code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f'{price_plus_tax(1_00, 0.25) = }')
print(f'{price_plus_tax(125.50, 0.05) = }')
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'nllb-moe'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE =router_z_loss_coef
SCREAMING_SNAKE_CASE =router_aux_loss_coef
SCREAMING_SNAKE_CASE =decoder_sparse_step
SCREAMING_SNAKE_CASE =encoder_sparse_step
SCREAMING_SNAKE_CASE =num_experts
SCREAMING_SNAKE_CASE =expert_capacity
SCREAMING_SNAKE_CASE =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' )
SCREAMING_SNAKE_CASE =router_dtype
SCREAMING_SNAKE_CASE =router_ignore_padding_tokens
SCREAMING_SNAKE_CASE =batch_prioritized_routing
SCREAMING_SNAKE_CASE =second_expert_policy
SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping
SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction
SCREAMING_SNAKE_CASE =moe_token_dropout
SCREAMING_SNAKE_CASE =output_router_logits
super().__init__(
pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
| 334 | 1 |
_lowerCamelCase =2_56
# Modulus to hash a string
_lowerCamelCase =1_00_00_03
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ )
if p_len > t_len:
return False
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =1
# Calculating the hash of pattern and substring of text
for i in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =(ord(pattern[i] ) + p_hash * alphabet_size) % modulus
SCREAMING_SNAKE_CASE =(ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
SCREAMING_SNAKE_CASE =(modulus_power * alphabet_size) % modulus
for i in range(0, t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
SCREAMING_SNAKE_CASE =(
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='abc1abc12'
SCREAMING_SNAKE_CASE ='alskfjaldsabc1abc1abc12k23adsfabcabc'
SCREAMING_SNAKE_CASE ='alskfjaldsk23adsfabcabc'
assert rabin_karp(lowerCAmelCase_, lowerCAmelCase_ ) and not rabin_karp(lowerCAmelCase_, lowerCAmelCase_ )
# Test 2)
SCREAMING_SNAKE_CASE ='ABABX'
SCREAMING_SNAKE_CASE ='ABABZABABYABABX'
assert rabin_karp(lowerCAmelCase_, lowerCAmelCase_ )
# Test 3)
SCREAMING_SNAKE_CASE ='AAAB'
SCREAMING_SNAKE_CASE ='ABAAAAAB'
assert rabin_karp(lowerCAmelCase_, lowerCAmelCase_ )
# Test 4)
SCREAMING_SNAKE_CASE ='abcdabcy'
SCREAMING_SNAKE_CASE ='abcxabcdabxabcdabcdabcy'
assert rabin_karp(lowerCAmelCase_, lowerCAmelCase_ )
# Test 5)
SCREAMING_SNAKE_CASE ='Lü'
SCREAMING_SNAKE_CASE ='Lüsai'
assert rabin_karp(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ='Lue'
assert not rabin_karp(lowerCAmelCase_, lowerCAmelCase_ )
print('Success.' )
if __name__ == "__main__":
test_rabin_karp()
| 334 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =sorted(numsa + numsa )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()]
_lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()]
print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
| 334 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'vit'
def __init__( self : int ,snake_case : Any=768 ,snake_case : List[Any]=12 ,snake_case : str=12 ,snake_case : Union[str, Any]=3072 ,snake_case : Optional[Any]="gelu" ,snake_case : str=0.0 ,snake_case : Tuple=0.0 ,snake_case : List[str]=0.02 ,snake_case : Optional[int]=1e-12 ,snake_case : Any=224 ,snake_case : List[Any]=16 ,snake_case : List[str]=3 ,snake_case : int=True ,snake_case : Union[str, Any]=16 ,**snake_case : Union[str, Any] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =qkv_bias
SCREAMING_SNAKE_CASE =encoder_stride
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = version.parse('1.11' )
@property
def _lowerCAmelCase ( self : List[str] ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _lowerCAmelCase ( self : Union[str, Any] ):
return 1e-4
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'transfo-xl'
__UpperCAmelCase = ['mems']
__UpperCAmelCase = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =[]
self.cutoffs.extend(snake_case )
if proj_share_all_but_first:
SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs )
else:
SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs )
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =d_embed
SCREAMING_SNAKE_CASE =d_head
SCREAMING_SNAKE_CASE =d_inner
SCREAMING_SNAKE_CASE =div_val
SCREAMING_SNAKE_CASE =pre_lnorm
SCREAMING_SNAKE_CASE =n_layer
SCREAMING_SNAKE_CASE =n_head
SCREAMING_SNAKE_CASE =mem_len
SCREAMING_SNAKE_CASE =same_length
SCREAMING_SNAKE_CASE =attn_type
SCREAMING_SNAKE_CASE =clamp_len
SCREAMING_SNAKE_CASE =sample_softmax
SCREAMING_SNAKE_CASE =adaptive
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =dropatt
SCREAMING_SNAKE_CASE =untie_r
SCREAMING_SNAKE_CASE =init
SCREAMING_SNAKE_CASE =init_range
SCREAMING_SNAKE_CASE =proj_init_std
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =layer_norm_epsilon
super().__init__(eos_token_id=snake_case ,**snake_case )
@property
def _lowerCAmelCase ( self : str ):
# Message copied from Transformer-XL documentation
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 334 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'xmod'
def __init__( self : Any ,snake_case : List[str]=30522 ,snake_case : int=768 ,snake_case : Dict=12 ,snake_case : Union[str, Any]=12 ,snake_case : Any=3072 ,snake_case : int="gelu" ,snake_case : Any=0.1 ,snake_case : Dict=0.1 ,snake_case : Any=512 ,snake_case : int=2 ,snake_case : Optional[int]=0.02 ,snake_case : Any=1e-12 ,snake_case : str=1 ,snake_case : List[str]=0 ,snake_case : Optional[Any]=2 ,snake_case : Any="absolute" ,snake_case : Union[str, Any]=True ,snake_case : str=None ,snake_case : Any=False ,snake_case : List[str]=2 ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=True ,snake_case : str=True ,snake_case : List[Any]=("en_XX",) ,snake_case : Optional[Any]=None ,**snake_case : List[str] ,):
super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =classifier_dropout
SCREAMING_SNAKE_CASE =pre_norm
SCREAMING_SNAKE_CASE =adapter_reduction_factor
SCREAMING_SNAKE_CASE =adapter_layer_norm
SCREAMING_SNAKE_CASE =adapter_reuse_layer_norm
SCREAMING_SNAKE_CASE =ln_before_adapter
SCREAMING_SNAKE_CASE =list(snake_case )
SCREAMING_SNAKE_CASE =default_language
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@property
def _lowerCAmelCase ( self : List[Any] ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 334 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =100
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =out_indices
SCREAMING_SNAKE_CASE =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE =num_patches + 1
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =BeitModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.type_sequence_label_size
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =BeitModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case )
def _lowerCAmelCase ( self : Any ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]:
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.gradient_checkpointing_enable()
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =_config_zero_init(snake_case )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(config=snake_case )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,)
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case )
# prepare bool_masked_pos
SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =281
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 21841) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =2396
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] ,device=snake_case ,)
else:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] ,device=snake_case ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] )
SCREAMING_SNAKE_CASE =torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,snake_case )
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case )
SCREAMING_SNAKE_CASE =torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape ,snake_case )
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ ), len(grid[0] )
if (
min(lowerCAmelCase_, lowerCAmelCase_ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
SCREAMING_SNAKE_CASE =0
count += depth_first_search(lowerCAmelCase_, row + 1, lowerCAmelCase_, lowerCAmelCase_ )
count += depth_first_search(lowerCAmelCase_, row - 1, lowerCAmelCase_, lowerCAmelCase_ )
count += depth_first_search(lowerCAmelCase_, lowerCAmelCase_, col + 1, lowerCAmelCase_ )
count += depth_first_search(lowerCAmelCase_, lowerCAmelCase_, col - 1, lowerCAmelCase_ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : List[str] ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Optional[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 1
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = True
def __call__( self : str ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch:
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any ,snake_case : nn.Module ):
super().__init__()
SCREAMING_SNAKE_CASE =[]
# - get the stem
feature_blocks.append(('conv1', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('block' ), f'Unexpected layer name {k}'
SCREAMING_SNAKE_CASE =len(snake_case ) + 1
feature_blocks.append((f'res{block_index}', v) )
SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ):
return get_trunk_forward_outputs(
snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ):
SCREAMING_SNAKE_CASE =x.split('-' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Optional[Any] ,snake_case : str ):
# default to timm!
if x not in self:
SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case )
SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) )
else:
SCREAMING_SNAKE_CASE =super().__getitem__(snake_case )
return val
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __getitem__( self : int ,snake_case : str ):
if "seer" in x and "in1k" not in x:
SCREAMING_SNAKE_CASE =RegNetModel
else:
SCREAMING_SNAKE_CASE =RegNetForImageClassification
return val
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for from_key, to_key in keys:
SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone()
print(F'Copied key={from_key} to={to_key}' )
return to_state_dict
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func()
SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
if from_state_dict is not None:
SCREAMING_SNAKE_CASE =[]
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')]
SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ )
our_model.load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(
our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state
)
SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1]
assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'regnet-x-002': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ),
'regnet-x-004': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ),
'regnet-x-006': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ),
'regnet-x-008': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ),
'regnet-x-016': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ),
'regnet-x-032': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ),
'regnet-x-040': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ),
'regnet-x-064': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ),
'regnet-x-080': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ),
'regnet-x-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ),
'regnet-x-160': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ),
'regnet-x-320': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ),
# y variant
'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
'regnet-y-004': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
'regnet-y-006': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
'regnet-y-008': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
'regnet-y-016': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
'regnet-y-032': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ),
'regnet-y-040': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ),
'regnet-y-064': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ),
'regnet-y-080': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ),
'regnet-y-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ),
'regnet-y-160': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ),
'regnet-y-320': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer': RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer': RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
# finetuned on imagenet
'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
}
SCREAMING_SNAKE_CASE =NameToOurModelFuncMap()
SCREAMING_SNAKE_CASE =NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]:
SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' )
SCREAMING_SNAKE_CASE =model_func()
# check if we have a head, if yes add it
SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model']
SCREAMING_SNAKE_CASE =model_state_dict['trunk']
model.load_state_dict(lowerCAmelCase_ )
return model.eval(), model_state_dict["heads"]
# pretrained
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
_lowerCamelCase ="0.18.2"
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 334 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase =16
_lowerCamelCase =32
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' )
def tokenize_function(lowerCAmelCase_ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE =datasets.map(
lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowerCAmelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE =16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE =8
else:
SCREAMING_SNAKE_CASE =None
return tokenizer.pad(
lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCamelCase =mocked_dataloaders # noqa: F811
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1":
SCREAMING_SNAKE_CASE =2
# Initialize accelerator
SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE =config['lr']
SCREAMING_SNAKE_CASE =int(config['num_epochs'] )
SCREAMING_SNAKE_CASE =int(config['seed'] )
SCREAMING_SNAKE_CASE =int(config['batch_size'] )
SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCAmelCase_ )
def inner_training_loop(lowerCAmelCase_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCAmelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE =model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# Now we train the model
for epoch in range(lowerCAmelCase_ ):
model.train()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.loss
accelerator.backward(lowerCAmelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCAmelCase_, references=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.', )
parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCAmelCase_, lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 334 | 1 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = (DPMSolverSinglestepScheduler,)
__UpperCAmelCase = (('num_inference_steps', 25),)
def _lowerCAmelCase ( self : List[Any] ,**snake_case : Any ):
SCREAMING_SNAKE_CASE ={
'num_train_timesteps': 1000,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'solver_order': 2,
'prediction_type': 'epsilon',
'thresholding': False,
'sample_max_value': 1.0,
'algorithm_type': 'dpmsolver++',
'solver_type': 'midpoint',
'lambda_min_clipped': -float('inf' ),
'variance_type': None,
}
config.update(**snake_case )
return config
def _lowerCAmelCase ( self : List[Any] ,snake_case : Any=0 ,**snake_case : Dict ):
SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE =kwargs.pop('num_inference_steps' ,snake_case )
SCREAMING_SNAKE_CASE =self.dummy_sample
SCREAMING_SNAKE_CASE =0.1 * sample
SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE =self.get_scheduler_config(**snake_case )
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
scheduler.set_timesteps(snake_case )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE =dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case )
SCREAMING_SNAKE_CASE =scheduler_class.from_pretrained(snake_case )
new_scheduler.set_timesteps(snake_case )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE =dummy_past_residuals[: new_scheduler.config.solver_order]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =sample, sample
