = max_ep_len lowerCAmelCase__ = action_tanh lowerCAmelCase__ = vocab_size lowerCAmelCase__ = n_positions lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head lowerCAmelCase__ = n_inner lowerCAmelCase__ = activation_function lowerCAmelCase__ = resid_pdrop lowerCAmelCase__ = embd_pdrop lowerCAmelCase__ = attn_pdrop lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scale_attn_weights lowerCAmelCase__ = use_cache lowerCAmelCase__ = scale_attn_by_inverse_layer_idx lowerCAmelCase__ = reorder_and_upcast_attn lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
340
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(__a , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : int = _distribute_shards(**__a ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : str = _split_gen_kwargs(__a , __a ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): if expected is RuntimeError: with pytest.raises(__a ): _number_of_shards_in_gen_kwargs(__a ) else: snake_case_ : Any = _number_of_shards_in_gen_kwargs(__a ) assert out == expected
327
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
0
import math def lowerCamelCase_ ( _UpperCamelCase ) -> bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False snake_case_ : Optional[int] = range(3 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1 , **_UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : int = factor * value snake_case_ : Dict = value while not is_prime(_UpperCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_UpperCamelCase ) return value
279
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: for attribute in key.split('.' ): __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowercase = None for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __lowercase = True elif name.split('.' )[0] == "proj": __lowercase = fairseq_model.proj __lowercase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __lowercase = 'weight_g' elif "weight_v" in name: __lowercase = 'weight_v' elif "bias" in name: __lowercase = 'bias' elif "weight" in name: __lowercase = 'weight' else: __lowercase = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: __lowercase = full_name.split('conv_layers.' )[-1] __lowercase = name.split('.' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __lowercase = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: __lowercase = f.readlines() __lowercase = [line.split(' ' )[0] for line in lines] __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]: __lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __lowercase = model[0].eval() # set weights for wav2vec2 encoder __lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE ) __lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) __lowercase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) __lowercase = False # add projection layer __lowercase = nn.Parameter(projection_layer.weight ) __lowercase = nn.Parameter(projection_layer.bias ) __lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = hf_wavavec.config.to_dict() __lowercase = tokenizer.pad_token_id __lowercase = tokenizer.bos_token_id __lowercase = tokenizer.eos_token_id __lowercase = 'speech_to_text_2' __lowercase = 'wav2vec2' __lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
325
0
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCAmelCase__ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCAmelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __UpperCAmelCase ( lowercase ): """simple docstring""" if "://" in dataset_path: _UpperCAmelCase = dataset_path.split("""://""" )[1] return dataset_path def __UpperCAmelCase ( lowercase ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = not is_remote_filesystem(lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase ) ,fs._strip_protocol(lowercase ) ) else: fs.mv(lowercase ,lowercase ,recursive=lowercase ) def __UpperCAmelCase ( ): """simple docstring""" if hasattr(fsspec.asyn ,"""reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = threading.Lock()
289
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : int = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class a_ ( lowerCAmelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = "timesformer" def __init__( self , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=8 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase="divided_space_time" , _lowerCamelCase=0 , **_lowerCamelCase , ) ->Tuple: super().__init__(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : int = num_frames SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = qkv_bias SCREAMING_SNAKE_CASE : List[str] = attention_type SCREAMING_SNAKE_CASE : Optional[Any] = drop_path_rate
313
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["vqvae"] def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase ) def a__ ( self : Tuple ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00 @torch.no_grad() def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCAmelCase , device=self.device , ) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase ) __lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 2_55) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample( generator=_UpperCAmelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCAmelCase ): __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample'] else: __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] if isinstance(self.scheduler , _UpperCAmelCase ): __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] else: __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_UpperCAmelCase )['sample'] __lowercase = (images / 2 + 0.5).clamp(0 , 1 ) __lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowercase = (images * 2_55).round().astype('uint8' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) ) @torch.no_grad() def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , _UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 2_55) * 2 - 1 __lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor: """simple docstring""" __lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
325
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCAmelCase_ ( lowerCAmelCase__ ): """simple docstring""" UpperCamelCase_ : Tuple ="" UpperCamelCase_ : List[str] ="hf-legacy" # "hf://"" is reserved for hffs def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: super().__init__(self , **_UpperCAmelCase ) UpperCamelCase :int = repo_info UpperCamelCase :List[str] = token UpperCamelCase :Tuple = None def UpperCAmelCase ( self ) -> int: if self.dir_cache is None: UpperCamelCase :Tuple = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCamelCase :int = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_UpperCAmelCase ): {'''name''': str(_UpperCAmelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "rb" , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: if not isinstance(self.repo_info , _UpperCAmelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) UpperCamelCase :Tuple = hf_hub_url(self.repo_info.id , _UpperCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _UpperCAmelCase , mode=_UpperCAmelCase , headers=get_authentication_headers_for_url(_UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple: self._get_dirs() UpperCamelCase :List[str] = self._strip_protocol(_UpperCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_UpperCAmelCase ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> int: self._get_dirs() UpperCamelCase :Optional[int] = PurePosixPath(path.strip('''/''' ) ) UpperCamelCase :Optional[int] = {} for p, f in self.dir_cache.items(): UpperCamelCase :int = PurePosixPath(p.strip('''/''' ) ) UpperCamelCase :Any = p.parent if root == path: UpperCamelCase :Tuple = f UpperCamelCase :Union[str, Any] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
259
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowercase : Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__ ): def __init__( self : Optional[Any] , *_lowercase : Optional[Any] , **_lowercase : int ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
332
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE = logging.getLogger() _SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase_ ( lowerCAmelCase__ ): def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _lowerCAmelCase = {"source": "What is love ?", "target": "life"} _lowerCAmelCase = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _lowerCAmelCase = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(_UpperCAmelCase , f'''{split}.{field}''' ) , "w" ) as f: f.write(_UpperCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = "pytorch" ) -> str: _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = os.path.join(_UpperCAmelCase , "output" ) _lowerCAmelCase = os.path.join(_UpperCAmelCase , "data" ) self._create_dummy_data(data_dir=_UpperCAmelCase ) _lowerCAmelCase = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) _lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) _lowerCAmelCase = os.path.join(_UpperCAmelCase , "metrics.json" ) with open(_UpperCAmelCase ) as f: _lowerCAmelCase = json.load(_UpperCAmelCase ) return result @require_torch_gpu def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
158
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _lowercase ( cls : str ): __lowercase = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def _lowercase ( cls : Optional[int] ): try: delete_repo(token=cls._token, repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-config" ) except HTTPError: pass def _lowercase ( self : Union[str, Any] ): __lowercase = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub("test-config", use_auth_token=self._token ) __lowercase = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase, repo_id="test-config", push_to_hub=_UpperCAmelCase, use_auth_token=self._token ) __lowercase = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) def _lowercase ( self : Optional[Any] ): __lowercase = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub("valid_org/test-config-org", use_auth_token=self._token ) __lowercase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase, repo_id="valid_org/test-config-org", push_to_hub=_UpperCAmelCase, use_auth_token=self._token ) __lowercase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) def _lowercase ( self : Optional[Any] ): CustomConfig.register_for_auto_class() __lowercase = CustomConfig(attribute=4_2 ) config.push_to_hub("test-dynamic-config", use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {"AutoConfig": "custom_configuration.CustomConfig"} ) __lowercase = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""", trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, "CustomConfig" ) self.assertEqual(new_config.attribute, 4_2 ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ): __lowercase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowercase = c.n_embd + 1 # int __lowercase = c.resid_pdrop + 1.0 # float __lowercase = not c.scale_attn_weights # bool __lowercase = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_UpperCAmelCase, c.n_embd, "mismatch for key: n_embd" ) self.assertEqual(_UpperCAmelCase, c.resid_pdrop, "mismatch for key: resid_pdrop" ) self.assertEqual(_UpperCAmelCase, c.scale_attn_weights, "mismatch for key: scale_attn_weights" ) self.assertEqual(_UpperCAmelCase, c.summary_type, "mismatch for key: summary_type" ) def _lowercase ( self : Dict ): __lowercase = PretrainedConfig() __lowercase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _UpperCAmelCase, ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) __lowercase = [key for key, value in config_common_kwargs.items() if value == getattr(_UpperCAmelCase, _UpperCAmelCase )] if len(_UpperCAmelCase ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {", ".join(_UpperCAmelCase )}.""" ) def _lowercase ( self : Any ): with self.assertRaises(_UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowercase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) __lowercase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder", subfolder="bert" ) self.assertIsNotNone(_UpperCAmelCase ) def _lowercase ( self : Any ): __lowercase = mock.Mock() __lowercase = 5_0_0 __lowercase = {} __lowercase = HTTPError __lowercase = {} # Download this model to make sure it's in the cache. __lowercase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request", return_value=_UpperCAmelCase ) as mock_head: __lowercase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Dict ): __lowercase = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _lowercase ( self : Optional[Any] ): __lowercase = AutoConfig.from_pretrained("bert-base-cased" ) __lowercase = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_UpperCAmelCase ) __lowercase = 2 json.dump(configuration.to_dict(), open(os.path.join(_UpperCAmelCase, "config.4.0.0.json" ), "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowercase = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowercase = ["config.42.0.0.json"] __lowercase = 7_6_8 configuration.save_pretrained(_UpperCAmelCase ) shutil.move(os.path.join(_UpperCAmelCase, "config.4.0.0.json" ), os.path.join(_UpperCAmelCase, "config.42.0.0.json" ) ) __lowercase = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def _lowercase ( self : Union[str, Any] ): __lowercase = "hf-internal-testing/test-two-configs" import transformers as new_transformers __lowercase = "v4.0.0" __lowercase ,__lowercase = new_transformers.models.auto.AutoConfig.from_pretrained( _UpperCAmelCase, return_unused_kwargs=_UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_UpperCAmelCase, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowercase = "v3.0.0" __lowercase = old_transformers.models.auto.AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