for t in range(snake_case ,time_step + scheduler.config.solver_order + 1 ):
SCREAMING_SNAKE_CASE =scheduler.step(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
SCREAMING_SNAKE_CASE =new_scheduler.step(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowerCAmelCase ( self : Any ):
pass
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Union[str, Any]=0 ,**snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE =kwargs.pop('num_inference_steps' ,snake_case )
SCREAMING_SNAKE_CASE =self.dummy_sample
SCREAMING_SNAKE_CASE =0.1 * sample
SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE =self.get_scheduler_config()
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
scheduler.set_timesteps(snake_case )
# copy over dummy past residuals (must be after setting timesteps)
SCREAMING_SNAKE_CASE =dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case )
SCREAMING_SNAKE_CASE =scheduler_class.from_pretrained(snake_case )
# copy over dummy past residuals
new_scheduler.set_timesteps(snake_case )
# copy over dummy past residual (must be after setting timesteps)
SCREAMING_SNAKE_CASE =dummy_past_residuals[: new_scheduler.config.solver_order]
SCREAMING_SNAKE_CASE =scheduler.step(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
SCREAMING_SNAKE_CASE =new_scheduler.step(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowerCAmelCase ( self : List[str] ,snake_case : Optional[Any]=None ,**snake_case : Union[str, Any] ):
if scheduler is None:
SCREAMING_SNAKE_CASE =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE =self.get_scheduler_config(**snake_case )
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
SCREAMING_SNAKE_CASE =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE =self.get_scheduler_config(**snake_case )
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
SCREAMING_SNAKE_CASE =10
SCREAMING_SNAKE_CASE =self.dummy_model()
SCREAMING_SNAKE_CASE =self.dummy_sample_deter
scheduler.set_timesteps(snake_case )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =scheduler.step(snake_case ,snake_case ,snake_case ).prev_sample
return sample
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
SCREAMING_SNAKE_CASE =50
SCREAMING_SNAKE_CASE =self.dummy_model()
SCREAMING_SNAKE_CASE =self.dummy_sample_deter
scheduler.set_timesteps(snake_case )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =scheduler.step(snake_case ,snake_case ,snake_case ).prev_sample
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.2_574 ) < 1e-3
def _lowerCAmelCase ( self : int ):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=snake_case )
def _lowerCAmelCase ( self : List[Any] ):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
SCREAMING_SNAKE_CASE =DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
SCREAMING_SNAKE_CASE =self.full_loop(scheduler=snake_case )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.2_791 ) < 1e-3
SCREAMING_SNAKE_CASE =DEISMultistepScheduler.from_config(scheduler.config )
SCREAMING_SNAKE_CASE =DPMSolverMultistepScheduler.from_config(scheduler.config )
SCREAMING_SNAKE_CASE =UniPCMultistepScheduler.from_config(scheduler.config )
SCREAMING_SNAKE_CASE =DPMSolverSinglestepScheduler.from_config(scheduler.config )
SCREAMING_SNAKE_CASE =self.full_loop(scheduler=snake_case )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.2_791 ) < 1e-3
def _lowerCAmelCase ( self : Optional[Any] ):
self.check_over_configs(thresholding=snake_case )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=snake_case ,prediction_type=snake_case ,sample_max_value=snake_case ,algorithm_type='dpmsolver++' ,solver_order=snake_case ,solver_type=snake_case ,)
def _lowerCAmelCase ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case )
def _lowerCAmelCase ( self : List[str] ):
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=snake_case ,solver_type=snake_case ,prediction_type=snake_case ,algorithm_type=snake_case ,)
SCREAMING_SNAKE_CASE =self.full_loop(
solver_order=snake_case ,solver_type=snake_case ,prediction_type=snake_case ,algorithm_type=snake_case ,)
assert not torch.isnan(snake_case ).any(), "Samples have nan numbers"
def _lowerCAmelCase ( self : Optional[Any] ):
self.check_over_configs(lower_order_final=snake_case )
self.check_over_configs(lower_order_final=snake_case )
def _lowerCAmelCase ( self : Tuple ):
self.check_over_configs(lambda_min_clipped=-float('inf' ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def _lowerCAmelCase ( self : Tuple ):
self.check_over_configs(variance_type=snake_case )
self.check_over_configs(variance_type='learned_range' )
def _lowerCAmelCase ( self : List[str] ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=snake_case ,time_step=0 )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.full_loop()
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.2_791 ) < 1e-3
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.full_loop(use_karras_sigmas=snake_case )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.2_248 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.full_loop(prediction_type='v_prediction' )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.1_453 ) < 1e-3
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.full_loop(prediction_type='v_prediction' ,use_karras_sigmas=snake_case )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.0_649 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE =self.get_scheduler_config(thresholding=snake_case ,dynamic_thresholding_ratio=0 )
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
SCREAMING_SNAKE_CASE =10
SCREAMING_SNAKE_CASE =self.dummy_model()
SCREAMING_SNAKE_CASE =self.dummy_sample_deter.half()
scheduler.set_timesteps(snake_case )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =scheduler.step(snake_case ,snake_case ,snake_case ).prev_sample
assert sample.dtype == torch.floataa
| 334 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return " ".join(
''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("Program to check whether a number is a Perfect number or not...")
_lowerCamelCase =int(input("Enter number: ").strip())
print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
| 334 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_lowerCamelCase ="sshleifer/mar_enro_6_3_student"
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
super().setUp()
SCREAMING_SNAKE_CASE =cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,)
SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ):
MarianMTModel.from_pretrained(snake_case )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE ={
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro'
SCREAMING_SNAKE_CASE ={
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' )
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =(
['distillation.py']
+ bash_script.split()
+ [
f'--output_dir={output_dir}',
'--gpus=1',
'--learning_rate=1e-3',
f'--num_train_epochs={epochs}',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
SCREAMING_SNAKE_CASE =distill_main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 334 | 1 |
import requests
from bsa import BeautifulSoup
def snake_case__ ( lowerCAmelCase_ = "AAPL" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
SCREAMING_SNAKE_CASE =BeautifulSoup(requests.get(lowerCAmelCase_ ).text, 'html.parser' )
SCREAMING_SNAKE_CASE ='My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div', class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
| 334 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_vision_model'
def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =qkv_bias
@classmethod
def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_qformer'
def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,):
super().__init__(pad_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =cross_attention_frequency
SCREAMING_SNAKE_CASE =encoder_hidden_size
@classmethod
def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip-2'
__UpperCAmelCase = True
def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ):
super().__init__(**snake_case )
if vision_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case )
SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case )
SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt'
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case )
SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE =num_query_tokens
SCREAMING_SNAKE_CASE =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE =1.0
SCREAMING_SNAKE_CASE =0.02
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,):
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,)
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE =self.text_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'speech_to_text'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : Dict ,snake_case : Union[str, Any]=10000 ,snake_case : Any=12 ,snake_case : Optional[int]=2048 ,snake_case : Optional[int]=4 ,snake_case : List[str]=6 ,snake_case : int=2048 ,snake_case : List[str]=4 ,snake_case : Any=0.0 ,snake_case : List[Any]=0.0 ,snake_case : str=True ,snake_case : Optional[Any]=True ,snake_case : str="relu" ,snake_case : str=256 ,snake_case : Union[str, Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : List[str]=0.0 ,snake_case : str=0.02 ,snake_case : Any=2 ,snake_case : Any=True ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Optional[int]=2 ,snake_case : Optional[Any]=6000 ,snake_case : Union[str, Any]=1024 ,snake_case : Tuple=2 ,snake_case : Optional[int]=(5, 5) ,snake_case : Any=1024 ,snake_case : Union[str, Any]=80 ,snake_case : Optional[Any]=1 ,**snake_case : Tuple ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE =max_source_positions
SCREAMING_SNAKE_CASE =max_target_positions
SCREAMING_SNAKE_CASE =num_conv_layers
SCREAMING_SNAKE_CASE =list(snake_case )
SCREAMING_SNAKE_CASE =conv_channels
SCREAMING_SNAKE_CASE =input_feat_per_channel
SCREAMING_SNAKE_CASE =input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
f'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '
f'`config.num_conv_layers = {self.num_conv_layers}`.' )
super().__init__(
pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
| 334 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,):
SCREAMING_SNAKE_CASE =compute_mauve(
p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,)
return out
| 334 | 1 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=10 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
for _ in range(lowerCAmelCase_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=10 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
for step in range(lowerCAmelCase_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'schedule.bin' )
torch.save(scheduler.state_dict(), lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_ )
scheduler.load_state_dict(lowerCAmelCase_ )
return lrs
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List[str] ,snake_case : Dict ,snake_case : Optional[int] ):
self.assertEqual(len(snake_case ) ,len(snake_case ) )
for a, b in zip(snake_case ,snake_case ):
self.assertAlmostEqual(snake_case ,snake_case ,delta=snake_case )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =torch.tensor([0.1, -0.2, -0.1] ,requires_grad=snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([0.4, 0.2, -0.5] )
SCREAMING_SNAKE_CASE =nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
SCREAMING_SNAKE_CASE =AdamW(params=[w] ,lr=2e-1 ,weight_decay=0.0 )
for _ in range(100 ):
SCREAMING_SNAKE_CASE =criterion(snake_case ,snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1e-2 )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =torch.tensor([0.1, -0.2, -0.1] ,requires_grad=snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([0.4, 0.2, -0.5] )
SCREAMING_SNAKE_CASE =nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
SCREAMING_SNAKE_CASE =Adafactor(
params=[w] ,lr=1e-2 ,eps=(1e-30, 1e-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=snake_case ,weight_decay=0.0 ,relative_step=snake_case ,scale_parameter=snake_case ,warmup_init=snake_case ,)
for _ in range(1000 ):
SCREAMING_SNAKE_CASE =criterion(snake_case ,snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1e-2 )
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = nn.Linear(50 , 50 ) if is_torch_available() else None
__UpperCAmelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
__UpperCAmelCase = 10
def _lowerCAmelCase ( self : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : str ,snake_case : Tuple=None ):
self.assertEqual(len(snake_case ) ,len(snake_case ) )
for a, b in zip(snake_case ,snake_case ):
self.assertAlmostEqual(snake_case ,snake_case ,delta=snake_case ,msg=snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE ={'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
SCREAMING_SNAKE_CASE ={
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =data
SCREAMING_SNAKE_CASE =scheduler_func(self.optimizer ,**snake_case )
self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 )
SCREAMING_SNAKE_CASE =unwrap_schedule(snake_case ,self.num_steps )
self.assertListAlmostEqual(
snake_case ,snake_case ,tol=1e-2 ,msg=f'failed for {scheduler_func} in normal scheduler' ,)
SCREAMING_SNAKE_CASE =scheduler_func(self.optimizer ,**snake_case )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule
SCREAMING_SNAKE_CASE =unwrap_and_save_reload_schedule(snake_case ,self.num_steps )
self.assertListEqual(snake_case ,snake_case ,msg=f'failed for {scheduler_func} in save and reload' )
class a_ :
"""simple docstring"""
def __init__( self : List[str] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =fn
def __call__( self : Optional[int] ,*snake_case : List[str] ,**snake_case : Any ):
return self.fn(*snake_case ,**snake_case )
@classmethod
def _lowerCAmelCase ( self : Any ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =list(map(self ,scheduler.lr_lambdas ) )
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'vit_mae'
def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =qkv_bias
SCREAMING_SNAKE_CASE =decoder_num_attention_heads
SCREAMING_SNAKE_CASE =decoder_hidden_size
SCREAMING_SNAKE_CASE =decoder_num_hidden_layers
SCREAMING_SNAKE_CASE =decoder_intermediate_size
SCREAMING_SNAKE_CASE =mask_ratio
SCREAMING_SNAKE_CASE =norm_pix_loss
| 334 | 1 |
import itertools
import string
from collections.abc import Generator, Iterable
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =iter(lowerCAmelCase_ )
while True:
SCREAMING_SNAKE_CASE =tuple(itertools.islice(lowerCAmelCase_, lowerCAmelCase_ ) )
if not chunk:
return
yield chunk
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =''.join([c.upper() for c in dirty if c in string.ascii_letters] )
SCREAMING_SNAKE_CASE =''
if len(lowerCAmelCase_ ) < 2:
return dirty
for i in range(len(lowerCAmelCase_ ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowerCAmelCase_ ) & 1:
clean += "X"
return clean
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='ABCDEFGHIKLMNOPQRSTUVWXYZ'
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
SCREAMING_SNAKE_CASE =[]
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowerCAmelCase_ )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowerCAmelCase_ )
return table
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =generate_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =prepare_input(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowerCAmelCase_, 2 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(table.index(lowerCAmelCase_ ), 5 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(table.index(lowerCAmelCase_ ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =generate_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowerCAmelCase_, 2 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(table.index(lowerCAmelCase_ ), 5 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(table.index(lowerCAmelCase_ ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 334 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
_lowerCamelCase ={
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 | 1 |
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a_ ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = DebertaTokenizer
__UpperCAmelCase = True
__UpperCAmelCase = DebertaTokenizerFast
def _lowerCAmelCase ( self : Dict ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE =[
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'[UNK]',
]
SCREAMING_SNAKE_CASE =dict(zip(snake_case ,range(len(snake_case ) ) ) )
SCREAMING_SNAKE_CASE =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE ={'unk_token': '[UNK]'}
SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(snake_case ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(snake_case ) )
def _lowerCAmelCase ( self : Dict ,**snake_case : str ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname ,**snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE ='lower newer'
SCREAMING_SNAKE_CASE ='lower newer'
return input_text, output_text
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.get_tokenizer()
SCREAMING_SNAKE_CASE ='lower newer'
SCREAMING_SNAKE_CASE =['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE =tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,snake_case )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =self.get_tokenizer()
SCREAMING_SNAKE_CASE =tokenizer('Hello' ,'World' )
SCREAMING_SNAKE_CASE =[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['token_type_ids'] ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained('microsoft/deberta-base' )
SCREAMING_SNAKE_CASE =tokenizer.encode('sequence builders' ,add_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.encode('multi-sequence build' ,add_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.encode(
'sequence builders' ,add_special_tokens=snake_case ,add_prefix_space=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.encode(
'sequence builders' ,'multi-sequence build' ,add_special_tokens=snake_case ,add_prefix_space=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.build_inputs_with_special_tokens(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.build_inputs_with_special_tokens(snake_case ,snake_case )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =[self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
SCREAMING_SNAKE_CASE =tokenizer_class.from_pretrained('microsoft/deberta-base' )
SCREAMING_SNAKE_CASE =[
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
SCREAMING_SNAKE_CASE =tokenizer(snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =[tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) for seq in encoding['input_ids']]
# fmt: off
SCREAMING_SNAKE_CASE ={
'input_ids': [
[1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2]
],
'token_type_ids': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
SCREAMING_SNAKE_CASE =[
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
self.assertDictEqual(encoding.data ,snake_case )
for expected, decoded in zip(snake_case ,snake_case ):
self.assertEqual(snake_case ,snake_case )
| 334 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : Any ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() )
def _lowerCAmelCase ( self : Union[str, Any] ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : int ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : Dict ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
@require_pil
def _lowerCAmelCase ( self : int ):
import PIL.Image
SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects:
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' ,snake_case )
self.assertFalse(kwargs['optimize_list_casting'] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
SCREAMING_SNAKE_CASE =pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(lowerCAmelCase_ )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=10 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=10 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1}, key=1 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' )
with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(lowerCAmelCase_, 1 )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if pa.types.is_list(lowerCAmelCase_ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if isinstance(lst[0], lowerCAmelCase_ ):
change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =value
@pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype', [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
], )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=lowerCAmelCase_ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow'
with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs, type(lowerCAmelCase_ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(lowerCAmelCase_ )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(stream=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
import PIL.Image
SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(
stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer:
writer.write({'image': image_path} )
writer.finalize()
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'], lowerCAmelCase_ )
with open(lowerCAmelCase_, 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(stream=lowerCAmelCase_ ) as writer:
writer._build_writer(inferred_schema=lowerCAmelCase_ )
assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
| 334 | 1 |
import re
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if len(re.findall('[ATCG]', lowerCAmelCase_ ) ) != len(lowerCAmelCase_ ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG', 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def snake_case__ ( ):
"""simple docstring"""
assert or_gate(0, 0 ) == 0
assert or_gate(0, 1 ) == 1
assert or_gate(1, 0 ) == 1
assert or_gate(1, 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 334 | 1 |
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ={
'en': 'Machine learning is great, isn\'t it?',
'ru': 'Машинное обучение - это здорово, не так ли?',
'de': 'Maschinelles Lernen ist großartig, oder?',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
SCREAMING_SNAKE_CASE ={
'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'],
'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'],
'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'],
'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'],
}
SCREAMING_SNAKE_CASE =F'{src_lang}-{tgt_lang}'
SCREAMING_SNAKE_CASE =F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n'
os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'README.md' )
print(F'Generating {path}' )
with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f:
f.write(lowerCAmelCase_ )
# make sure we are under the root of the project
_lowerCamelCase =Path(__file__).resolve().parent.parent.parent
_lowerCamelCase =repo_dir / "model_cards"
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase =model_name.split("-")
_lowerCamelCase =model_cards_dir / "facebook" / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 334 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={"vocab_file": "vocab.txt"}
_lowerCamelCase ={
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase ={
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
return [l.strip() for l in lines]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =load_vocab_file(snake_case )
SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE =unk_token
SCREAMING_SNAKE_CASE =cls_token
SCREAMING_SNAKE_CASE =pad_token
SCREAMING_SNAKE_CASE =mask_token
SCREAMING_SNAKE_CASE =eos_token
SCREAMING_SNAKE_CASE =self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ):
return text.split()
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ):
return len(self._id_to_token )
def _lowerCAmelCase ( self : List[str] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _lowerCAmelCase ( self : List[Any] ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Any ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.cls_token_id]
SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1]
if token_ids_a is not None:
mask += [0] * len(snake_case ) + [1]
return mask
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ):
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(snake_case ,'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def _lowerCAmelCase ( self : int ):
return self.get_vocab_size(with_added_tokens=snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ):
return super()._add_tokens(snake_case ,special_tokens=snake_case )
| 334 | 1 |
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
('encoder.deit.cls_token', 'encoder.embeddings.cls_token'),
('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'),
('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'),
('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'),
('encoder.deit.norm.weight', 'encoder.layernorm.weight'),
('encoder.deit.norm.bias', 'encoder.layernorm.bias'),
] )
return rename_keys
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
SCREAMING_SNAKE_CASE =state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' )
SCREAMING_SNAKE_CASE =in_proj_weight[
: encoder_config.hidden_size, :
]
SCREAMING_SNAKE_CASE =in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE =in_proj_weight[
-encoder_config.hidden_size :, :
]
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =dct.pop(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =val
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if "handwritten" in checkpoint_url:
SCREAMING_SNAKE_CASE ='https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
SCREAMING_SNAKE_CASE ='https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg'
SCREAMING_SNAKE_CASE =Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ).convert('RGB' )
return im
@torch.no_grad()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =ViTConfig(image_size=384, qkv_bias=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
SCREAMING_SNAKE_CASE =768
elif "large" in checkpoint_url:
# use ViT-large encoder
SCREAMING_SNAKE_CASE =1024
SCREAMING_SNAKE_CASE =4096
SCREAMING_SNAKE_CASE =24
SCREAMING_SNAKE_CASE =16
SCREAMING_SNAKE_CASE =1024
else:
raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE ='relu'
SCREAMING_SNAKE_CASE =1024
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =False
# load HuggingFace model
SCREAMING_SNAKE_CASE =ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =TrOCRForCausalLM(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =VisionEncoderDecoderModel(encoder=lowerCAmelCase_, decoder=lowerCAmelCase_ )
model.eval()
# load state_dict of original model, rename some keys
SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, map_location='cpu', check_hash=lowerCAmelCase_ )['model']
SCREAMING_SNAKE_CASE =create_rename_keys(lowerCAmelCase_, lowerCAmelCase_ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
SCREAMING_SNAKE_CASE =state_dict.pop(lowerCAmelCase_ )
if key.startswith('decoder' ) and "output_projection" not in key:
SCREAMING_SNAKE_CASE =val
else:
SCREAMING_SNAKE_CASE =val
# load state dict
model.load_state_dict(lowerCAmelCase_ )
# Check outputs on an image
SCREAMING_SNAKE_CASE =ViTImageProcessor(size=encoder_config.image_size )
SCREAMING_SNAKE_CASE =RobertaTokenizer.from_pretrained('roberta-large' )
SCREAMING_SNAKE_CASE =TrOCRProcessor(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =processor(images=prepare_img(lowerCAmelCase_ ), return_tensors='pt' ).pixel_values
# verify logits
SCREAMING_SNAKE_CASE =torch.tensor([[model.config.decoder.decoder_start_token_id]] )
SCREAMING_SNAKE_CASE =model(pixel_values=lowerCAmelCase_, decoder_input_ids=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.logits
SCREAMING_SNAKE_CASE =torch.Size([1, 1, 50265] )
if "trocr-base-handwritten" in checkpoint_url:
SCREAMING_SNAKE_CASE =torch.tensor(
[-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] )
elif "trocr-large-handwritten" in checkpoint_url:
SCREAMING_SNAKE_CASE =torch.tensor(
[-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] )
elif "trocr-base-printed" in checkpoint_url:
SCREAMING_SNAKE_CASE =torch.tensor(
[-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] )
elif "trocr-large-printed" in checkpoint_url:
SCREAMING_SNAKE_CASE =torch.tensor(
[-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :10], lowerCAmelCase_, atol=1e-3 ), "First elements of logits not as expected"
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase_ )
print(F'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
_lowerCamelCase =parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : int ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Tuple ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 0
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def __call__( self : int ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ):
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one."
SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}'
print(lowerCAmelCase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {checkpoint_name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
_lowerCamelCase =[
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=None, lowerCAmelCase_=None, lowerCAmelCase_=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =True
while ask_again:
SCREAMING_SNAKE_CASE =input(lowerCAmelCase_ )
try:
if default is not None and len(lowerCAmelCase_ ) == 0:
return default
return convert_value(lowerCAmelCase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=[], lowerCAmelCase_=None, lowerCAmelCase_=0 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =BulletMenu(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =menu.run(default_choice=lowerCAmelCase_ )
return convert_value(lowerCAmelCase_ ) if convert_value is not None else result
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =int(lowerCAmelCase_ )
return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =int(lowerCAmelCase_ )
return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =int(lowerCAmelCase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =int(lowerCAmelCase_ )
return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =int(lowerCAmelCase_ )
return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return {"yes": True, "no": False}[value.lower()]
class a_ ( argparse.RawDescriptionHelpFormatter ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[str] ,snake_case : str ,snake_case : Optional[int] ,snake_case : Optional[Any] ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =super()._format_usage(snake_case ,snake_case ,snake_case ,snake_case )
SCREAMING_SNAKE_CASE =usage.replace('<command> [<args>] ' ,'' )
return usage
| 334 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =None
if token is not None:
SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
SCREAMING_SNAKE_CASE ='636036'
SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json()
return result["workflow_runs"]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
SCREAMING_SNAKE_CASE =workflow_run['id']
break
return workflow_run_id
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ )
if workflow_run_id is not None:
SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
SCREAMING_SNAKE_CASE =artifacts_links[artifact_name]
download_artifact(
artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={}
for artifact_name in artifact_names:
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' )
if os.path.isfile(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE ={}
with zipfile.ZipFile(lowerCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
with z.open(lowerCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' )
return results
| 334 | 1 |
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
_lowerCamelCase ="\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n"
_lowerCamelCase ="\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n"
_lowerCamelCase ="\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n"
_lowerCamelCase ="\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n"
_lowerCamelCase ="The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE."