17
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = len(__SCREAMING_SNAKE_CASE ) lowercase = [[0] * n for i in range(__SCREAMING_SNAKE_CASE )] for i in range(__SCREAMING_SNAKE_CASE ): lowercase = y_points[i] for i in range(2 , __SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
195
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''spiece.model'''} _lowerCamelCase : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } _lowerCamelCase : List[Any] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } _lowerCamelCase : List[str] = '''▁''' class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ): '''simple docstring''' _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , lowercase : str , lowercase : Dict=True , lowercase : Optional[Any]=True , lowercase : Optional[int]=False , lowercase : List[str]="[CLS]" , lowercase : List[Any]="[SEP]" , lowercase : Optional[int]="<unk>" , lowercase : Optional[int]="[SEP]" , lowercase : Optional[Any]="<pad>" , lowercase : Union[str, Any]="[CLS]" , lowercase : Dict="[MASK]" , lowercase : Optional[Dict[str, Any]] = None , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def A ( self : Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : int , lowercase : str ): '''simple docstring''' if self.remove_space: _snake_case = ' '.join(inputs.strip().split() ) else: _snake_case = inputs _snake_case = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _snake_case = unicodedata.normalize('NFKD' , _UpperCAmelCase ) _snake_case = ''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: _snake_case = outputs.lower() return outputs def A ( self : List[str] , lowercase : str ): '''simple docstring''' _snake_case = self.preprocess_text(_UpperCAmelCase ) _snake_case = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) _snake_case = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _snake_case = cur_pieces[1:] else: _snake_case = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def A ( self : List[str] , lowercase : Optional[int] ): '''simple docstring''' return self.sp_model.PieceToId(_UpperCAmelCase ) def A ( self : str , lowercase : Any ): '''simple docstring''' return self.sp_model.IdToPiece(_UpperCAmelCase ) def A ( self : str , lowercase : str ): '''simple docstring''' _snake_case = [] _snake_case = '' _snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token _snake_case = True _snake_case = [] else: current_sub_tokens.append(_UpperCAmelCase ) _snake_case = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def A ( self : List[Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Any , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def A ( self : List[str] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Union[str, Any] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
282
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase__ ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=4 , )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_attention_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_choices def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_attention_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_UpperCAmelCase , ) return config, input_ids, attention_mask def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowercase__ ( lowerCAmelCase__, unittest.TestCase ): a_ =( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = FlaxDistilBertModelTester(self ) @slow def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase__ = model_class_name.from_pretrained("distilbert-base-uncased" ) lowerCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class lowercase__ ( unittest.TestCase ): @slow def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) lowerCAmelCase__ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowerCAmelCase__ = (1, 11, 768) self.assertEqual(output.shape , _UpperCAmelCase ) lowerCAmelCase__ = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
325
0
import os import pytest from transformers.dynamic_module_utils import get_imports _SCREAMING_SNAKE_CASE = """ import os """ _SCREAMING_SNAKE_CASE = """ def foo(): import os return False """ _SCREAMING_SNAKE_CASE = """ def foo(): def bar(): if True: import os return False return bar() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except ImportError as e: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar except: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar import baz except ImportError: raise ValueError() """ _SCREAMING_SNAKE_CASE = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _SCREAMING_SNAKE_CASE = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case' , __a ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = os.path.join(__a , 'test_file.py' ) with open(__a , 'w' ) as _tmp_file: _tmp_file.write(__a ) snake_case_ : Optional[int] = get_imports(__a ) assert parsed_imports == ["os"]
327
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
import mpmath # for roots of unity import numpy as np class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: '''simple docstring''' __snake_case : Tuple = list(poly_a or [0] )[:] __snake_case : Dict = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __snake_case : str = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __snake_case : int = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __snake_case : Union[str, Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __snake_case : Tuple = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __snake_case : str = self.__multiply() def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # __snake_case : str = self.c_max_length // 2 while next_ncol > 0: __snake_case : str = [[] for i in range(UpperCAmelCase )] __snake_case : Optional[int] = self.root**next_ncol # First half of next step __snake_case : Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __snake_case : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __snake_case : Union[str, Any] = new_dft __snake_case : Any = next_ncol // 2 return dft[0] def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dft("A" ) __snake_case : Dict = self.__dft("B" ) __snake_case : List[str] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __snake_case : Optional[Any] = 2 while next_ncol <= self.c_max_length: __snake_case : List[str] = [[] for i in range(UpperCAmelCase )] __snake_case : Tuple = self.root ** (next_ncol // 2) __snake_case : int = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __snake_case : Union[str, Any] = new_inverse_c next_ncol *= 2 # Unpack __snake_case : List[Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> Dict: '''simple docstring''' __snake_case : Dict = "A = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) __snake_case : int = "B = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) __snake_case : Any = "A*B = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return F"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
326
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
1
import requests _UpperCamelCase = '''YOUR API KEY''' def lowerCAmelCase__( lowercase : str , lowercase : str = giphy_api_key ) -> list: __snake_case : List[str] = "+".join(query.split() ) __snake_case : Optional[int] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" __snake_case : str = requests.get(lowercase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
326
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
1
import math def lowerCAmelCase__( lowercase : int ) -> str: __snake_case : List[str] = 0 __snake_case : Union[str, Any] = 0 while num > 0: __snake_case : Union[str, Any] = num % 8 __snake_case : List[str] = octal + (remainder * math.floor(math.pow(10 , lowercase ) )) counter += 1 __snake_case : List[str] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(lowercase )}""" def lowerCAmelCase__( ) -> None: print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
326
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : Optional[int] =None def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case : Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Dict = os.path.join(UpperCAmelCase , "feat_extract.json" ) feat_extract_first.to_json_file(UpperCAmelCase ) __snake_case : Tuple = self.feature_extraction_class.from_json_file(UpperCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[Any] = feat_extract_first.save_pretrained(UpperCAmelCase )[0] check_json_file_has_correct_format(UpperCAmelCase ) __snake_case : Any = self.feature_extraction_class.from_pretrained(UpperCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[Any] = self.feature_extraction_class() self.assertIsNotNone(UpperCAmelCase )
326
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
1
def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) < 2: return collection def circle_sort_util(lowercase : list , lowercase : int , lowercase : int ) -> bool: __snake_case : Optional[int] = False if low == high: return swapped __snake_case : str = low __snake_case : str = high while left < right: if collection[left] > collection[right]: __snake_case , __snake_case : Dict = ( collection[right], collection[left], ) __snake_case : Union[str, Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __snake_case , __snake_case : List[Any] = ( collection[right + 1], collection[left], ) __snake_case : Tuple = True __snake_case : int = low + int((high - low) / 2 ) __snake_case : Optional[int] = circle_sort_util(lowercase , lowercase , lowercase ) __snake_case : Optional[int] = circle_sort_util(lowercase , mid + 1 , lowercase ) return swapped or left_swap or right_swap __snake_case : Dict = True while is_not_sorted is True: __snake_case : Dict = circle_sort_util(lowercase , 0 , len(lowercase ) - 1 ) return collection if __name__ == "__main__": _UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() _UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
326
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : CommonSchedulerState # setable values UpperCAmelCase_ : jnp.ndarray UpperCAmelCase_ : jnp.ndarray UpperCAmelCase_ : Optional[int] =None @classmethod def UpperCAmelCase ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' return cls(common=UpperCAmelCase , init_noise_sigma=UpperCAmelCase , timesteps=UpperCAmelCase ) @dataclass class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : DDPMSchedulerState class _lowerCamelCase ( a , a ): """simple docstring""" UpperCAmelCase_ : List[Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] UpperCAmelCase_ : jnp.dtype @property def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' return True @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = 0.0_001 , UpperCAmelCase = 0.02 , UpperCAmelCase = "linear" , UpperCAmelCase = None , UpperCAmelCase = "fixed_small" , UpperCAmelCase = True , UpperCAmelCase = "epsilon" , UpperCAmelCase = jnp.floataa , ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = dtype def UpperCAmelCase ( self , UpperCAmelCase = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: __snake_case : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __snake_case : Optional[int] = jnp.array(1.0 , dtype=self.dtype ) __snake_case : str = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCAmelCase , init_noise_sigma=UpperCAmelCase , timesteps=UpperCAmelCase , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> jnp.ndarray: '''simple docstring''' return sample def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = () ) -> DDPMSchedulerState: '''simple docstring''' __snake_case : Optional[int] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __snake_case : List[Any] = (jnp.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __snake_case : Tuple = state.common.alphas_cumprod[t] __snake_case : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __snake_case : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __snake_case : Optional[int] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __snake_case : List[str] = jnp.clip(UpperCAmelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __snake_case : Optional[Any] = jnp.log(jnp.clip(UpperCAmelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": __snake_case : int = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __snake_case : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __snake_case : Any = variance __snake_case : Any = state.common.betas[t] __snake_case : Tuple = (predicted_variance + 1) / 2 __snake_case : int = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' __snake_case : int = timestep if key is None: __snake_case : List[str] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __snake_case , __snake_case : Any = jnp.split(UpperCAmelCase , sample.shape[1] , axis=1 ) else: __snake_case : Tuple = None # 1. compute alphas, betas __snake_case : List[Any] = state.common.alphas_cumprod[t] __snake_case : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __snake_case : Any = 1 - alpha_prod_t __snake_case : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __snake_case : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __snake_case : Any = model_output elif self.config.prediction_type == "v_prediction": __snake_case : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: __snake_case : Dict = jnp.clip(UpperCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : Optional[int] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __snake_case : Optional[int] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __snake_case : Optional[Any] = jax.random.split(UpperCAmelCase , num=1 ) __snake_case : int = jax.random.normal(UpperCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(UpperCAmelCase , UpperCAmelCase , predicted_variance=UpperCAmelCase ) ** 0.5) * noise __snake_case : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __snake_case : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCAmelCase , state=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __len__( self ) -> Union[str, Any]: '''simple docstring''' return self.config.num_train_timesteps
326
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __snake_case : List[Any] = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase ) , torch_builtin(UpperCAmelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase ) , gelu_new(UpperCAmelCase ) ) ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __snake_case : Any = get_activation("gelu" ) __snake_case : Any = get_activation("gelu_10" ) __snake_case : Dict = torch_builtin(UpperCAmelCase ) __snake_case : int = geluaa(UpperCAmelCase ) __snake_case : List[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(UpperCAmelCase ): get_activation("bogus" ) with self.assertRaises(UpperCAmelCase ): get_activation(UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = get_activation("gelu" ) __snake_case : List[str] = 1 __snake_case : Optional[Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase ): __snake_case : Dict = acta.a
326
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
1
import string import numpy def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , lowercase ) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : Any =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase_ : List[str] =numpy.vectorize(lambda a : x % 36 ) UpperCAmelCase_ : Any =numpy.vectorize(a ) def __init__( self , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : str = self.modulus(UpperCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __snake_case : List[Any] = encrypt_key.shape[0] def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self.key_string.index(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self.key_string[round(UpperCAmelCase )] def UpperCAmelCase ( self ) -> None: '''simple docstring''' __snake_case : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __snake_case : Union[str, Any] = det % len(self.key_string ) __snake_case : int = len(self.key_string ) if greatest_common_divisor(UpperCAmelCase , len(self.key_string ) ) != 1: __snake_case : Union[str, Any] = ( F"""determinant modular {req_l} of encryption key({det}) """ F"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : str = [char for char in text.upper() if char in self.key_string] __snake_case : Optional[int] = chars[-1] while len(UpperCAmelCase ) % self.break_key != 0: chars.append(UpperCAmelCase ) return "".join(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Dict = self.process_text(text.upper() ) __snake_case : Tuple = "" for i in range(0 , len(UpperCAmelCase ) - self.break_key + 1 , self.break_key ): __snake_case : Optional[Any] = text[i : i + self.break_key] __snake_case : int = [self.replace_letters(UpperCAmelCase ) for char in batch] __snake_case : Tuple = numpy.array([vec] ).T __snake_case : Optional[Any] = self.modulus(self.encrypt_key.dot(UpperCAmelCase ) ).T.tolist()[ 0 ] __snake_case : List[str] = "".join( self.replace_digits(UpperCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase ( self ) -> numpy.ndarray: '''simple docstring''' __snake_case : Union[str, Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __snake_case : Optional[int] = det % len(self.key_string ) __snake_case : Any = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __snake_case : List[str] = i break __snake_case : Union[str, Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCAmelCase ) ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : int = self.make_decrypt_key() __snake_case : Dict = self.process_text(text.upper() ) __snake_case : Dict = "" for i in range(0 , len(UpperCAmelCase ) - self.break_key + 1 , self.break_key ): __snake_case : Optional[int] = text[i : i + self.break_key] __snake_case : Dict = [self.replace_letters(UpperCAmelCase ) for char in batch] __snake_case : Optional[int] = numpy.array([vec] ).T __snake_case : Any = self.modulus(decrypt_key.dot(UpperCAmelCase ) ).T.tolist()[0] __snake_case : List[Any] = "".join( self.replace_digits(UpperCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__( ) -> None: __snake_case : List[Any] = int(input("Enter the order of the encryption key: " ) ) __snake_case : List[str] = [] print("Enter each row of the encryption key with space separated integers" ) for _ in range(lowercase ): __snake_case : Tuple = [int(lowercase ) for x in input().split()] hill_matrix.append(lowercase ) __snake_case : Optional[int] = HillCipher(numpy.array(lowercase ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) __snake_case : List[Any] = input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": __snake_case : Optional[Any] = input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(lowercase ) ) elif option == "2": __snake_case : List[Any] = input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
326
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _UpperCamelCase = ['''gpt2'''] _UpperCamelCase = '''gpt2''' if is_tf_available(): class _lowerCamelCase ( tf.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> int: '''simple docstring''' super().__init__() __snake_case : int = tokenizer __snake_case : Optional[int] = AutoConfig.from_pretrained(UpperCAmelCase ) __snake_case : List[str] = TFGPTaLMHeadModel.from_config(UpperCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = self.tokenizer(UpperCAmelCase ) __snake_case : Tuple = tokenized["input_ids"].to_tensor() __snake_case : int = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __snake_case : Optional[int] = self.model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )["logits"] return outputs @require_tf @require_keras_nlp class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' super().setUp() __snake_case : Union[str, Any] = [GPTaTokenizer.from_pretrained(UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __snake_case : Optional[Any] = [TFGPTaTokenizer.from_pretrained(UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __snake_case : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] __snake_case : Optional[int] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __snake_case : Any = tokenizer([test_inputs] , return_tensors="tf" ) __snake_case : Optional[Any] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __snake_case : Any = python_outputs[key].numpy() __snake_case : Tuple = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __snake_case : Tuple = tf.function(UpperCAmelCase ) for test_inputs in self.test_sentences: __snake_case : str = tf.constant(UpperCAmelCase ) __snake_case : Dict = compiled_tokenizer(UpperCAmelCase ) __snake_case : Optional[int] = tf_tokenizer(UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCAmelCase ( self ) -> str: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCAmelCase ) __snake_case : int = tf.convert_to_tensor([self.test_sentences[0]] ) __snake_case : Union[str, Any] = model.serving(UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __snake_case : int = Path(UpperCAmelCase ) / "saved.model" tf.saved_model.save(UpperCAmelCase , UpperCAmelCase , signatures={"serving_default": model.serving} ) __snake_case : Any = tf.saved_model.load(UpperCAmelCase ) __snake_case : Dict = loaded_model.signatures["serving_default"](UpperCAmelCase )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCAmelCase ( self ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __snake_case : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) __snake_case : Any = tf_tokenizer(UpperCAmelCase ) # Build model with some sample inputs __snake_case : Any = tf_tokenizer.get_config() __snake_case : List[Any] = TFGPTaTokenizer.from_config(UpperCAmelCase ) __snake_case : List[str] = model_from_config(UpperCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run __snake_case : str = 123123 for max_length in [3, 5, 1024]: __snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) __snake_case : Any = tf_tokenizer(UpperCAmelCase , max_length=UpperCAmelCase ) __snake_case : str = out["input_ids"].numpy().shape[1] assert out_length == max_length
326
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCAmelCase__( lowercase : List[str] , lowercase : Optional[Any] , lowercase : List[str] ) -> Optional[int]: __snake_case : Optional[Any] = OmegaConf.load(lowercase ) __snake_case : int = torch.load(lowercase , map_location="cpu" )["model"] __snake_case : str = list(state_dict.keys() ) # extract state_dict for VQVAE __snake_case : List[Any] = {} __snake_case : int = "first_stage_model." for key in keys: if key.startswith(lowercase ): __snake_case : Optional[int] = state_dict[key] # extract state_dict for UNetLDM __snake_case : List[str] = {} __snake_case : List[Any] = "model.diffusion_model." for key in keys: if key.startswith(lowercase ): __snake_case : List[Any] = state_dict[key] __snake_case : Union[str, Any] = config.model.params.first_stage_config.params __snake_case : Union[str, Any] = config.model.params.unet_config.params __snake_case : str = VQModel(**lowercase ).eval() vqvae.load_state_dict(lowercase ) __snake_case : Optional[Any] = UNetLDMModel(**lowercase ).eval() unet.load_state_dict(lowercase ) __snake_case : Dict = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowercase , ) __snake_case : List[Any] = LDMPipeline(lowercase , lowercase , lowercase ) pipeline.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
326
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
1
def lowerCAmelCase__( lowercase : int = 1000 ) -> int: __snake_case , __snake_case : Optional[int] = 1, 1 __snake_case : List[str] = 2 while True: __snake_case : Optional[Any] = 0 __snake_case : Any = fa + fa __snake_case , __snake_case : Optional[int] = fa, f index += 1 for _ in str(lowercase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
326
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
1
from __future__ import annotations from collections import deque class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase ) self.set_fail_transitions() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase ( self , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : List[str] = 0 for character in keyword: __snake_case : str = self.find_next_state(UpperCAmelCase , UpperCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __snake_case : Any = len(self.adlist ) - 1 else: __snake_case : int = next_state self.adlist[current_state]["output"].append(UpperCAmelCase ) def UpperCAmelCase ( self ) -> None: '''simple docstring''' __snake_case : deque = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase ) __snake_case : Optional[int] = 0 while q: __snake_case : str = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase ) __snake_case : Any = self.adlist[r]["fail_state"] while ( self.find_next_state(UpperCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): __snake_case : str = self.adlist[state]["fail_state"] __snake_case : Optional[int] = self.find_next_state( UpperCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: __snake_case : List[str] = 0 __snake_case : Optional[Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> dict[str, list[int]]: '''simple docstring''' __snake_case : dict = {} # returns a dict with keywords and list of its occurrences __snake_case : Optional[int] = 0 for i in range(len(UpperCAmelCase ) ): while ( self.find_next_state(UpperCAmelCase , string[i] ) is None and current_state != 0 ): __snake_case : Optional[Any] = self.adlist[current_state]["fail_state"] __snake_case : List[str] = self.find_next_state(UpperCAmelCase , string[i] ) if next_state is None: __snake_case : Union[str, Any] = 0 else: __snake_case : Any = next_state for key in self.adlist[current_state]["output"]: if key not in result: __snake_case : List[Any] = [] result[key].append(i - len(UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
326
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } _UpperCamelCase = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Any =PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[str] =SqueezeBertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): __snake_case : Dict = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) __snake_case : str = do_lower_case __snake_case : List[Any] = strip_accents __snake_case : List[str] = tokenize_chinese_chars __snake_case : Optional[int] = normalizer_class(**UpperCAmelCase ) __snake_case : str = do_lower_case def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : str = [self.sep_token_id] __snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __snake_case : str = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
326