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' ) ),
'references': datasets.Value('string' ),
} ) ,homepage='https://github.com/openai/human-eval' ,codebase_urls=['https://github.com/openai/human-eval'] ,reference_urls=['https://github.com/openai/human-eval'] ,license=_LICENSE ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Optional[int]=[1, 10, 100] ,snake_case : Union[str, Any]=4 ,snake_case : Tuple=3.0 ):
if os.getenv('HF_ALLOW_CODE_EVAL' ,0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError('This metric is currently not supported on Windows.' )
with ThreadPoolExecutor(max_workers=snake_case ) as executor:
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =Counter()
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =defaultdict(snake_case )
for task_id, (candidates, test_case) in enumerate(zip(snake_case ,snake_case ) ):
for candidate in candidates:
SCREAMING_SNAKE_CASE =candidate + '\n' + test_case
SCREAMING_SNAKE_CASE =(test_program, timeout, task_id, completion_id[task_id])
SCREAMING_SNAKE_CASE =executor.submit(snake_case ,*snake_case )
futures.append(snake_case )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(snake_case ):
SCREAMING_SNAKE_CASE =future.result()
results[result["task_id"]].append((result['completion_id'], result) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =[], []
for result in results.values():
result.sort()
SCREAMING_SNAKE_CASE =[r[1]['passed'] for r in result]
total.append(len(snake_case ) )
correct.append(sum(snake_case ) )
SCREAMING_SNAKE_CASE =np.array(snake_case )
SCREAMING_SNAKE_CASE =np.array(snake_case )
SCREAMING_SNAKE_CASE =k
SCREAMING_SNAKE_CASE ={f'pass@{k}': estimate_pass_at_k(snake_case ,snake_case ,snake_case ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
def estimator(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) )
if isinstance(lowerCAmelCase_, lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =itertools.repeat(lowerCAmelCase_, len(lowerCAmelCase_ ) )
else:
assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =iter(lowerCAmelCase_ )
return np.array([estimator(int(lowerCAmelCase_ ), int(lowerCAmelCase_ ), lowerCAmelCase_ ) for n, c in zip(lowerCAmelCase_, lowerCAmelCase_ )] )
| 334 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_token_type_ids
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_choices
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =q_groups
SCREAMING_SNAKE_CASE =k_groups
SCREAMING_SNAKE_CASE =v_groups
SCREAMING_SNAKE_CASE =post_attention_groups
SCREAMING_SNAKE_CASE =intermediate_groups
SCREAMING_SNAKE_CASE =output_groups
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ):
return SqueezeBertConfig(
embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.num_choices
SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,labels=snake_case ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCAmelCase = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case )
@slow
def _lowerCAmelCase ( self : str ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_sentencepiece
@require_tokenizers
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
SCREAMING_SNAKE_CASE =torch.Size((1, 3) )
self.assertEqual(output.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
| 334 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'upernet'
def __init__( self : int ,snake_case : Tuple=None ,snake_case : List[str]=512 ,snake_case : str=0.02 ,snake_case : Tuple=[1, 2, 3, 6] ,snake_case : List[Any]=True ,snake_case : Any=0.4 ,snake_case : Optional[int]=384 ,snake_case : Tuple=256 ,snake_case : Dict=1 ,snake_case : Any=False ,snake_case : str=255 ,**snake_case : str ,):
super().__init__(**snake_case )
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
SCREAMING_SNAKE_CASE =CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
elif isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =backbone_config.get('model_type' )
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[backbone_model_type]
SCREAMING_SNAKE_CASE =config_class.from_dict(snake_case )
SCREAMING_SNAKE_CASE =backbone_config
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =pool_scales
SCREAMING_SNAKE_CASE =use_auxiliary_head
SCREAMING_SNAKE_CASE =auxiliary_loss_weight
SCREAMING_SNAKE_CASE =auxiliary_in_channels
SCREAMING_SNAKE_CASE =auxiliary_channels
SCREAMING_SNAKE_CASE =auxiliary_num_convs
SCREAMING_SNAKE_CASE =auxiliary_concat_input
SCREAMING_SNAKE_CASE =loss_ignore_index
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 |
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
@property
def _lowerCAmelCase ( self : List[Any] ):
return self.feat_extract_tester.prepare_feat_extract_dict()
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case ,'feature_size' ) )
self.assertTrue(hasattr(snake_case ,'sampling_rate' ) )
self.assertTrue(hasattr(snake_case ,'padding_value' ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ):
def _inputs_have_equal_length(snake_case : Dict ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : str ,snake_case : Dict ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length
SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size
SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ):
def _inputs_have_equal_length(snake_case : str ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
# truncate to smallest
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to smallest with np
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to middle
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =12
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
SCREAMING_SNAKE_CASE =len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
def _lowerCAmelCase ( self : Optional[int] ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : Tuple ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : List[str] ):
self._check_truncation(numpify=snake_case )
def _lowerCAmelCase ( self : int ):
self._check_truncation(numpify=snake_case )
@require_torch
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =min(snake_case )
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
| 334 | 1 |
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_lowerCamelCase =logging.get_logger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = ['pixel_values']
def __init__( self : Dict ,snake_case : bool = True ,snake_case : Dict[str, int] = None ,snake_case : PILImageResampling = PILImageResampling.BICUBIC ,snake_case : bool = True ,snake_case : Dict[str, int] = None ,snake_case : bool = True ,snake_case : Union[int, float] = 1 / 255 ,snake_case : bool = True ,snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**snake_case : List[str] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =size if size is not None else {'shortest_edge': 224}
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case )
SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'height': 224, 'width': 224}
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,param_name='crop_size' )
SCREAMING_SNAKE_CASE =do_resize
SCREAMING_SNAKE_CASE =size
SCREAMING_SNAKE_CASE =resample
SCREAMING_SNAKE_CASE =do_center_crop
SCREAMING_SNAKE_CASE =crop_size
SCREAMING_SNAKE_CASE =do_rescale
SCREAMING_SNAKE_CASE =rescale_factor
SCREAMING_SNAKE_CASE =do_normalize
SCREAMING_SNAKE_CASE =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
SCREAMING_SNAKE_CASE =image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _lowerCAmelCase ( self : List[str] ,snake_case : np.ndarray ,snake_case : Dict[str, int] ,snake_case : PILImageResampling = PILImageResampling.BICUBIC ,snake_case : Optional[Union[str, ChannelDimension]] = None ,**snake_case : Tuple ,):
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
SCREAMING_SNAKE_CASE =int((256 / 224) * size['shortest_edge'] )
SCREAMING_SNAKE_CASE =get_resize_output_image_size(snake_case ,size=snake_case ,default_to_square=snake_case )
SCREAMING_SNAKE_CASE ={'height': output_size[0], 'width': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' )
return resize(
snake_case ,size=(size_dict['height'], size_dict['width']) ,resample=snake_case ,data_format=snake_case ,**snake_case )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : np.ndarray ,snake_case : Dict[str, int] ,snake_case : Optional[Union[str, ChannelDimension]] = None ,**snake_case : str ,):
SCREAMING_SNAKE_CASE =get_size_dict(snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' )
return center_crop(snake_case ,size=(size['height'], size['width']) ,data_format=snake_case ,**snake_case )
def _lowerCAmelCase ( self : List[Any] ,snake_case : np.ndarray ,snake_case : Union[int, float] ,snake_case : Optional[Union[str, ChannelDimension]] = None ,**snake_case : Tuple ,):
return rescale(snake_case ,scale=snake_case ,data_format=snake_case ,**snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : np.ndarray ,snake_case : Union[float, List[float]] ,snake_case : Union[float, List[float]] ,snake_case : Optional[Union[str, ChannelDimension]] = None ,**snake_case : Tuple ,):
return normalize(snake_case ,mean=snake_case ,std=snake_case ,data_format=snake_case ,**snake_case )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : ImageInput ,snake_case : Optional[bool] = None ,snake_case : Optional[Dict[str, int]] = None ,snake_case : PILImageResampling = None ,snake_case : Optional[bool] = None ,snake_case : Optional[Dict[str, int]] = None ,snake_case : Optional[bool] = None ,snake_case : Optional[float] = None ,snake_case : Optional[bool] = None ,snake_case : Optional[Union[float, Iterable[float]]] = None ,snake_case : Optional[Union[float, Iterable[float]]] = None ,snake_case : Optional[TensorType] = None ,snake_case : ChannelDimension = ChannelDimension.FIRST ,**snake_case : Optional[int] ,):
SCREAMING_SNAKE_CASE =do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE =resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE =do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE =do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE =rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE =do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE =image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE =image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE =size if size is not None else self.size
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case )
SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,param_name='crop_size' )
SCREAMING_SNAKE_CASE =make_list_of_images(snake_case )
if not valid_images(snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE =[to_numpy_array(snake_case ) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE =[self.resize(snake_case ,snake_case ,snake_case ) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE =[self.center_crop(snake_case ,snake_case ) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE =[self.rescale(snake_case ,snake_case ) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE =[self.normalize(snake_case ,snake_case ,snake_case ) for image in images]
SCREAMING_SNAKE_CASE =[to_channel_dimension_format(snake_case ,snake_case ) for image in images]
SCREAMING_SNAKE_CASE ={'pixel_values': images}
return BatchFeature(data=snake_case ,tensor_type=snake_case )
| 334 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_lowerCamelCase =2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_lowerCamelCase =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_lowerCamelCase =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] )
return (item, float(lowerCAmelCase_ ))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 )
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ )
if random.uniform(0, 1 ) < MUTATION_PROBABILITY:
SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ )
return "".join(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
# Generate more children proportionally to the fitness score.
SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1
SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n
for _ in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ )
# Append new string to the population list.
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
return pop
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
if N_POPULATION < N_SELECTED:
SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(lowerCAmelCase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} )
if not_in_genes_list:
SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(lowerCAmelCase_ )
# Generate random starting population.
SCREAMING_SNAKE_CASE =[]
for _ in range(lowerCAmelCase_ ):
population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowerCAmelCase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population]
# Check if there is a matching evolution.
SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowerCAmelCase_ )
# Normalize population score to be between 0 and 1.
SCREAMING_SNAKE_CASE =[
(item, score / len(lowerCAmelCase_ )) for item, score in population_score
]
# This is selection
for i in range(lowerCAmelCase_ ):
population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowerCAmelCase_ ) > N_POPULATION:
break
if __name__ == "__main__":
_lowerCamelCase =(
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
_lowerCamelCase =list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list)
print(
f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'
)
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =0
# if input_string is "aba" than new_input_string become "a|b|a"
SCREAMING_SNAKE_CASE =''
SCREAMING_SNAKE_CASE =''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(lowerCAmelCase_ ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0
# length[i] shows the length of palindromic substring with center i
SCREAMING_SNAKE_CASE =[1 for i in range(len(lowerCAmelCase_ ) )]
# for each character in new_string find corresponding palindromic string
SCREAMING_SNAKE_CASE =0
for j in range(len(lowerCAmelCase_ ) ):
SCREAMING_SNAKE_CASE =1 if j > r else min(length[l + r - j] // 2, r - j + 1 )
while (
j - k >= 0
and j + k < len(lowerCAmelCase_ )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
SCREAMING_SNAKE_CASE =2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
SCREAMING_SNAKE_CASE =j - k + 1 # noqa: E741
SCREAMING_SNAKE_CASE =j + k - 1
# update max_length and start position
if max_length < length[j]:
SCREAMING_SNAKE_CASE =length[j]
SCREAMING_SNAKE_CASE =j
# create that string
SCREAMING_SNAKE_CASE =new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _lowerCAmelCase ( self : Optional[Any] ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCAmelCase ( self : Union[str, Any] ):
# This test is for deprecated behavior and can be removed in v5
try:
SCREAMING_SNAKE_CASE =tempfile.mktemp()
with open(snake_case ,'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case )
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case )
finally:
os.remove(snake_case )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' ,'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size ,1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def _lowerCAmelCase ( self : int ):
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class a_ ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def _lowerCAmelCase ( cls : List[Any] ):
SCREAMING_SNAKE_CASE =TOKEN
HfFolder.save_token(snake_case )
@classmethod
def _lowerCAmelCase ( cls : Tuple ):
try:
delete_repo(token=cls._token ,repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def _lowerCAmelCase ( self : Any ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
def _lowerCAmelCase ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
@require_tokenizers
def _lowerCAmelCase ( self : str ):
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case )
bert_tokenizer.save_pretrained(snake_case )
SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case )
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(
f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] )
def _lowerCAmelCase ( self : Optional[Any] ):
# Even if the offsets are wrong, we necessarily output correct string
# parts.
SCREAMING_SNAKE_CASE =Trie()
SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] )
self.assertEqual(snake_case ,['AB', 'C'] )
| 334 | 1 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =None
if token is not None:
SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
SCREAMING_SNAKE_CASE ='636036'
SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json()
return result["workflow_runs"]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
SCREAMING_SNAKE_CASE =workflow_run['id']
break
return workflow_run_id
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ )
if workflow_run_id is not None:
SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
SCREAMING_SNAKE_CASE =artifacts_links[artifact_name]
download_artifact(
artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={}
for artifact_name in artifact_names:
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' )
if os.path.isfile(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE ={}
with zipfile.ZipFile(lowerCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
with z.open(lowerCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' )
return results
| 334 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase =[
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
_lowerCamelCase =[
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' )
return sd
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =OrderedDict()
SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
SCREAMING_SNAKE_CASE =key
for name_pair in rename_keys_prefix:
SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] )
SCREAMING_SNAKE_CASE =d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
SCREAMING_SNAKE_CASE ='pretraining'
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024}
else:
raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
SCREAMING_SNAKE_CASE ='multichoice'
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
SCREAMING_SNAKE_CASE ='vqa_advanced'
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129}
SCREAMING_SNAKE_CASE ='vqa'
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={
'visual_embedding_dim': 1024,
'num_labels': 2,
}
SCREAMING_SNAKE_CASE ='nlvr'
SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ )
# Load State Dict
SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ )
if model_type == "pretraining":
SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ )
elif model_type == "vqa":
SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ )
elif model_type == "nlvr":
SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ )
elif model_type == "multichoice":
SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
# Save Checkpoints
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
_lowerCamelCase =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 334 | 1 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =RobertaPreLayerNormConfig.from_pretrained(
lowerCAmelCase_, architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
SCREAMING_SNAKE_CASE =torch.load(hf_hub_download(repo_id=lowerCAmelCase_, filename='pytorch_model.bin' ) )
SCREAMING_SNAKE_CASE ={}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
SCREAMING_SNAKE_CASE ='roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
SCREAMING_SNAKE_CASE =tensor_value
SCREAMING_SNAKE_CASE =RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=lowerCAmelCase_, config=lowerCAmelCase_, state_dict=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
# convert tokenizer
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(lowerCAmelCase_ )
tokenizer.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint-repo",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_lowerCamelCase =parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'nllb-moe'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE =router_z_loss_coef
SCREAMING_SNAKE_CASE =router_aux_loss_coef
SCREAMING_SNAKE_CASE =decoder_sparse_step
SCREAMING_SNAKE_CASE =encoder_sparse_step
SCREAMING_SNAKE_CASE =num_experts
SCREAMING_SNAKE_CASE =expert_capacity
SCREAMING_SNAKE_CASE =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' )
SCREAMING_SNAKE_CASE =router_dtype
SCREAMING_SNAKE_CASE =router_ignore_padding_tokens
SCREAMING_SNAKE_CASE =batch_prioritized_routing
SCREAMING_SNAKE_CASE =second_expert_policy
SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping
SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction
SCREAMING_SNAKE_CASE =moe_token_dropout
SCREAMING_SNAKE_CASE =output_router_logits
super().__init__(
pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
| 334 | 1 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
_lowerCamelCase =TypeVar("KEY")
_lowerCamelCase =TypeVar("VAL")
@dataclass(frozen=lowerCamelCase_ , slots=lowerCamelCase_ )
class a_ ( Generic[KEY, VAL] ):
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
class a_ ( _Item ):
"""simple docstring"""
def __init__( self : int ):
super().__init__(snake_case ,snake_case )
def __bool__( self : Dict ):
return False
_lowerCamelCase =_DeletedItem()
class a_ ( MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : int ,snake_case : int = 8 ,snake_case : float = 0.75 ):
SCREAMING_SNAKE_CASE =initial_block_size
SCREAMING_SNAKE_CASE =[None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
SCREAMING_SNAKE_CASE =capacity_factor
SCREAMING_SNAKE_CASE =0
def _lowerCAmelCase ( self : str ,snake_case : KEY ):
return hash(snake_case ) % len(self._buckets )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : int ):
return (ind + 1) % len(self._buckets )
def _lowerCAmelCase ( self : List[Any] ,snake_case : int ,snake_case : KEY ,snake_case : VAL ):
SCREAMING_SNAKE_CASE =self._buckets[ind]
if not stored:
SCREAMING_SNAKE_CASE =_Item(snake_case ,snake_case )
self._len += 1
return True
elif stored.key == key:
SCREAMING_SNAKE_CASE =_Item(snake_case ,snake_case )
return True
else:
return False
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =len(self._buckets ) * self._capacity_factor
return len(self ) >= int(snake_case )
def _lowerCAmelCase ( self : Dict ):
if len(self._buckets ) <= self._initial_block_size:
return False
SCREAMING_SNAKE_CASE =len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def _lowerCAmelCase ( self : Any ,snake_case : int ):
SCREAMING_SNAKE_CASE =self._buckets
SCREAMING_SNAKE_CASE =[None] * new_size
SCREAMING_SNAKE_CASE =0
for item in old_buckets:
if item:
self._add_item(item.key ,item.val )
def _lowerCAmelCase ( self : Any ):
self._resize(len(self._buckets ) * 2 )
def _lowerCAmelCase ( self : Optional[Any] ):
self._resize(len(self._buckets ) // 2 )
def _lowerCAmelCase ( self : List[Any] ,snake_case : KEY ):
SCREAMING_SNAKE_CASE =self._get_bucket_index(snake_case )
for _ in range(len(self._buckets ) ):
yield ind
SCREAMING_SNAKE_CASE =self._get_next_ind(snake_case )
def _lowerCAmelCase ( self : str ,snake_case : KEY ,snake_case : VAL ):
for ind in self._iterate_buckets(snake_case ):
if self._try_set(snake_case ,snake_case ,snake_case ):
break
def __setitem__( self : Union[str, Any] ,snake_case : KEY ,snake_case : VAL ):
if self._is_full():
self._size_up()
self._add_item(snake_case ,snake_case )
def __delitem__( self : str ,snake_case : KEY ):
for ind in self._iterate_buckets(snake_case ):
SCREAMING_SNAKE_CASE =self._buckets[ind]
if item is None:
raise KeyError(snake_case )
if item is _deleted:
continue
if item.key == key:
SCREAMING_SNAKE_CASE =_deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : int ,snake_case : KEY ):
for ind in self._iterate_buckets(snake_case ):
SCREAMING_SNAKE_CASE =self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(snake_case )
def __len__( self : Optional[Any] ):
return self._len
def __iter__( self : List[str] ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Tuple ):
SCREAMING_SNAKE_CASE =' ,'.join(
f'{item.key}: {item.val}' for item in self._buckets if item )
return f'HashMap({val_string})'
| 334 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =sorted(numsa + numsa )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()]
_lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()]
print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowerCamelCase ={
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'transfo-xl'
__UpperCAmelCase = ['mems']
__UpperCAmelCase = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =[]
self.cutoffs.extend(snake_case )
if proj_share_all_but_first:
SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs )
else:
SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs )
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =d_embed
SCREAMING_SNAKE_CASE =d_head
SCREAMING_SNAKE_CASE =d_inner
SCREAMING_SNAKE_CASE =div_val
SCREAMING_SNAKE_CASE =pre_lnorm
SCREAMING_SNAKE_CASE =n_layer
SCREAMING_SNAKE_CASE =n_head
SCREAMING_SNAKE_CASE =mem_len
SCREAMING_SNAKE_CASE =same_length
SCREAMING_SNAKE_CASE =attn_type
SCREAMING_SNAKE_CASE =clamp_len
SCREAMING_SNAKE_CASE =sample_softmax
SCREAMING_SNAKE_CASE =adaptive
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =dropatt
SCREAMING_SNAKE_CASE =untie_r
SCREAMING_SNAKE_CASE =init
SCREAMING_SNAKE_CASE =init_range
SCREAMING_SNAKE_CASE =proj_init_std
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =layer_norm_epsilon
super().__init__(eos_token_id=snake_case ,**snake_case )
@property
def _lowerCAmelCase ( self : str ):
# Message copied from Transformer-XL documentation
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 334 | 1 |
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCamelCase ="▁"
_lowerCamelCase =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class a_ ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = BertGenerationTokenizer
__UpperCAmelCase = False
__UpperCAmelCase = True
def _lowerCAmelCase ( self : Optional[int] ):
super().setUp()
SCREAMING_SNAKE_CASE =BertGenerationTokenizer(snake_case ,keep_accents=snake_case )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE ='<s>'
SCREAMING_SNAKE_CASE =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) ,snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) ,snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,'<unk>' )
self.assertEqual(vocab_keys[1] ,'<s>' )
self.assertEqual(vocab_keys[-1] ,'<pad>' )
self.assertEqual(len(snake_case ) ,1002 )
def _lowerCAmelCase ( self : Optional[int] ):
self.assertEqual(self.get_tokenizer().vocab_size ,1000 )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =BertGenerationTokenizer(snake_case ,keep_accents=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case ,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case ) ,[285, 46, 10, 170, 382] ,)
SCREAMING_SNAKE_CASE =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case ,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] ,)
SCREAMING_SNAKE_CASE =tokenizer.convert_tokens_to_ids(snake_case )
self.assertListEqual(
snake_case ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,)
SCREAMING_SNAKE_CASE =tokenizer.convert_ids_to_tokens(snake_case )
self.assertListEqual(
snake_case ,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] ,)
@cached_property
def _lowerCAmelCase ( self : Any ):
return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
@slow
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE ='Hello World!'
SCREAMING_SNAKE_CASE =[18536, 2260, 101]
self.assertListEqual(snake_case ,self.big_tokenizer.encode(snake_case ) )
@slow
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
SCREAMING_SNAKE_CASE =[
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
34324,
497,
391,
408,
11342,
1244,
385,
100,
938,
985,
456,
574,
362,
12597,
3200,
3129,
1172,
]
self.assertListEqual(snake_case ,self.big_tokenizer.encode(snake_case ) )
@require_torch
@slow
def _lowerCAmelCase ( self : List[Any] ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
SCREAMING_SNAKE_CASE =list(self.big_tokenizer.get_vocab().keys() )[:10]
SCREAMING_SNAKE_CASE =' '.join(snake_case )
SCREAMING_SNAKE_CASE =self.big_tokenizer.encode_plus(snake_case ,return_tensors='pt' ,return_token_type_ids=snake_case )
SCREAMING_SNAKE_CASE =self.big_tokenizer.batch_encode_plus(
[sequence + ' ' + sequence] ,return_tensors='pt' ,return_token_type_ids=snake_case )
SCREAMING_SNAKE_CASE =BertGenerationConfig()
SCREAMING_SNAKE_CASE =BertGenerationEncoder(snake_case )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**snake_case )
model(**snake_case )
@slow
def _lowerCAmelCase ( self : Optional[Any] ):
# fmt: off
SCREAMING_SNAKE_CASE ={'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case ,model_name='google/bert_for_seq_generation_L-24_bbc_encoder' ,revision='c817d1fd1be2ffa69431227a1fe320544943d4db' ,)
| 334 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =100
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =out_indices
SCREAMING_SNAKE_CASE =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE =num_patches + 1
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =BeitModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.type_sequence_label_size
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =BeitModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case )
def _lowerCAmelCase ( self : Any ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]:
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.gradient_checkpointing_enable()
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =_config_zero_init(snake_case )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(config=snake_case )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,)
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case )
# prepare bool_masked_pos
SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =281
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 21841) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =2396
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] ,device=snake_case ,)
else:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] ,device=snake_case ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] )
SCREAMING_SNAKE_CASE =torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,snake_case )
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case )
SCREAMING_SNAKE_CASE =torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape ,snake_case )
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError('String lengths must match!' )
SCREAMING_SNAKE_CASE =0
for chara, chara in zip(lowerCAmelCase_, lowerCAmelCase_ ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : List[str] ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Optional[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 1
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = True
def __call__( self : str ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch:
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any ,snake_case : nn.Module ):
super().__init__()
SCREAMING_SNAKE_CASE =[]
# - get the stem
feature_blocks.append(('conv1', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('block' ), f'Unexpected layer name {k}'
SCREAMING_SNAKE_CASE =len(snake_case ) + 1
feature_blocks.append((f'res{block_index}', v) )
SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ):
return get_trunk_forward_outputs(
snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ):
SCREAMING_SNAKE_CASE =x.split('-' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Optional[Any] ,snake_case : str ):