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu _UpperCamelCase = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowerCAmelCase__( lowercase : Optional[int] , lowercase : List[str]=None , lowercase : Any=None , lowercase : Union[str, Any]=None ) -> List[str]: __snake_case : Dict = True while ask_again: __snake_case : Tuple = input(lowercase ) try: if default is not None and len(lowercase ) == 0: return default return convert_value(lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Tuple=[] , lowercase : Tuple=None , lowercase : Optional[Any]=0 ) -> Any: __snake_case : Dict = BulletMenu(lowercase , lowercase ) __snake_case : Tuple = menu.run(default_choice=lowercase ) return convert_value(lowercase ) if convert_value is not None else result def lowerCAmelCase__( lowercase : Tuple ) -> Union[str, Any]: __snake_case : Optional[Any] = int(lowercase ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def lowerCAmelCase__( lowercase : List[Any] ) -> Tuple: __snake_case : str = int(lowercase ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def lowerCAmelCase__( lowercase : List[str] ) -> Tuple: __snake_case : Dict = int(lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCAmelCase__( lowercase : Optional[int] ) -> Any: __snake_case : List[str] = int(lowercase ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def lowerCAmelCase__( lowercase : Optional[int] ) -> Optional[int]: __snake_case : List[Any] = int(lowercase ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> str: return {"yes": True, "no": False}[value.lower()] class _lowerCamelCase ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = super()._format_usage(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __snake_case : Any = usage.replace("<command> [<args>] " , "" ) return usage
326
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
1
import datasets _UpperCamelCase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' _UpperCamelCase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' _UpperCamelCase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def lowerCAmelCase__( lowercase : str , lowercase : Tuple ) -> Optional[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' return {"accuracy": simple_accuracy(UpperCAmelCase , UpperCAmelCase )}
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> str: return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] _UpperCamelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] _UpperCamelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): _UpperCamelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =BertTokenizer UpperCAmelCase_ : List[Any] =BertTokenizerFast UpperCAmelCase_ : str =True UpperCAmelCase_ : Optional[Any] =True UpperCAmelCase_ : str =filter_non_english def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' super().setUp() __snake_case : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' __snake_case : List[Any] = "UNwant\u00E9d,running" __snake_case : Dict = "unwanted, running" return input_text, output_text def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Any = self.tokenizer_class(self.vocab_file ) __snake_case : int = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case : Dict = self.get_tokenizer() __snake_case : str = self.get_rust_tokenizer() __snake_case : Optional[int] = "UNwant\u00E9d,running" __snake_case : Optional[Any] = tokenizer.tokenize(UpperCAmelCase ) __snake_case : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __snake_case : Dict = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __snake_case : Optional[int] = self.get_rust_tokenizer() __snake_case : Any = tokenizer.encode(UpperCAmelCase ) __snake_case : str = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # With lower casing __snake_case : Optional[int] = self.get_tokenizer(do_lower_case=UpperCAmelCase ) __snake_case : List[Any] = self.get_rust_tokenizer(do_lower_case=UpperCAmelCase ) __snake_case : Optional[int] = "UNwant\u00E9d,running" __snake_case : Optional[Any] = tokenizer.tokenize(UpperCAmelCase ) __snake_case : Tuple = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __snake_case : int = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __snake_case : str = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __snake_case : str = self.get_rust_tokenizer() __snake_case : List[str] = tokenizer.encode(UpperCAmelCase ) __snake_case : Dict = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : List[str] = BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Tuple = BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[Any] = BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : List[str] = BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Tuple = BasicTokenizer(do_lower_case=UpperCAmelCase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = BasicTokenizer() __snake_case : Tuple = "a\n'll !!to?'d of, can't." __snake_case : List[Any] = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __snake_case : List[Any] = {} for i, token in enumerate(UpperCAmelCase ): __snake_case : Dict = i __snake_case : Optional[Any] = WordpieceTokenizer(vocab=UpperCAmelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : List[Any] = self.get_tokenizer() __snake_case : Tuple = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : List[str] = self.tokenizer_class.from_pretrained("bert-base-uncased" ) __snake_case : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase ) __snake_case : Any = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase ) __snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) __snake_case : str = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : List[str] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __snake_case : List[str] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __snake_case : Tuple = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) __snake_case : Any = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , "do_lower_case" ) else False __snake_case : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : int = ["的", "人", "有"] __snake_case : Optional[Any] = "".join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : List[Any] = True __snake_case : List[str] = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) __snake_case : Any = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __snake_case : List[str] = False __snake_case : List[str] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __snake_case : List[Any] = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __snake_case : List[Any] = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __snake_case : Dict = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __snake_case : Optional[int] = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) __snake_case : List[str] = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". __snake_case : List[Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
326
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
1
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] ="detr" UpperCAmelCase_ : Optional[int] =["past_key_values"] UpperCAmelCase_ : Optional[int] ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=3 , UpperCAmelCase=100 , UpperCAmelCase=6 , UpperCAmelCase=2048 , UpperCAmelCase=8 , UpperCAmelCase=6 , UpperCAmelCase=2048 , UpperCAmelCase=8 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=256 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1.0 , UpperCAmelCase=False , UpperCAmelCase="sine" , UpperCAmelCase="resnet50" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __snake_case : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : Dict = backbone_config.get("model_type" ) __snake_case : Any = CONFIG_MAPPING[backbone_model_type] __snake_case : Tuple = config_class.from_dict(UpperCAmelCase ) # set timm attributes to None __snake_case , __snake_case , __snake_case : Optional[Any] = None, None, None __snake_case : Dict = use_timm_backbone __snake_case : int = backbone_config __snake_case : int = num_channels __snake_case : List[Any] = num_queries __snake_case : List[Any] = d_model __snake_case : Tuple = encoder_ffn_dim __snake_case : List[Any] = encoder_layers __snake_case : Any = encoder_attention_heads __snake_case : List[str] = decoder_ffn_dim __snake_case : Optional[Any] = decoder_layers __snake_case : List[str] = decoder_attention_heads __snake_case : Optional[int] = dropout __snake_case : List[str] = attention_dropout __snake_case : Optional[int] = activation_dropout __snake_case : Any = activation_function __snake_case : Optional[Any] = init_std __snake_case : Union[str, Any] = init_xavier_std __snake_case : Tuple = encoder_layerdrop __snake_case : str = decoder_layerdrop __snake_case : Dict = encoder_layers __snake_case : Optional[int] = auxiliary_loss __snake_case : Tuple = position_embedding_type __snake_case : Tuple = backbone __snake_case : int = use_pretrained_backbone __snake_case : List[str] = dilation # Hungarian matcher __snake_case : str = class_cost __snake_case : Tuple = bbox_cost __snake_case : Union[str, Any] = giou_cost # Loss coefficients __snake_case : List[str] = mask_loss_coefficient __snake_case : List[Any] = dice_loss_coefficient __snake_case : str = bbox_loss_coefficient __snake_case : Any = giou_loss_coefficient __snake_case : List[str] = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return cls(backbone_config=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self ) -> Dict[str, any]: '''simple docstring''' __snake_case : str = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __snake_case : Tuple = self.backbone_config.to_dict() __snake_case : int = self.__class__.model_type return output class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Dict =version.parse("1.11" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCAmelCase ( self ) -> float: '''simple docstring''' return 1E-5 @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return 12
326
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCAmelCase__( lowercase : Any ) -> Dict: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Any: '''simple docstring''' super().__init__() __snake_case : List[str] = module __snake_case : str = nn.Sequential( nn.Linear(module.in_features , UpperCAmelCase , bias=UpperCAmelCase ) , nn.Linear(UpperCAmelCase , module.out_features , bias=UpperCAmelCase ) , ) __snake_case : List[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> int: '''simple docstring''' return self.module(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) + self.adapter(UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="bigscience/bloom-1b7" # Constant values UpperCAmelCase_ : Dict =2.109_6595_5269_2574 UpperCAmelCase_ : Tuple ="Hello my name is" UpperCAmelCase_ : Union[str, Any] =set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) UpperCAmelCase_ : Union[str, Any] =10 def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(self.model_name ) class _lowerCamelCase ( a ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer __snake_case : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) __snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase , device_map="auto" ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Tuple = self.model_abit.config self.assertTrue(hasattr(UpperCAmelCase , "quantization_config" ) ) __snake_case : Dict = config.to_dict() __snake_case : int = config.to_diff_dict() __snake_case : List[str] = config.to_json_string() def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' from bitsandbytes.nn import Paramsabit __snake_case : Tuple = self.model_fpaa.get_memory_footprint() __snake_case : Optional[Any] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case : Any = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ) __snake_case : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Tuple = BitsAndBytesConfig() __snake_case : Any = True __snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCAmelCase , device_map="auto" ) __snake_case : str = self.tokenizer(self.input_text , return_tensors="pt" ) __snake_case : str = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(UpperCAmelCase ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = BitsAndBytesConfig() with self.assertRaises(UpperCAmelCase ): __snake_case : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCAmelCase , load_in_abit=UpperCAmelCase , device_map="auto" , bnb_abit_quant_type="nf4" , ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case : str = self.tokenizer(self.input_text , return_tensors="pt" ) __snake_case : int = self.model_fpaa.to(torch.floataa ) __snake_case : Optional[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case : Dict = self.model_fpaa.to("cpu" ) # Check this does not throw an error __snake_case : Dict = self.model_fpaa.half() # Check this does not throw an error __snake_case : List[str] = self.model_fpaa.float() def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=UpperCAmelCase , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> int: '''simple docstring''' __snake_case : Dict = "t5-small" __snake_case : Tuple = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case : Optional[Any] = "Translate in German: Hello, my dog is cute" def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' from transformers import TaForConditionalGeneration __snake_case : str = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case : str = None # test with `t5-small` __snake_case : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase , device_map="auto" ) __snake_case : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) __snake_case : int = model.generate(**UpperCAmelCase ) # test with `flan-t5-small` __snake_case : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCAmelCase , device_map="auto" ) __snake_case : Tuple = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) __snake_case : Optional[int] = model.generate(**UpperCAmelCase ) __snake_case : int = modules def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case : Union[str, Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case : List[str] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) __snake_case : Union[str, Any] = model.generate(**UpperCAmelCase ) # test with `flan-t5-small` __snake_case : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCAmelCase , device_map="auto" ) __snake_case : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) __snake_case : int = model.generate(**UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().setUp() # model_name __snake_case : List[Any] = "bigscience/bloom-560m" __snake_case : List[Any] = "t5-small" # Different types of model __snake_case : Any = AutoModel.