# default to timm!
if x not in self:
SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case )
SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) )
else:
SCREAMING_SNAKE_CASE =super().__getitem__(snake_case )
return val
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __getitem__( self : int ,snake_case : str ):
if "seer" in x and "in1k" not in x:
SCREAMING_SNAKE_CASE =RegNetModel
else:
SCREAMING_SNAKE_CASE =RegNetForImageClassification
return val
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for from_key, to_key in keys:
SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone()
print(F'Copied key={from_key} to={to_key}' )
return to_state_dict
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func()
SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
if from_state_dict is not None:
SCREAMING_SNAKE_CASE =[]
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')]
SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ )
our_model.load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(
our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state
)
SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1]
assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'regnet-x-002': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ),
'regnet-x-004': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ),
'regnet-x-006': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ),
'regnet-x-008': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ),
'regnet-x-016': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ),
'regnet-x-032': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ),
'regnet-x-040': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ),
'regnet-x-064': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ),
'regnet-x-080': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ),
'regnet-x-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ),
'regnet-x-160': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ),
'regnet-x-320': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ),
# y variant
'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
'regnet-y-004': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
'regnet-y-006': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
'regnet-y-008': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
'regnet-y-016': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
'regnet-y-032': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ),
'regnet-y-040': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ),
'regnet-y-064': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ),
'regnet-y-080': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ),
'regnet-y-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ),
'regnet-y-160': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ),
'regnet-y-320': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer': RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer': RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
# finetuned on imagenet
'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
}
SCREAMING_SNAKE_CASE =NameToOurModelFuncMap()
SCREAMING_SNAKE_CASE =NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]:
SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' )
SCREAMING_SNAKE_CASE =model_func()
# check if we have a head, if yes add it
SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model']
SCREAMING_SNAKE_CASE =model_state_dict['trunk']
model.load_state_dict(lowerCAmelCase_ )
return model.eval(), model_state_dict["heads"]
# pretrained
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
_lowerCamelCase ={
"vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"},
"merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"},
}
_lowerCamelCase ={
"ctrl": 2_56,
}
_lowerCamelCase ={
"Pregnancy": 16_86_29,
"Christianity": 76_75,
"Explain": 10_64_23,
"Fitness": 6_34_40,
"Saving": 6_31_63,
"Ask": 2_71_71,
"Ass": 9_59_85,
"Joke": 16_35_09,
"Questions": 4_56_22,
"Thoughts": 4_96_05,
"Retail": 5_23_42,
"Feminism": 16_43_38,
"Writing": 1_19_92,
"Atheism": 19_22_63,
"Netflix": 4_86_16,
"Computing": 3_96_39,
"Opinion": 4_32_13,
"Alone": 4_49_67,
"Funny": 5_89_17,
"Gaming": 4_03_58,
"Human": 40_88,
"India": 13_31,
"Joker": 7_71_38,
"Diet": 3_62_06,
"Legal": 1_18_59,
"Norman": 49_39,
"Tip": 7_26_89,
"Weight": 5_23_43,
"Movies": 4_62_73,
"Running": 2_34_25,
"Science": 20_90,
"Horror": 3_77_93,
"Confession": 6_05_72,
"Finance": 1_22_50,
"Politics": 1_63_60,
"Scary": 19_19_85,
"Support": 1_26_54,
"Technologies": 3_25_16,
"Teenage": 6_61_60,
"Event": 3_27_69,
"Learned": 6_74_60,
"Notion": 18_27_70,
"Wikipedia": 3_75_83,
"Books": 66_65,
"Extract": 7_60_50,
"Confessions": 10_27_01,
"Conspiracy": 7_59_32,
"Links": 6_36_74,
"Narcissus": 15_04_25,
"Relationship": 5_47_66,
"Relationships": 13_47_96,
"Reviews": 4_16_71,
"News": 42_56,
"Translation": 2_68_20,
"multilingual": 12_84_06,
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =set()
SCREAMING_SNAKE_CASE =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE =char
SCREAMING_SNAKE_CASE =set(lowerCAmelCase_ )
return pairs
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = CONTROL_CODES
def __init__( self : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : Any="<unk>" ,**snake_case : Any ):
super().__init__(unk_token=snake_case ,**snake_case )
with open(snake_case ,encoding='utf-8' ) as vocab_handle:
SCREAMING_SNAKE_CASE =json.load(snake_case )
SCREAMING_SNAKE_CASE ={v: k for k, v in self.encoder.items()}
with open(snake_case ,encoding='utf-8' ) as merges_handle:
SCREAMING_SNAKE_CASE =merges_handle.read().split('\n' )[1:-1]
SCREAMING_SNAKE_CASE =[tuple(merge.split() ) for merge in merges]
SCREAMING_SNAKE_CASE =dict(zip(snake_case ,range(len(snake_case ) ) ) )
SCREAMING_SNAKE_CASE ={}
@property
def _lowerCAmelCase ( self : List[str] ):
return len(self.encoder )
def _lowerCAmelCase ( self : str ):
return dict(self.encoder ,**self.added_tokens_encoder )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Union[str, Any] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE =tuple(snake_case )
SCREAMING_SNAKE_CASE =tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
SCREAMING_SNAKE_CASE =get_pairs(snake_case )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE =min(snake_case ,key=lambda snake_case : self.bpe_ranks.get(snake_case ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =bigram
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =0
while i < len(snake_case ):
try:
SCREAMING_SNAKE_CASE =word.index(snake_case ,snake_case )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE =j
if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE =tuple(snake_case )
SCREAMING_SNAKE_CASE =new_word
if len(snake_case ) == 1:
break
else:
SCREAMING_SNAKE_CASE =get_pairs(snake_case )
SCREAMING_SNAKE_CASE ='@@ '.join(snake_case )
SCREAMING_SNAKE_CASE =word[:-4]
SCREAMING_SNAKE_CASE =word
return word
def _lowerCAmelCase ( self : Tuple ,snake_case : int ):
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =re.findall(r'\S+\n?' ,snake_case )
for token in words:
split_tokens.extend(list(self.bpe(snake_case ).split(' ' ) ) )
return split_tokens
def _lowerCAmelCase ( self : int ,snake_case : Union[str, Any] ):
return self.encoder.get(snake_case ,self.encoder.get(self.unk_token ) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Optional[Any] ):
return self.decoder.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : str ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =' '.join(snake_case ).replace('@@ ' ,'' ).strip()
return out_string
def _lowerCAmelCase ( self : int ,snake_case : str ,snake_case : Optional[str] = None ):
if not os.path.isdir(snake_case ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
SCREAMING_SNAKE_CASE =os.path.join(
snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE =os.path.join(
snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(snake_case ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=snake_case ,ensure_ascii=snake_case ) + '\n' )
SCREAMING_SNAKE_CASE =0
with open(snake_case ,'w' ,encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda snake_case : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!' )
SCREAMING_SNAKE_CASE =token_index
writer.write(' '.join(snake_case ) + '\n' )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 334 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase =16
_lowerCamelCase =32
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' )
def tokenize_function(lowerCAmelCase_ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE =datasets.map(
lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowerCAmelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE =16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE =8
else:
SCREAMING_SNAKE_CASE =None
return tokenizer.pad(
lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCamelCase =mocked_dataloaders # noqa: F811
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1":
SCREAMING_SNAKE_CASE =2
# Initialize accelerator
SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE =config['lr']
SCREAMING_SNAKE_CASE =int(config['num_epochs'] )
SCREAMING_SNAKE_CASE =int(config['seed'] )
SCREAMING_SNAKE_CASE =int(config['batch_size'] )
SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCAmelCase_ )
def inner_training_loop(lowerCAmelCase_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCAmelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE =model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# Now we train the model
for epoch in range(lowerCAmelCase_ ):
model.train()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.loss
accelerator.backward(lowerCAmelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCAmelCase_, references=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.', )
parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCAmelCase_, lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 334 | 1 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = (PNDMScheduler,)
__UpperCAmelCase = (('num_inference_steps', 50),)
def _lowerCAmelCase ( self : Tuple ,**snake_case : List[Any] ):
SCREAMING_SNAKE_CASE ={
'num_train_timesteps': 1000,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**snake_case )
return config
def _lowerCAmelCase ( self : str ,snake_case : Tuple=0 ,**snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE =kwargs.pop('num_inference_steps' ,snake_case )
SCREAMING_SNAKE_CASE =self.dummy_sample
SCREAMING_SNAKE_CASE =0.1 * sample
SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE =self.get_scheduler_config(**snake_case )
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
scheduler.set_timesteps(snake_case )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE =dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case )
SCREAMING_SNAKE_CASE =scheduler_class.from_pretrained(snake_case )
new_scheduler.set_timesteps(snake_case )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE =dummy_past_residuals[:]
SCREAMING_SNAKE_CASE =scheduler.step_prk(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
SCREAMING_SNAKE_CASE =new_scheduler.step_prk(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
SCREAMING_SNAKE_CASE =scheduler.step_plms(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
SCREAMING_SNAKE_CASE =new_scheduler.step_plms(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowerCAmelCase ( self : Optional[int] ):
pass
def _lowerCAmelCase ( self : Dict ,snake_case : List[str]=0 ,**snake_case : Dict ):
SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE =kwargs.pop('num_inference_steps' ,snake_case )
SCREAMING_SNAKE_CASE =self.dummy_sample
SCREAMING_SNAKE_CASE =0.1 * sample
SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE =self.get_scheduler_config()
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
scheduler.set_timesteps(snake_case )
# copy over dummy past residuals (must be after setting timesteps)
SCREAMING_SNAKE_CASE =dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case )
SCREAMING_SNAKE_CASE =scheduler_class.from_pretrained(snake_case )
# copy over dummy past residuals
new_scheduler.set_timesteps(snake_case )
# copy over dummy past residual (must be after setting timesteps)
SCREAMING_SNAKE_CASE =dummy_past_residuals[:]
SCREAMING_SNAKE_CASE =scheduler.step_prk(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
SCREAMING_SNAKE_CASE =new_scheduler.step_prk(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
SCREAMING_SNAKE_CASE =scheduler.step_plms(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
SCREAMING_SNAKE_CASE =new_scheduler.step_plms(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowerCAmelCase ( self : Optional[Any] ,**snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE =self.get_scheduler_config(**snake_case )
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
SCREAMING_SNAKE_CASE =10
SCREAMING_SNAKE_CASE =self.dummy_model()
SCREAMING_SNAKE_CASE =self.dummy_sample_deter
scheduler.set_timesteps(snake_case )
for i, t in enumerate(scheduler.prk_timesteps ):
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =scheduler.step_prk(snake_case ,snake_case ,snake_case ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =scheduler.step_plms(snake_case ,snake_case ,snake_case ).prev_sample
return sample
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE =kwargs.pop('num_inference_steps' ,snake_case )
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE =self.get_scheduler_config()
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
SCREAMING_SNAKE_CASE =self.dummy_sample
SCREAMING_SNAKE_CASE =0.1 * sample
if num_inference_steps is not None and hasattr(snake_case ,'set_timesteps' ):
scheduler.set_timesteps(snake_case )
elif num_inference_steps is not None and not hasattr(snake_case ,'set_timesteps' ):
SCREAMING_SNAKE_CASE =num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
SCREAMING_SNAKE_CASE =dummy_past_residuals[:]
SCREAMING_SNAKE_CASE =scheduler.step_prk(snake_case ,0 ,snake_case ,**snake_case ).prev_sample
SCREAMING_SNAKE_CASE =scheduler.step_prk(snake_case ,1 ,snake_case ,**snake_case ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
SCREAMING_SNAKE_CASE =scheduler.step_plms(snake_case ,0 ,snake_case ,**snake_case ).prev_sample
SCREAMING_SNAKE_CASE =scheduler.step_plms(snake_case ,1 ,snake_case ,**snake_case ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def _lowerCAmelCase ( self : str ):
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=snake_case )
def _lowerCAmelCase ( self : List[str] ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=snake_case )
SCREAMING_SNAKE_CASE =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE =self.get_scheduler_config(steps_offset=1 )
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps ,torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,)
def _lowerCAmelCase ( self : List[Any] ):
for beta_start, beta_end in zip([0.0_001, 0.001] ,[0.002, 0.02] ):
self.check_over_configs(beta_start=snake_case ,beta_end=snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=snake_case )
def _lowerCAmelCase ( self : List[Any] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case )
def _lowerCAmelCase ( self : Tuple ):
for t in [1, 5, 10]:
self.check_over_forward(time_step=snake_case )
def _lowerCAmelCase ( self : Dict ):
for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ):
self.check_over_forward(num_inference_steps=snake_case )
def _lowerCAmelCase ( self : List[str] ):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
SCREAMING_SNAKE_CASE =27
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE =self.dummy_sample
SCREAMING_SNAKE_CASE =0.1 * sample
SCREAMING_SNAKE_CASE =self.get_scheduler_config()
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
scheduler.set_timesteps(snake_case )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
SCREAMING_SNAKE_CASE =scheduler.step_prk(snake_case ,snake_case ,snake_case ).prev_sample
def _lowerCAmelCase ( self : Tuple ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE =self.get_scheduler_config()
SCREAMING_SNAKE_CASE =scheduler_class(**snake_case )
scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.full_loop()
SCREAMING_SNAKE_CASE =torch.sum(torch.abs(snake_case ) )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 198.1_318 ) < 1e-2
assert abs(result_mean.item() - 0.2_580 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.full_loop(prediction_type='v_prediction' )
SCREAMING_SNAKE_CASE =torch.sum(torch.abs(snake_case ) )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 67.3_986 ) < 1e-2
assert abs(result_mean.item() - 0.0_878 ) < 1e-3
def _lowerCAmelCase ( self : List[Any] ):
# We specify different beta, so that the first alpha is 0.99
SCREAMING_SNAKE_CASE =self.full_loop(set_alpha_to_one=snake_case ,beta_start=0.01 )
SCREAMING_SNAKE_CASE =torch.sum(torch.abs(snake_case ) )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 230.0_399 ) < 1e-2
assert abs(result_mean.item() - 0.2_995 ) < 1e-3
def _lowerCAmelCase ( self : List[Any] ):
# We specify different beta, so that the first alpha is 0.99
SCREAMING_SNAKE_CASE =self.full_loop(set_alpha_to_one=snake_case ,beta_start=0.01 )
SCREAMING_SNAKE_CASE =torch.sum(torch.abs(snake_case ) )
SCREAMING_SNAKE_CASE =torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 186.9_482 ) < 1e-2
assert abs(result_mean.item() - 0.2_434 ) < 1e-3
| 334 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return " ".join(
''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCamelCase ={"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["PLBartTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PLBartForSequenceClassification",
"PLBartModel",
"PLBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 334 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_lowerCamelCase ="sshleifer/mar_enro_6_3_student"
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
super().setUp()
SCREAMING_SNAKE_CASE =cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,)
SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ):
MarianMTModel.from_pretrained(snake_case )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE ={
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro'
SCREAMING_SNAKE_CASE ={
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' )
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =(
['distillation.py']
+ bash_script.split()
+ [
f'--output_dir={output_dir}',
'--gpus=1',
'--learning_rate=1e-3',
f'--num_train_epochs={epochs}',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
SCREAMING_SNAKE_CASE =distill_main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ )
for i in range(length - 1 ):
SCREAMING_SNAKE_CASE =i
for k in range(i + 1, lowerCAmelCase_ ):
if collection[k] < collection[least]:
SCREAMING_SNAKE_CASE =k
if least != i:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =(collection[i], collection[least])
return collection
if __name__ == "__main__":
_lowerCamelCase =input("Enter numbers separated by a comma:\n").strip()
_lowerCamelCase =[int(item) for item in user_input.split(",")]
print(selection_sort(unsorted))
| 334 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_vision_model'
def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =qkv_bias
@classmethod
def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_qformer'
def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,):
super().__init__(pad_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =cross_attention_frequency
SCREAMING_SNAKE_CASE =encoder_hidden_size
@classmethod
def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip-2'
__UpperCAmelCase = True
def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ):
super().__init__(**snake_case )
if vision_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case )
SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case )
SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt'
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case )
SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE =num_query_tokens
SCREAMING_SNAKE_CASE =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE =1.0
SCREAMING_SNAKE_CASE =0.02
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,):
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,)
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE =self.text_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 | 1 |
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
_lowerCamelCase =logging.get_logger(__name__)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =set()
SCREAMING_SNAKE_CASE =[]
def parse_line(lowerCAmelCase_ ):
for line in fp:
if isinstance(lowerCAmelCase_, lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =line.decode('UTF-8' )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(' ' ):