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase , device_map="auto" ) # Sequence classification model __snake_case : List[Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=UpperCAmelCase , device_map="auto" ) # CausalLM model __snake_case : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase , device_map="auto" ) # Seq2seq model __snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=UpperCAmelCase , device_map="auto" ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> int: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowerCamelCase ( a ): """simple docstring""" def UpperCAmelCase ( self ) -> str: '''simple docstring''' super().setUp() def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : List[str] = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowerCamelCase ( a ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' super().setUp() def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=UpperCAmelCase , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch __snake_case : Optional[int] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class _lowerCamelCase ( a ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = "facebook/opt-350m" super().setUp() def UpperCAmelCase ( self ) -> str: '''simple docstring''' if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters __snake_case : Dict = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case : List[Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(UpperCAmelCase ) ): __snake_case : Optional[int] = LoRALayer(module.q_proj , rank=16 ) __snake_case : str = LoRALayer(module.k_proj , rank=16 ) __snake_case : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case : Union[str, Any] = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case : Optional[Any] = model.forward(**UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="gpt2-xl" UpperCAmelCase_ : Optional[Any] =3.3191_8548_5415_2187
326
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
326
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
1
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
326
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _lowerCamelCase ( a ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = tempfile.mkdtemp() __snake_case : Tuple = 8 # DPR tok __snake_case : int = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __snake_case : str = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) __snake_case : str = os.path.join(UpperCAmelCase , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok __snake_case : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __snake_case : Any = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __snake_case : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __snake_case : List[str] = {"unk_token": "<unk>"} __snake_case : Optional[Any] = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) __snake_case : List[Any] = os.path.join(UpperCAmelCase , BART_VOCAB_FILES_NAMES["vocab_file"] ) __snake_case : Dict = os.path.join(UpperCAmelCase , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def UpperCAmelCase ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def UpperCAmelCase ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : List[Any] = os.path.join(self.tmpdirname , "rag_tokenizer" ) __snake_case : Any = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __snake_case : Tuple = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(UpperCAmelCase ) rag_tokenizer.save_pretrained(UpperCAmelCase ) __snake_case : Optional[Any] = RagTokenizer.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder , UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : List[Any] = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) __snake_case : Dict = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] __snake_case : Optional[Any] = tokenizer(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) __snake_case : List[str] = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] __snake_case : List[Any] = tokenizer(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase )
326
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
1
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : str = (3, 32, 128) __snake_case : Optional[int] = tempfile.mkdtemp() # fmt: off __snake_case : Optional[int] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __snake_case : Optional[int] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) __snake_case : int = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } __snake_case : List[str] = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __snake_case : int = Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) return image_input def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : List[str] = self.get_tokenizer() __snake_case : Any = self.get_image_processor() __snake_case : List[Any] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = self.get_tokenizer() __snake_case : Optional[Any] = self.get_image_processor() __snake_case : Union[str, Any] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __snake_case : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) __snake_case : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.get_image_processor() __snake_case : Optional[int] = self.get_tokenizer() __snake_case : Any = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Union[str, Any] = self.prepare_image_inputs() __snake_case : Union[str, Any] = image_processor(UpperCAmelCase , return_tensors="np" ) __snake_case : Union[str, Any] = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = self.get_image_processor() __snake_case : List[Any] = self.get_tokenizer() __snake_case : Dict = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : int = "test" __snake_case : Tuple = processor(text=UpperCAmelCase ) __snake_case : List[Any] = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : List[str] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Any = "test" __snake_case : Tuple = self.prepare_image_inputs() __snake_case : Union[str, Any] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : Dict = self.get_tokenizer() __snake_case : Any = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Optional[Any] = processor.char_decode(UpperCAmelCase ) __snake_case : Dict = tokenizer.batch_decode(UpperCAmelCase ) __snake_case : List[str] = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Dict = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Union[str, Any] = None __snake_case : int = self.prepare_image_inputs() __snake_case : Optional[Any] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : str = self.get_image_processor() __snake_case : int = self.get_tokenizer() __snake_case : int = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Dict = torch.randn(1 , 27 , 38 ) __snake_case : List[Any] = torch.randn(1 , 27 , 50257 ) __snake_case : List[str] = torch.randn(1 , 27 , 30522 ) __snake_case : Dict = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
326
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _UpperCamelCase = TypeVar('''KEY''') _UpperCamelCase = TypeVar('''VAL''') @dataclass(frozen=a , slots=a ) class _lowerCamelCase ( Generic[KEY, VAL] ): """simple docstring""" UpperCAmelCase_ : KEY UpperCAmelCase_ : VAL class _lowerCamelCase ( _Item ): """simple docstring""" def __init__( self ) -> None: '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase ) def __bool__( self ) -> bool: '''simple docstring''' return False _UpperCamelCase = _DeletedItem() class _lowerCamelCase ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , UpperCAmelCase = 8 , UpperCAmelCase = 0.75 ) -> None: '''simple docstring''' __snake_case : Tuple = initial_block_size __snake_case : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __snake_case : Optional[int] = capacity_factor __snake_case : Union[str, Any] = 0 def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return hash(UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: '''simple docstring''' __snake_case : Optional[Any] = self._buckets[ind] if not stored: __snake_case : int = _Item(UpperCAmelCase , UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __snake_case : Tuple = _Item(UpperCAmelCase , UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ) -> bool: '''simple docstring''' __snake_case : str = len(self._buckets ) * self._capacity_factor return len(self ) >= int(UpperCAmelCase ) def UpperCAmelCase ( self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __snake_case : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : Optional[int] = self._buckets __snake_case : Dict = [None] * new_size __snake_case : Optional[Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Iterator[int]: '''simple docstring''' __snake_case : Tuple = self._get_bucket_index(UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __snake_case : int = self._get_next_ind(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' for ind in self._iterate_buckets(UpperCAmelCase ): if self._try_set(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): break def __setitem__( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(UpperCAmelCase , UpperCAmelCase ) def __delitem__( self , UpperCAmelCase ) -> None: '''simple docstring''' for ind in self._iterate_buckets(UpperCAmelCase ): __snake_case : int = self._buckets[ind] if item is None: raise KeyError(UpperCAmelCase ) if item is _deleted: continue if item.key == key: __snake_case : Optional[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , UpperCAmelCase ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(UpperCAmelCase ): __snake_case : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(UpperCAmelCase ) def __len__( self ) -> int: '''simple docstring''' return self._len def __iter__( self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: '''simple docstring''' __snake_case : Optional[Any] = " ,".join( F"""{item.key}: {item.val}""" for item in self._buckets if item ) return F"""HashMap({val_string})"""
326
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Dict =FunnelTokenizer UpperCAmelCase_ : int =FunnelTokenizerFast UpperCAmelCase_ : List[str] =True UpperCAmelCase_ : List[Any] =True def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' super().setUp() __snake_case : Any = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> List[str]: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> List[str]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = "UNwant\u00E9d,running" __snake_case : int = "unwanted, running" return input_text, output_text def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Tuple = self.tokenizer_class(self.vocab_file ) __snake_case : Optional[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Any = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: __snake_case : str = tokenizer("UNwant\u00E9d,running" ) __snake_case : Any = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) __snake_case : int = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
326
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
1
from __future__ import annotations _UpperCamelCase = list[list[int]] # assigning initial values to the grid _UpperCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _UpperCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase__( lowercase : Matrix , lowercase : int , lowercase : int , lowercase : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase__( lowercase : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase__( lowercase : Matrix ) -> Matrix | None: if location := find_empty_location(lowercase ): __snake_case , __snake_case : Tuple = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowercase , lowercase , lowercase , lowercase ): __snake_case : List[Any] = digit if sudoku(lowercase ) is not None: return grid __snake_case : Tuple = 0 return None def lowerCAmelCase__( lowercase : Matrix ) -> None: for row in grid: for cell in row: print(lowercase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') _UpperCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
326
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _UpperCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Tuple ) -> List[Any]: for attribute in key.split("." ): __snake_case : Union[str, Any] = getattr(lowercase , lowercase ) if weight_type is not None: __snake_case : Any = getattr(lowercase , lowercase ).shape else: __snake_case : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Dict = value elif weight_type == "bias": __snake_case : Dict = value elif weight_type == "running_mean": __snake_case : Union[str, Any] = value elif weight_type == "running_var": __snake_case : Union[str, Any] = value elif weight_type == "num_batches_tracked": __snake_case : Optional[int] = value elif weight_type == "inv_freq": __snake_case : int = value else: __snake_case : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase__( lowercase : Dict , lowercase : Optional[int] , lowercase : Union[str, Any] ) -> int: __snake_case : Dict = [] __snake_case : Dict = fairseq_model.state_dict() __snake_case : Any = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Tuple = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == "group" , ) __snake_case : str = True else: for key, mapped_key in MAPPING.items(): __snake_case : List[str] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __snake_case : Optional[int] = True if "*" in mapped_key: __snake_case : int = name.split(lowercase )[0].split("." )[-2] __snake_case : Union[str, Any] = mapped_key.replace("*" , lowercase ) if "pos_bias_u" in name: __snake_case : Any = None elif "pos_bias_v" in name: __snake_case : int = None elif "weight_g" in name: __snake_case : List[str] = "weight_g" elif "weight_v" in name: __snake_case : Union[str, Any] = "weight_v" elif "bias" in name: __snake_case : str = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : str = "weight" elif "running_mean" in name: __snake_case : List[Any] = "running_mean" elif "inv_freq" in name: __snake_case : Union[str, Any] = "inv_freq" elif "running_var" in name: __snake_case : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: __snake_case : Union[str, Any] = "num_batches_tracked" else: __snake_case : Optional[int] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase__( lowercase : Tuple , lowercase : str , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : Dict ) -> List[str]: __snake_case : str = full_name.split("conv_layers." )[-1] __snake_case : Any = name.split("." ) __snake_case : Dict = int(items[0] ) __snake_case : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Tuple=None , lowercase : List[Any]=None , lowercase : int=True ) -> List[str]: if config_path is not None: __snake_case : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act="swish" ) else: __snake_case : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __snake_case : int = "rotary" if is_finetuned: if dict_path: __snake_case : Tuple = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : str = os.path.join(lowercase , "vocab.json" ) if not os.path.isdir(lowercase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) __snake_case : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Any = 0 __snake_case : Any = 1 with open(lowercase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowercase , lowercase ) __snake_case : Dict = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowercase , ) __snake_case : Tuple = True if config.feat_extract_norm == "layer" else False __snake_case : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __snake_case : int = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __snake_case : str = WavaVecaConformerForCTC(lowercase ) else: __snake_case : Optional[Any] = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: __snake_case : Union[str, Any] = argparse.Namespace(task="audio_pretraining" ) __snake_case : Union[str, Any] = fairseq.tasks.setup_task(lowercase ) __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) __snake_case : Optional[Any] = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _UpperCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
326
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
1
from datetime import datetime import requests def lowerCAmelCase__( lowercase : str ) -> bytes: __snake_case : Union[str, Any] = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" __snake_case : str = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(lowercase ).content if __name__ == "__main__": _UpperCamelCase = input('''Enter Video/IGTV url: ''').strip() _UpperCamelCase = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
326
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = tempfile.mkdtemp() __snake_case : Union[str, Any] = BlipImageProcessor() __snake_case : List[str] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __snake_case : Union[str, Any] = BlipaProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def UpperCAmelCase ( self , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : Any = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __snake_case : str = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) __snake_case : Any = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Union[str, Any] = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : str = self.prepare_image_inputs() __snake_case : Optional[int] = image_processor(UpperCAmelCase , return_tensors="np" ) __snake_case : Union[str, Any] = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : Dict = self.get_tokenizer() __snake_case : str = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : int = "lower newer" __snake_case : Optional[Any] = processor(text=UpperCAmelCase ) __snake_case : Any = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Union[str, Any] = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Optional[int] = "lower newer" __snake_case : Optional[Any] = self.prepare_image_inputs() __snake_case : Dict = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : List[Any] = self.get_tokenizer() __snake_case : List[Any] = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : int = processor.batch_decode(UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : int = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Any = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Union[str, Any] = "lower newer" __snake_case : str = self.prepare_image_inputs() __snake_case : Tuple = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
326
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
1
def lowerCAmelCase__( lowercase : int = 50 ) -> int: __snake_case : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1
class _lowerCamelCase ( a ): """simple docstring""" pass class _lowerCamelCase ( a ): """simple docstring""" pass class _lowerCamelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = [ [], [], [], ] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(UpperCAmelCase ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self ) -> str: '''simple docstring''' return "\n".join(F"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class _lowerCamelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = [] def UpperCAmelCase ( self , UpperCAmelCase ) -> None: '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(UpperCAmelCase ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty" ) else: __snake_case : Optional[int] = min(self.queue ) self.queue.remove(UpperCAmelCase ) return data def __str__( self ) -> str: '''simple docstring''' return str(self.queue ) def lowerCAmelCase__( ) -> List[Any]: __snake_case : int = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(lowercase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def lowerCAmelCase__( ) -> int: __snake_case : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
326
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
1
from __future__ import annotations from scipy.special import comb # type: ignore class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __snake_case : List[str] = len(UpperCAmelCase ) - 1 def UpperCAmelCase ( self , UpperCAmelCase ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __snake_case : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase ) , 5 ) == 1 return output_values def UpperCAmelCase ( self , UpperCAmelCase ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __snake_case : Optional[int] = self.basis_function(UpperCAmelCase ) __snake_case : List[str] = 0.0 __snake_case : List[str] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCAmelCase ( self , UpperCAmelCase = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __snake_case : list[float] = [] # x coordinates of points to plot __snake_case : list[float] = [] # y coordinates of points to plot __snake_case : Any = 0.0 while t <= 1: __snake_case : Union[str, Any] = self.bezier_curve_function(UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __snake_case : Union[str, Any] = [i[0] for i in self.list_of_points] __snake_case : int = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase , UpperCAmelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(UpperCAmelCase , UpperCAmelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
326
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Any = tempfile.mkdtemp() __snake_case : str = SamImageProcessor() __snake_case : int = SamProcessor(UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : List[str] = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) __snake_case : int = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Any = self.get_image_processor() __snake_case : List[str] = SamProcessor(image_processor=UpperCAmelCase ) __snake_case : Tuple = self.prepare_image_inputs() __snake_case : Tuple = image_processor(UpperCAmelCase , return_tensors="np" ) __snake_case : Any = processor(images=UpperCAmelCase , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : str = self.get_image_processor() __snake_case : List[str] = SamProcessor(image_processor=UpperCAmelCase ) __snake_case : int = [torch.ones((1, 3, 5, 5) )] __snake_case : Dict = [[1764, 2646]] __snake_case : Any = [[683, 1024]] __snake_case : Union[str, Any] = processor.post_process_masks(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : List[str] = processor.post_process_masks( UpperCAmelCase , torch.tensor(UpperCAmelCase ) , torch.tensor(UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __snake_case : Optional[Any] = [np.ones((1, 3, 5, 5) )] __snake_case : int = processor.post_process_masks(UpperCAmelCase , np.array(UpperCAmelCase ) , np.array(UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : Dict = [[1, 0], [0, 1]] with self.assertRaises(UpperCAmelCase ): __snake_case : List[str] = processor.post_process_masks(UpperCAmelCase , np.array(UpperCAmelCase ) , np.array(UpperCAmelCase ) ) @require_vision @require_tf class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Dict = tempfile.mkdtemp() __snake_case : Union[str, Any] = SamImageProcessor() __snake_case : Any = SamProcessor(UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def UpperCAmelCase ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Optional[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : List[str] = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) __snake_case : Any = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : str = SamProcessor(image_processor=UpperCAmelCase ) __snake_case : Optional[Any] = self.prepare_image_inputs() __snake_case : str = image_processor(UpperCAmelCase , return_tensors="np" ) __snake_case : str = processor(images=UpperCAmelCase , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : List[str] = self.get_image_processor() __snake_case : int = SamProcessor(image_processor=UpperCAmelCase ) __snake_case : str = [tf.ones((1, 3, 5, 5) )] __snake_case : Any = [[1764, 2646]] __snake_case : Optional[int] = [[683, 1024]] __snake_case : str = processor.post_process_masks(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : int = processor.post_process_masks( UpperCAmelCase , tf.convert_to_tensor(UpperCAmelCase ) , tf.convert_to_tensor(UpperCAmelCase ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __snake_case : Union[str, Any] = [np.ones((1, 3, 5, 5) )] __snake_case : str = processor.post_process_masks( UpperCAmelCase , np.array(UpperCAmelCase ) , np.array(UpperCAmelCase ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : Tuple = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __snake_case : Any = processor.post_process_masks( UpperCAmelCase , np.array(UpperCAmelCase ) , np.array(UpperCAmelCase ) , return_tensors="tf" ) @require_vision @require_torchvision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : List[Any] = tempfile.mkdtemp() __snake_case : Optional[Any] = SamImageProcessor() __snake_case : int = SamProcessor(UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = self.get_image_processor() __snake_case : Union[str, Any] = SamProcessor(image_processor=UpperCAmelCase ) __snake_case : List[Any] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __snake_case : Tuple = [tf.convert_to_tensor(UpperCAmelCase )] __snake_case : Dict = [torch.tensor(UpperCAmelCase )] __snake_case : Optional[int] = [[1764, 2646]] __snake_case : Dict = [[683, 1024]] __snake_case : Optional[Any] = processor.post_process_masks( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , return_tensors="tf" ) __snake_case : Tuple = processor.post_process_masks( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Optional[int] = self.get_image_processor() __snake_case : Any = SamProcessor(image_processor=UpperCAmelCase ) __snake_case : Tuple = self.prepare_image_inputs() __snake_case : Any = image_processor(UpperCAmelCase , return_tensors="pt" )["pixel_values"].numpy() __snake_case : Any = processor(images=UpperCAmelCase , return_tensors="pt" )["pixel_values"].numpy() __snake_case : Optional[Any] = image_processor(UpperCAmelCase , return_tensors="tf" )["pixel_values"].numpy() __snake_case : Union[str, Any] = processor(images=UpperCAmelCase , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase ) ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase ) ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase ) )
326
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