# process a single warning and move it to `selected_warnings`.
if len(lowerCAmelCase_ ) > 0:
SCREAMING_SNAKE_CASE ='\n'.join(lowerCAmelCase_ )
# Only keep the warnings specified in `targets`
if any(F': {x}: ' in warning for x in targets ):
selected_warnings.add(lowerCAmelCase_ )
buffer.clear()
continue
else:
SCREAMING_SNAKE_CASE =line.strip()
buffer.append(lowerCAmelCase_ )
if from_gh:
for filename in os.listdir(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, lowerCAmelCase_ )
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
if filename != "warnings.txt":
continue
with open(lowerCAmelCase_ ) as fp:
parse_line(lowerCAmelCase_ )
else:
try:
with zipfile.ZipFile(lowerCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
if filename != "warnings.txt":
continue
with z.open(lowerCAmelCase_ ) as fp:
parse_line(lowerCAmelCase_ )
except Exception:
logger.warning(
F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' )
return selected_warnings
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =set()
SCREAMING_SNAKE_CASE =[os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) for p in os.listdir(lowerCAmelCase_ ) if (p.endswith('.zip' ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(lowerCAmelCase_, lowerCAmelCase_ ) )
return selected_warnings
if __name__ == "__main__":
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return values.split(',' )
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
# optional parameters
parser.add_argument(
"--targets",
default="DeprecationWarning,UserWarning,FutureWarning",
type=list_str,
help="Comma-separated list of target warning(s) which we want to extract.",
)
parser.add_argument(
"--from_gh",
action="store_true",
help="If running from a GitHub action workflow and collecting warnings from its artifacts.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
_lowerCamelCase =get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print("=" * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
_lowerCamelCase =extract_warnings(args.output_dir, args.targets)
_lowerCamelCase =sorted(selected_warnings)
with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 334 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,):
SCREAMING_SNAKE_CASE =compute_mauve(
p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,)
return out
| 334 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
_lowerCamelCase ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
_lowerCamelCase ={"facebook/blenderbot-3B": 1_28}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
__UpperCAmelCase = BlenderbotTokenizer
def __init__( self : Tuple ,snake_case : Optional[Any]=None ,snake_case : List[str]=None ,snake_case : Dict=None ,snake_case : str="replace" ,snake_case : Tuple="<s>" ,snake_case : List[Any]="</s>" ,snake_case : Any="</s>" ,snake_case : Optional[int]="<s>" ,snake_case : Tuple="<unk>" ,snake_case : Dict="<pad>" ,snake_case : List[Any]="<mask>" ,snake_case : Dict=False ,snake_case : List[Any]=True ,**snake_case : int ,):
super().__init__(
snake_case ,snake_case ,tokenizer_file=snake_case ,errors=snake_case ,bos_token=snake_case ,eos_token=snake_case ,sep_token=snake_case ,cls_token=snake_case ,unk_token=snake_case ,pad_token=snake_case ,mask_token=snake_case ,add_prefix_space=snake_case ,trim_offsets=snake_case ,**snake_case ,)
SCREAMING_SNAKE_CASE =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,snake_case ) != add_prefix_space:
SCREAMING_SNAKE_CASE =getattr(snake_case ,pre_tok_state.pop('type' ) )
SCREAMING_SNAKE_CASE =add_prefix_space
SCREAMING_SNAKE_CASE =pre_tok_class(**snake_case )
SCREAMING_SNAKE_CASE =add_prefix_space
SCREAMING_SNAKE_CASE ='post_processor'
SCREAMING_SNAKE_CASE =getattr(self.backend_tokenizer ,snake_case ,snake_case )
if tokenizer_component_instance:
SCREAMING_SNAKE_CASE =json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
SCREAMING_SNAKE_CASE =tuple(state['sep'] )
if "cls" in state:
SCREAMING_SNAKE_CASE =tuple(state['cls'] )
SCREAMING_SNAKE_CASE =False
if state.get('add_prefix_space' ,snake_case ) != add_prefix_space:
SCREAMING_SNAKE_CASE =add_prefix_space
SCREAMING_SNAKE_CASE =True
if state.get('trim_offsets' ,snake_case ) != trim_offsets:
SCREAMING_SNAKE_CASE =trim_offsets
SCREAMING_SNAKE_CASE =True
if changes_to_apply:
SCREAMING_SNAKE_CASE =getattr(snake_case ,state.pop('type' ) )
SCREAMING_SNAKE_CASE =component_class(**snake_case )
setattr(self.backend_tokenizer ,snake_case ,snake_case )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _lowerCAmelCase ( self : Optional[int] ):
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCAmelCase ( self : str ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else value
SCREAMING_SNAKE_CASE =value
def _lowerCAmelCase ( self : Optional[Any] ,*snake_case : Optional[Any] ,**snake_case : List[str] ):
SCREAMING_SNAKE_CASE =kwargs.get('is_split_into_words' ,snake_case )
assert self.add_prefix_space or not is_split_into_words, (
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case ,**snake_case )
def _lowerCAmelCase ( self : Tuple ,*snake_case : List[Any] ,**snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =kwargs.get('is_split_into_words' ,snake_case )
assert self.add_prefix_space or not is_split_into_words, (
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case ,**snake_case )
def _lowerCAmelCase ( self : List[Any] ,snake_case : str ,snake_case : Optional[str] = None ):
SCREAMING_SNAKE_CASE =self._tokenizer.model.save(snake_case ,name=snake_case )
return tuple(snake_case )
def _lowerCAmelCase ( self : str ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.sep_token_id]
SCREAMING_SNAKE_CASE =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : "Conversation" ):
SCREAMING_SNAKE_CASE =[]
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(snake_case )
SCREAMING_SNAKE_CASE =' '.join(snake_case )
SCREAMING_SNAKE_CASE =self.encode(snake_case )
if len(snake_case ) > self.model_max_length:
SCREAMING_SNAKE_CASE =input_ids[-self.model_max_length :]
logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' )
return input_ids
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'vit_mae'
def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =qkv_bias
SCREAMING_SNAKE_CASE =decoder_num_attention_heads
SCREAMING_SNAKE_CASE =decoder_hidden_size
SCREAMING_SNAKE_CASE =decoder_num_hidden_layers
SCREAMING_SNAKE_CASE =decoder_intermediate_size
SCREAMING_SNAKE_CASE =mask_ratio
SCREAMING_SNAKE_CASE =norm_pix_loss
| 334 | 1 |
from typing import Dict, Optional
import numpy as np
import datasets
_lowerCamelCase ="\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n"
_lowerCamelCase ="\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n"
_lowerCamelCase ="\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}"
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = False, ):
"""simple docstring"""
if label_map is not None:
for old_id, new_id in label_map.items():
SCREAMING_SNAKE_CASE =new_id
# turn into Numpy arrays
SCREAMING_SNAKE_CASE =np.array(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.array(lowerCAmelCase_ )
if reduce_labels:
SCREAMING_SNAKE_CASE =255
SCREAMING_SNAKE_CASE =label - 1
SCREAMING_SNAKE_CASE =255
SCREAMING_SNAKE_CASE =label != ignore_index
SCREAMING_SNAKE_CASE =np.not_equal(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pred_label[mask]
SCREAMING_SNAKE_CASE =np.array(lowerCAmelCase_ )[mask]
SCREAMING_SNAKE_CASE =pred_label[pred_label == label]
SCREAMING_SNAKE_CASE =np.histogram(lowerCAmelCase_, bins=lowerCAmelCase_, range=(0, num_labels - 1) )[0]
SCREAMING_SNAKE_CASE =np.histogram(lowerCAmelCase_, bins=lowerCAmelCase_, range=(0, num_labels - 1) )[0]
SCREAMING_SNAKE_CASE =np.histogram(lowerCAmelCase_, bins=lowerCAmelCase_, range=(0, num_labels - 1) )[0]
SCREAMING_SNAKE_CASE =area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = False, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =np.zeros((num_labels,), dtype=np.floataa )
SCREAMING_SNAKE_CASE =np.zeros((num_labels,), dtype=np.floataa )
SCREAMING_SNAKE_CASE =np.zeros((num_labels,), dtype=np.floataa )
SCREAMING_SNAKE_CASE =np.zeros((num_labels,), dtype=np.floataa )
for result, gt_seg_map in zip(lowerCAmelCase_, lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =intersect_and_union(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = None, lowerCAmelCase_ = False, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =total_intersect_and_union(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# compute metrics
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =total_area_intersect.sum() / total_area_label.sum()
SCREAMING_SNAKE_CASE =total_area_intersect / total_area_union
SCREAMING_SNAKE_CASE =total_area_intersect / total_area_label
SCREAMING_SNAKE_CASE =np.nanmean(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.nanmean(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =all_acc
SCREAMING_SNAKE_CASE =iou
SCREAMING_SNAKE_CASE =acc
if nan_to_num is not None:
SCREAMING_SNAKE_CASE ={metric: np.nan_to_num(lowerCAmelCase_, nan=lowerCAmelCase_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : str ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ),
'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ),
} ) ,reference_urls=[
'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'
] ,)
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : Optional[int] ,snake_case : int ,snake_case : bool ,snake_case : Optional[int] = None ,snake_case : Optional[Dict[int, int]] = None ,snake_case : bool = False ,):
SCREAMING_SNAKE_CASE =mean_iou(
results=snake_case ,gt_seg_maps=snake_case ,num_labels=snake_case ,ignore_index=snake_case ,nan_to_num=snake_case ,label_map=snake_case ,reduce_labels=snake_case ,)
return iou_result
| 334 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
_lowerCamelCase ={
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 | 1 |
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_lowerCamelCase ="src/diffusers"
_lowerCamelCase ="."