import csv import tweepy # Twitter API credentials _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = '''''' def lowerCAmelCase__( lowercase : str ) -> None: # authorize twitter, initialize tweepy __snake_case : str = tweepy.OAuthHandler(lowercase , lowercase ) auth.set_access_token(lowercase , lowercase ) __snake_case : int = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets __snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) __snake_case : int = api.user_timeline(screen_name=lowercase , count=200 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one __snake_case : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates __snake_case : Any = api.user_timeline( screen_name=lowercase , count=200 , max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one __snake_case : Tuple = alltweets[-1].id - 1 print(f"""...{len(lowercase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv __snake_case : Tuple = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"""new_{screen_name}_tweets.csv""" , "w" ) as f: __snake_case : Optional[int] = csv.writer(lowercase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
326
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
1
import functools def lowerCAmelCase__( lowercase : list[int] , lowercase : list[int] ) -> int: # Validation if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) __snake_case : Optional[int] = set(lowercase ) @functools.cache def dynamic_programming(lowercase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
326
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCAmelCase__( ) -> Optional[int]: __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=lowercase , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=lowercase , default=5 ) parser.add_argument("--batch_size" , type=lowercase , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=lowercase , default=1 ) parser.add_argument("--freeze" , type=lowercase , default=lowercase ) parser.add_argument("--learning_rate" , type=lowercase , default=5E-4 ) parser.add_argument("--seed" , type=lowercase , default=0 ) parser.add_argument("--lr_scheduler_type" , type=lowercase , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=lowercase , default=10 ) parser.add_argument("--weight_decay" , type=lowercase , default=0.0_1 ) parser.add_argument("--output_dir" , type=lowercase , default="./results" ) return parser.parse_args() _UpperCamelCase = load('''accuracy''') def lowerCAmelCase__( lowercase : int ) -> List[Any]: __snake_case , __snake_case : Dict = eval_pred __snake_case : int = np.argmax(lowercase , axis=1 ) return metric.compute(predictions=lowercase , references=lowercase ) class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> None: '''simple docstring''' super().__init__() __snake_case : Tuple = trainer def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if control.should_evaluate: __snake_case : List[Any] = deepcopy(UpperCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def lowerCAmelCase__( ) -> List[Any]: __snake_case : List[Any] = get_args() set_seed(args.seed ) __snake_case : int = load_dataset("codeparrot/codecomplex" , split="train" ) __snake_case : int = dataset.train_test_split(test_size=0.2 ) __snake_case : Optional[Any] = train_test["test"].train_test_split(test_size=0.5 ) __snake_case : List[Any] = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) __snake_case : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) __snake_case : Tuple = tokenizer.eos_token __snake_case : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __snake_case : Union[str, Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __snake_case : str = False __snake_case : List[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowercase : Union[str, Any] ): __snake_case : int = tokenizer(example["src"] , truncation=lowercase , max_length=1024 ) __snake_case : int = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __snake_case : str = train_test_validation.map( lowercase , batched=lowercase , remove_columns=train_test_validation["train"].column_names , ) __snake_case : int = DataCollatorWithPadding(tokenizer=lowercase ) __snake_case : Optional[int] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) __snake_case : int = Trainer( model=lowercase , args=lowercase , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=lowercase , data_collator=lowercase , compute_metrics=lowercase , ) print("Training..." ) trainer.add_callback(CustomCallback(lowercase ) ) trainer.train() if __name__ == "__main__": main()
326
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
1
import glob import os import random from string import ascii_lowercase, digits import cva _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase__( ) -> None: __snake_case , __snake_case : Union[str, Any] = get_dataset(lowercase , lowercase ) print("Processing..." ) __snake_case , __snake_case , __snake_case : List[str] = update_image_and_anno(lowercase , lowercase , lowercase ) for index, image in enumerate(lowercase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __snake_case : Optional[int] = random_chars(32 ) __snake_case : List[Any] = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] __snake_case : Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(lowercase )} with {file_name}""" ) __snake_case : Optional[Any] = [] for anno in new_annos[index]: __snake_case : List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(lowercase ) with open(f"""/{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowerCAmelCase__( lowercase : str , lowercase : str ) -> tuple[list, list]: __snake_case : str = [] __snake_case : List[str] = [] for label_file in glob.glob(os.path.join(lowercase , "*.txt" ) ): __snake_case : Any = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(lowercase ) as in_file: __snake_case : Dict = in_file.readlines() __snake_case : int = os.path.join(lowercase , f"""{label_name}.jpg""" ) __snake_case : str = [] for obj_list in obj_lists: __snake_case : Any = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(lowercase ) labels.append(lowercase ) return img_paths, labels def lowerCAmelCase__( lowercase : list , lowercase : list , lowercase : int = 1 ) -> tuple[list, list, list]: __snake_case : int = [] __snake_case : Tuple = [] __snake_case : Optional[Any] = [] for idx in range(len(lowercase ) ): __snake_case : Dict = [] __snake_case : List[str] = img_list[idx] path_list.append(lowercase ) __snake_case : List[str] = anno_list[idx] __snake_case : List[str] = cva.imread(lowercase ) if flip_type == 1: __snake_case : int = cva.flip(lowercase , lowercase ) for bbox in img_annos: __snake_case : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __snake_case : Tuple = cva.flip(lowercase , lowercase ) for bbox in img_annos: __snake_case : Tuple = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(lowercase ) new_imgs_list.append(lowercase ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase__( lowercase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __snake_case : List[Any] = ascii_lowercase + digits return "".join(random.choice(lowercase ) for _ in range(lowercase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
326
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = '''▁''' _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''facebook/xglm-564M''': 2048, } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : int =VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __snake_case : Optional[int] = 7 __snake_case : Any = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] __snake_case : str = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token __snake_case : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} __snake_case : int = len(self.sp_model ) __snake_case : Optional[int] = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCAmelCase ) __snake_case : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[str]: '''simple docstring''' __snake_case : Dict = self.__dict__.copy() __snake_case : Optional[Any] = None __snake_case : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' __snake_case : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __snake_case : List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self ) -> Any: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : int = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : Dict = self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , UpperCAmelCase ) -> Any: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Any = "".join(UpperCAmelCase ).replace(UpperCAmelCase , " " ).strip() return out_string def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : List[str] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Dict =VideoToVideoSDPipeline UpperCAmelCase_ : Dict =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} UpperCAmelCase_ : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} UpperCAmelCase_ : Tuple =PipelineTesterMixin.required_optional_params - {"latents"} UpperCAmelCase_ : List[Any] =False # No `output_type`. UpperCAmelCase_ : Optional[int] =frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __snake_case : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) __snake_case : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) __snake_case : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) __snake_case : Optional[int] = CLIPTextModel(UpperCAmelCase ) __snake_case : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> str: '''simple docstring''' __snake_case : List[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith("mps" ): __snake_case : int = torch.manual_seed(UpperCAmelCase ) else: __snake_case : List[Any] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __snake_case : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : int = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[int] = self.get_dummy_components() __snake_case : List[str] = VideoToVideoSDPipeline(**UpperCAmelCase ) __snake_case : int = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __snake_case : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase ) __snake_case : str = "np" __snake_case : Dict = sd_pipe(**UpperCAmelCase ).frames __snake_case : Optional[int] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __snake_case : Tuple = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase , expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : List[Any] = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __snake_case : str = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case : str = torch.randn((1, 10, 3, 1024, 576) , generator=UpperCAmelCase ) __snake_case : Optional[Any] = video.to("cuda" ) __snake_case : Optional[Any] = "Spiderman is surfing" __snake_case : Union[str, Any] = pipe(UpperCAmelCase , video=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=3 , output_type="pt" ).frames __snake_case : str = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
326
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''MobileViTFeatureExtractor'''] _UpperCamelCase = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(UpperCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : int = None ops.enable_eager_execution_internal() __snake_case : Any = tf.config.list_physical_devices("CPU" ) if len(UpperCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __snake_case : int = tf.config.list_logical_devices(device_type="CPU" ) __snake_case : Dict = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __snake_case : int = GradientAccumulator() __snake_case : Tuple = tf.Variable([4.0, 3.0] ) __snake_case , __snake_case : List[str] = create_optimizer(5E-5 , 10 , 5 ) __snake_case : Any = tf.Variable([0.0, 0.0] , trainable=UpperCAmelCase ) def accumulate_on_replica(UpperCAmelCase ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(UpperCAmelCase , UpperCAmelCase ): with strategy.scope(): __snake_case : Tuple = strategy.experimental_local_results(UpperCAmelCase ) local_variables[0].assign(UpperCAmelCase ) local_variables[1].assign(UpperCAmelCase ) strategy.run(UpperCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(UpperCAmelCase ) def _check_local_values(UpperCAmelCase , UpperCAmelCase ): __snake_case : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , UpperCAmelCase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , UpperCAmelCase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
326
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCamelCase = ['''text''', '''image''', '''audio'''] def lowerCAmelCase__( lowercase : List[str] ) -> Dict: __snake_case : List[str] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase , lowercase ): inputs.append(create_inputs(lowercase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def lowerCAmelCase__( lowercase : List ) -> Optional[int]: __snake_case : List[str] = [] for output in outputs: if isinstance(lowercase , (str, AgentText) ): output_types.append("text" ) elif isinstance(lowercase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(lowercase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class _lowerCamelCase : """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) __snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __snake_case : Union[str, Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = create_inputs(self.tool.inputs ) __snake_case : Optional[Any] = self.tool(*UpperCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: __snake_case : Any = [outputs] self.assertListEqual(output_types(UpperCAmelCase ) , self.tool.outputs ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[int] = create_inputs(self.tool.inputs ) __snake_case : List[Any] = self.tool(*UpperCAmelCase ) if not isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : List[str] = [outputs] self.assertEqual(len(UpperCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(UpperCAmelCase , self.tool.outputs ): __snake_case : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Union[str, Any] = create_inputs(self.tool.inputs ) __snake_case : str = [] for _input, input_type in zip(UpperCAmelCase , self.tool.inputs ): if isinstance(UpperCAmelCase , UpperCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __snake_case : Optional[Any] = self.tool(*UpperCAmelCase ) if not isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : int = [outputs] self.assertEqual(len(UpperCAmelCase ) , len(self.tool.outputs ) )
326
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
1
_UpperCamelCase = 256 # Modulus to hash a string _UpperCamelCase = 100_0003 def lowerCAmelCase__( lowercase : str , lowercase : str ) -> bool: __snake_case : Tuple = len(lowercase ) __snake_case : List[Any] = len(lowercase ) if p_len > t_len: return False __snake_case : Optional[int] = 0 __snake_case : Optional[int] = 0 __snake_case : Optional[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase ): __snake_case : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __snake_case : Union[str, Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __snake_case : List[str] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __snake_case : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCAmelCase__( ) -> None: __snake_case : str = "abc1abc12" __snake_case : str = "alskfjaldsabc1abc1abc12k23adsfabcabc" __snake_case : Any = "alskfjaldsk23adsfabcabc" assert rabin_karp(lowercase , lowercase ) and not rabin_karp(lowercase , lowercase ) # Test 2) __snake_case : Dict = "ABABX" __snake_case : Optional[Any] = "ABABZABABYABABX" assert rabin_karp(lowercase , lowercase ) # Test 3) __snake_case : Union[str, Any] = "AAAB" __snake_case : Any = "ABAAAAAB" assert rabin_karp(lowercase , lowercase ) # Test 4) __snake_case : Tuple = "abcdabcy" __snake_case : Dict = "abcxabcdabxabcdabcdabcy" assert rabin_karp(lowercase , lowercase ) # Test 5) __snake_case : Tuple = "Lü" __snake_case : int = "Lüsai" assert rabin_karp(lowercase , lowercase ) __snake_case : Any = "Lue" assert not rabin_karp(lowercase , lowercase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
326
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp _UpperCamelCase = 5 _UpperCamelCase = 10 @require_sentencepiece @require_tokenizers class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =SpeechaTextTokenizer UpperCAmelCase_ : Optional[int] =False UpperCAmelCase_ : Union[str, Any] =True def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().setUp() __snake_case : Optional[int] = sp.SentencePieceProcessor() spm_model.Load(UpperCAmelCase ) __snake_case : Union[str, Any] = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(UpperCAmelCase ) )] __snake_case : Union[str, Any] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __snake_case : Optional[int] = Path(self.tmpdirname ) save_json(UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __snake_case : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Optional[Any] = "<pad>" __snake_case : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(UpperCAmelCase ) , 1001 ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __snake_case : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [289, 50, 14, 174, 386] , ) __snake_case : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __snake_case : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __snake_case : str = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Optional[Any] = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : List[Any] ="valhalla/s2t_mustc_multilinguial_medium" UpperCAmelCase_ : Dict ="C'est trop cool" UpperCAmelCase_ : int ="Esto es genial" @classmethod def UpperCAmelCase ( cls ) -> List[str]: '''simple docstring''' __snake_case : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 10000 ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids ) __snake_case : List[Any] = [ES_CODE, 4, 1601, 47, 7647, 2] __snake_case : int = self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) __snake_case : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : int = "fr" __snake_case : Tuple = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __snake_case : str = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
326
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
1
def lowerCAmelCase__( lowercase : int = 100 ) -> int: __snake_case : Dict = set() __snake_case : List[Any] = 0 __snake_case : Optional[Any] = n + 1 # maximum limit for a in range(2 , lowercase ): for b in range(2 , lowercase ): __snake_case : Any = a**b # calculates the current power collect_powers.add(lowercase ) # adds the result to the set return len(lowercase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
326
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
1
from __future__ import annotations def lowerCAmelCase__( lowercase : float , lowercase : float , lowercase : float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
326
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
1
class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : Optional[int] = len(UpperCAmelCase ) __snake_case : Any = [0] * len_array if len_array > 0: __snake_case : Tuple = array[0] for i in range(1 , UpperCAmelCase ): __snake_case : Optional[Any] = self.prefix_sum[i - 1] + array[i] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def UpperCAmelCase ( self , UpperCAmelCase ) -> bool: '''simple docstring''' __snake_case : Optional[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _UpperCamelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCAmelCase__( lowercase : Tuple ) -> List[str]: config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def lowerCAmelCase__( lowercase : Optional[int] ) -> Union[str, Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def lowerCAmelCase__( lowercase : str ) -> List[Any]: from transformers.testing_utils import pytest_terminal_summary_main __snake_case : List[Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase ) def lowerCAmelCase__( lowercase : Any , lowercase : Dict ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __snake_case : Union[str, Any] = 0 # Doctest custom flag to ignore output. _UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''') _UpperCamelCase = doctest.OutputChecker class _lowerCamelCase ( a ): """simple docstring""" def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCamelCase = CustomOutputChecker _UpperCamelCase = HfDoctestModule _UpperCamelCase = HfDocTestParser
326
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } _UpperCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def lowerCAmelCase__( lowercase : str ) -> Any: __snake_case : Optional[int] = {} with open(lowercase , "r" ) as file: for line_number, line in enumerate(lowercase ): __snake_case : List[str] = line.strip() if line: __snake_case : Dict = line.split() __snake_case : Tuple = line_number __snake_case : Optional[int] = words[0] __snake_case : int = value return result def lowerCAmelCase__( lowercase : str , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : List[str] , lowercase : List[str] ) -> Optional[Any]: for attribute in key.split("." ): __snake_case : Tuple = getattr(lowercase , lowercase ) __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase ): __snake_case : Dict = PARAM_MAPPING[full_name.split("." )[-1]] __snake_case : Any = "param" if weight_type is not None and weight_type != "param": __snake_case : Any = getattr(lowercase , lowercase ).shape elif weight_type is not None and weight_type == "param": __snake_case : List[str] = hf_pointer for attribute in hf_param_name.split("." ): __snake_case : List[Any] = getattr(lowercase , lowercase ) __snake_case : Tuple = shape_pointer.shape # let's reduce dimension __snake_case : Union[str, Any] = value[0] else: __snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : int = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : List[str] = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split("." ): __snake_case : Any = getattr(lowercase , lowercase ) __snake_case : Dict = value else: __snake_case : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase__( lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : str , lowercase : str ) -> List[str]: __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase ): __snake_case : Dict = PARAM_MAPPING[full_name.split("." )[-1]] __snake_case : Any = "param" if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : List[str] = ".".join([key, hf_param_name] ) else: __snake_case : Tuple = key __snake_case : int = value if "lm_head" in full_key else value[0] _UpperCamelCase = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def lowerCAmelCase__( lowercase : str , lowercase : Dict , lowercase : List[str]=None , lowercase : Tuple=None ) -> Any: __snake_case : Optional[Any] = False for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : Optional[int] = name.split(lowercase )[0].split("." )[-2] __snake_case : Union[str, Any] = mapped_key.replace("*" , lowercase ) if "weight_g" in name: __snake_case : Dict = "weight_g" elif "weight_v" in name: __snake_case : Dict = "weight_v" elif "bias" in name: __snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : str = "weight" else: __snake_case : Any = None if hf_dict is not None: rename_dict(lowercase , lowercase , lowercase , lowercase , lowercase ) else: set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) return is_used return is_used def lowerCAmelCase__( lowercase : Dict , lowercase : List[str] , lowercase : Tuple ) -> int: __snake_case : List[Any] = [] __snake_case : Dict = fairseq_model.state_dict() __snake_case : Dict = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Tuple = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == "group" , ) __snake_case : int = True else: __snake_case : List[str] = load_wavaveca_layer(lowercase , lowercase , lowercase ) if not is_used: unused_weights.append(lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[int] , lowercase : str ) -> List[Any]: __snake_case : Optional[int] = full_name.split("conv_layers." )[-1] __snake_case : Dict = name.split("." ) __snake_case : str = int(items[0] ) __snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def lowerCAmelCase__( lowercase : str , lowercase : Any , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : Any=True , lowercase : int=False ) -> int: if config_path is not None: __snake_case : Dict = WavaVecaConfig.from_pretrained(lowercase ) else: __snake_case : List[Any] = WavaVecaConfig() if is_seq_class: __snake_case : Optional[Any] = read_txt_into_dict(lowercase ) __snake_case : List[Any] = idalabel __snake_case : List[str] = WavaVecaForSequenceClassification(lowercase ) __snake_case : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) feature_extractor.save_pretrained(lowercase ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : Optional[int] = target_dict.bos_index __snake_case : int = target_dict.eos_index __snake_case : Optional[int] = len(target_dict.symbols ) __snake_case : str = os.path.join(lowercase , "vocab.json" ) if not os.path.isdir(lowercase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) __snake_case : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Tuple = 0 __snake_case : str = 1 with open(lowercase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowercase , lowercase ) __snake_case : int = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowercase , ) __snake_case : Union[str, Any] = True if config.feat_extract_norm == "layer" else False __snake_case : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __snake_case : List[Any] = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __snake_case : Union[str, Any] = WavaVecaForCTC(lowercase ) else: __snake_case : int = WavaVecaForPreTraining(lowercase ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: __snake_case : Union[str, Any] = argparse.Namespace(task="audio_pretraining" ) __snake_case : Union[str, Any] = fairseq.tasks.setup_task(lowercase ) __snake_case , __snake_case , __snake_case : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) __snake_case : Optional[int] = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
326
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
1
from __future__ import annotations def lowerCAmelCase__( lowercase : tuple[int, int] , lowercase : int ) -> list[tuple[int, int]]: __snake_case , __snake_case : Optional[Any] = position __snake_case : List[str] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __snake_case : Dict = [] for position in positions: __snake_case , __snake_case : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowercase ) return permissible_positions def lowerCAmelCase__( lowercase : list[list[int]] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def lowerCAmelCase__( lowercase : list[list[int]] , lowercase : tuple[int, int] , lowercase : int ) -> bool: if is_complete(lowercase ): return True for position in get_valid_pos(lowercase , len(lowercase ) ): __snake_case , __snake_case : List[str] = position if board[y][x] == 0: __snake_case : int = curr + 1 if open_knight_tour_helper(lowercase , lowercase , curr + 1 ): return True __snake_case : Optional[Any] = 0 return False def lowerCAmelCase__( lowercase : int ) -> list[list[int]]: __snake_case : Tuple = [[0 for i in range(lowercase )] for j in range(lowercase )] for i in range(lowercase ): for j in range(lowercase ): __snake_case : Optional[Any] = 1 if open_knight_tour_helper(lowercase , (i, j) , 1 ): return board __snake_case : List[Any] = 0 __snake_case : Tuple = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1