# This is to make sure the diffusers module imported is the one in the repo.
_lowerCamelCase =importlib.util.spec_from_file_location(
"diffusers",
os.path.join(DIFFUSERS_PATH, "__init__.py"),
submodule_search_locations=[DIFFUSERS_PATH],
)
_lowerCamelCase =spec.loader.load_module()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return line.startswith(lowerCAmelCase_ ) or len(lowerCAmelCase_ ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$', lowerCAmelCase_ ) is not None
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =object_name.split('.' )
SCREAMING_SNAKE_CASE =0
# First let's find the module where our object lives.
SCREAMING_SNAKE_CASE =parts[i]
while i < len(lowerCAmelCase_ ) and not os.path.isfile(os.path.join(lowerCAmelCase_, F'{module}.py' ) ):
i += 1
if i < len(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, parts[i] )
if i >= len(lowerCAmelCase_ ):
raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(lowerCAmelCase_, F'{module}.py' ), 'r', encoding='utf-8', newline='\n' ) as f:
SCREAMING_SNAKE_CASE =f.readlines()
# Now let's find the class / func in the code!
SCREAMING_SNAKE_CASE =''
SCREAMING_SNAKE_CASE =0
for name in parts[i + 1 :]:
while (
line_index < len(lowerCAmelCase_ ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(lowerCAmelCase_ ):
raise ValueError(F' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
SCREAMING_SNAKE_CASE =line_index
while line_index < len(lowerCAmelCase_ ) and _should_continue(lines[line_index], lowerCAmelCase_ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
SCREAMING_SNAKE_CASE =lines[start_index:line_index]
return "".join(lowerCAmelCase_ )
_lowerCamelCase =re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)")
_lowerCamelCase =re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)")
_lowerCamelCase =re.compile(R"<FILL\s+[^>]*>")
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =code.split('\n' )
SCREAMING_SNAKE_CASE =0
while idx < len(lowerCAmelCase_ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(lowerCAmelCase_ ):
return re.search(r'^(\s*)\S', lines[idx] ).groups()[0]
return ""
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len(get_indent(lowerCAmelCase_ ) ) > 0
if has_indent:
SCREAMING_SNAKE_CASE =F'class Bla:\n{code}'
SCREAMING_SNAKE_CASE =black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =black.format_str(lowerCAmelCase_, mode=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =style_docstrings_in_code(lowerCAmelCase_ )
return result[len('class Bla:\n' ) :] if has_indent else result
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=False ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r', encoding='utf-8', newline='\n' ) as f:
SCREAMING_SNAKE_CASE =f.readlines()
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =_re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =search.groups()
SCREAMING_SNAKE_CASE =find_code_in_diffusers(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =get_indent(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =line_index + 1 if indent == theoretical_indent else line_index + 2
SCREAMING_SNAKE_CASE =theoretical_indent
SCREAMING_SNAKE_CASE =start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
SCREAMING_SNAKE_CASE =True
while line_index < len(lowerCAmelCase_ ) and should_continue:
line_index += 1
if line_index >= len(lowerCAmelCase_ ):
break
SCREAMING_SNAKE_CASE =lines[line_index]
SCREAMING_SNAKE_CASE =_should_continue(lowerCAmelCase_, lowerCAmelCase_ ) and re.search(F'^{indent}# End copy', lowerCAmelCase_ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
SCREAMING_SNAKE_CASE =lines[start_index:line_index]
SCREAMING_SNAKE_CASE =''.join(lowerCAmelCase_ )
# Remove any nested `Copied from` comments to avoid circular copies
SCREAMING_SNAKE_CASE =[line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowerCAmelCase_ ) is None]
SCREAMING_SNAKE_CASE ='\n'.join(lowerCAmelCase_ )
# Before comparing, use the `replace_pattern` on the original code.
if len(lowerCAmelCase_ ) > 0:
SCREAMING_SNAKE_CASE =replace_pattern.replace('with', '' ).split(',' )
SCREAMING_SNAKE_CASE =[_re_replace_pattern.search(lowerCAmelCase_ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =pattern.groups()
SCREAMING_SNAKE_CASE =re.sub(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
if option.strip() == "all-casing":
SCREAMING_SNAKE_CASE =re.sub(obja.lower(), obja.lower(), lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =re.sub(obja.upper(), obja.upper(), lowerCAmelCase_ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
SCREAMING_SNAKE_CASE =blackify(lines[start_index - 1] + theoretical_code )
SCREAMING_SNAKE_CASE =theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
SCREAMING_SNAKE_CASE =lines[:start_index] + [theoretical_code] + lines[line_index:]
SCREAMING_SNAKE_CASE =start_index + 1
if overwrite and len(lowerCAmelCase_ ) > 0:
# Warn the user a file has been modified.
print(F'Detected changes, rewriting {filename}.' )
with open(lowerCAmelCase_, 'w', encoding='utf-8', newline='\n' ) as f:
f.writelines(lowerCAmelCase_ )
return diffs
def snake_case__ ( lowerCAmelCase_ = False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =glob.glob(os.path.join(lowerCAmelCase_, '**/*.py' ), recursive=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =[]
for filename in all_files:
SCREAMING_SNAKE_CASE =is_copy_consistent(lowerCAmelCase_, lowerCAmelCase_ )
diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(lowerCAmelCase_ ) > 0:
SCREAMING_SNAKE_CASE ='\n'.join(lowerCAmelCase_ )
raise Exception(
'Found the following copy inconsistencies:\n'
+ diff
+ '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_lowerCamelCase =parser.parse_args()
check_copies(args.fix_and_overwrite)
| 334 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : Any ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() )
def _lowerCAmelCase ( self : Union[str, Any] ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : int ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : Dict ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
@require_pil
def _lowerCAmelCase ( self : int ):
import PIL.Image
SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects:
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' ,snake_case )
self.assertFalse(kwargs['optimize_list_casting'] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
SCREAMING_SNAKE_CASE =pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(lowerCAmelCase_ )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=10 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=10 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1}, key=1 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' )
with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(lowerCAmelCase_, 1 )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if pa.types.is_list(lowerCAmelCase_ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if isinstance(lst[0], lowerCAmelCase_ ):
change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =value
@pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype', [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
], )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=lowerCAmelCase_ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow'
with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs, type(lowerCAmelCase_ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(lowerCAmelCase_ )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(stream=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
import PIL.Image
SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(
stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer:
writer.write({'image': image_path} )
writer.finalize()
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'], lowerCAmelCase_ )
with open(lowerCAmelCase_, 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(stream=lowerCAmelCase_ ) as writer:
writer._build_writer(inferred_schema=lowerCAmelCase_ )
assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
| 334 | 1 |
import random
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =num - 1
SCREAMING_SNAKE_CASE =0
while s % 2 == 0:
SCREAMING_SNAKE_CASE =s // 2
t += 1
for _ in range(5 ):
SCREAMING_SNAKE_CASE =random.randrange(2, num - 1 )
SCREAMING_SNAKE_CASE =pow(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
if v != 1:
SCREAMING_SNAKE_CASE =0
while v != (num - 1):
if i == t - 1:
return False
else:
SCREAMING_SNAKE_CASE =i + 1
SCREAMING_SNAKE_CASE =(v**2) % num
return True
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if num < 2:
return False
SCREAMING_SNAKE_CASE =[
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_ = 1024 ):
"""simple docstring"""
while True:
SCREAMING_SNAKE_CASE =random.randrange(2 ** (keysize - 1), 2 ** (keysize) )
if is_prime_low_num(lowerCAmelCase_ ):
return num
if __name__ == "__main__":
_lowerCamelCase =generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 334 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def snake_case__ ( ):
"""simple docstring"""
assert or_gate(0, 0 ) == 0
assert or_gate(0, 1 ) == 1
assert or_gate(1, 0 ) == 1
assert or_gate(1, 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase ={
"configuration_clipseg": [
"CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPSegConfig",
"CLIPSegTextConfig",
"CLIPSegVisionConfig",
],
"processing_clipseg": ["CLIPSegProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPSegModel",
"CLIPSegPreTrainedModel",
"CLIPSegTextModel",
"CLIPSegVisionModel",
"CLIPSegForImageSegmentation",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={"vocab_file": "vocab.txt"}
_lowerCamelCase ={
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase ={
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
return [l.strip() for l in lines]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =load_vocab_file(snake_case )
SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE =unk_token
SCREAMING_SNAKE_CASE =cls_token
SCREAMING_SNAKE_CASE =pad_token
SCREAMING_SNAKE_CASE =mask_token
SCREAMING_SNAKE_CASE =eos_token
SCREAMING_SNAKE_CASE =self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ):
return text.split()
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ):
return len(self._id_to_token )
def _lowerCAmelCase ( self : List[str] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _lowerCAmelCase ( self : List[Any] ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Any ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.cls_token_id]
SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1]
if token_ids_a is not None:
mask += [0] * len(snake_case ) + [1]
return mask
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ):
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(snake_case ,'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def _lowerCAmelCase ( self : int ):
return self.get_vocab_size(with_added_tokens=snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ):
return super()._add_tokens(snake_case ,special_tokens=snake_case )
| 334 | 1 |
from __future__ import annotations
from math import pow, sqrt
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if resistance == 0:
return {"resistance": sqrt(pow(lowerCAmelCase_, 2 ) - pow(lowerCAmelCase_, 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(lowerCAmelCase_, 2 ) - pow(lowerCAmelCase_, 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(lowerCAmelCase_, 2 ) + pow(lowerCAmelCase_, 2 ) )}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : int ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Tuple ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 0
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def __call__( self : int ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ):
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one."
SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}'
print(lowerCAmelCase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {checkpoint_name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
_lowerCamelCase =TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("", "|", "|"),
datarow=DataRow("", "|", "|"),
padding=1,
with_header_hide=None,
)
_lowerCamelCase =[]
_lowerCamelCase =[]
_lowerCamelCase ={"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}}
_lowerCamelCase =[
{
"type": "header",
"text": {
"type": "plain_text",
"text": f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results',
"emoji": True,
},
}
]
_lowerCamelCase =0
for log in Path().glob("*.log"):
_lowerCamelCase =0
with open(log, "r") as f:
for line in f:
_lowerCamelCase =json.loads(line)
if line.get("nodeid", "") != "":
_lowerCamelCase =line["nodeid"]
if line.get("duration", None) is not None:
_lowerCamelCase =f'{line["duration"]:.4f}'
if line.get("outcome", "") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("_")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
_lowerCamelCase =[]
log.unlink()
_lowerCamelCase =""
_lowerCamelCase =[]
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
_lowerCamelCase =[]
_lowerCamelCase ={}
for test in failed_tests:
_lowerCamelCase =test[0].split("::")
_lowerCamelCase =data[0].split("/")[-1]
if data[0] not in filesafailed:
_lowerCamelCase =[data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
_lowerCamelCase =[test[0] for test in failed_table]
_lowerCamelCase =list(set(files))
# Count number of instances in failed_tests
_lowerCamelCase =[]
for file in individual_files:
table.append([file, len(filesafailed[file])])
_lowerCamelCase =tabulate(
table,
headers=["Test Location", "Num Failed"],
tablefmt=hf_table_format,
stralign="right",
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 30_00:
_lowerCamelCase ="Too many failed tests, please see the full report in the Action results."
_lowerCamelCase =len(err) + 10
_lowerCamelCase =message[: 30_00 - offset] + f'\n...\n```\n{err}'
print(f'### {message}')
else:
_lowerCamelCase ="No failed tests! 🤗"
print(f'## {message}')
payload.append(no_error_payload)
if os.environ.get("TEST_TYPE", "") != "":
from slack_sdk import WebClient
_lowerCamelCase =WebClient(token=os.environ["SLACK_API_TOKEN"])
if message != "No failed tests! 🤗":
_lowerCamelCase ={
"type": "section",
"text": {
"type": "mrkdwn",
"text": message,
},
}
payload.append(md_report)
_lowerCamelCase ={
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*For more details:*",
},
"accessory": {
"type": "button",
"text": {
"type": "plain_text",
"text": "Check Action results",
"emoji": True,
},
"url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
payload.append(action_button)
_lowerCamelCase ={
"type": "context",
"elements": [
{
"type": "plain_text",
"text": f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}',
}
],
}
payload.append(date_report)
_lowerCamelCase =client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload)
_lowerCamelCase =response.data["ts"]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
_lowerCamelCase =""
for i, row in enumerate(test_failures):
if row[0] != test_class:
_lowerCamelCase =row[0]
else:
_lowerCamelCase =""
_lowerCamelCase ={
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```',
},
}
client.chat_postMessage(
channel="#accelerate-ci-daily",
thread_ts=ts,
blocks=[payload],
)
| 334 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =None
if token is not None:
SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
SCREAMING_SNAKE_CASE ='636036'
SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json()
return result["workflow_runs"]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
SCREAMING_SNAKE_CASE =workflow_run['id']
break
return workflow_run_id
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ )
if workflow_run_id is not None:
SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
SCREAMING_SNAKE_CASE =artifacts_links[artifact_name]
download_artifact(
artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={}
for artifact_name in artifact_names:
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' )
if os.path.isfile(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE ={}
with zipfile.ZipFile(lowerCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
with z.open(lowerCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' )
return results
| 334 | 1 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
_lowerCamelCase =logging.get_logger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : str ,*snake_case : Optional[int] ,**snake_case : List[str] ):
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' ,snake_case ,)
super().__init__(*snake_case ,**snake_case )
| 334 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_token_type_ids
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_choices
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =q_groups
SCREAMING_SNAKE_CASE =k_groups
SCREAMING_SNAKE_CASE =v_groups
SCREAMING_SNAKE_CASE =post_attention_groups
SCREAMING_SNAKE_CASE =intermediate_groups
SCREAMING_SNAKE_CASE =output_groups
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ):
return SqueezeBertConfig(
embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.num_choices
SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,labels=snake_case ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCAmelCase = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case )
@slow
def _lowerCAmelCase ( self : str ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_sentencepiece
@require_tokenizers
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
SCREAMING_SNAKE_CASE =torch.Size((1, 3) )
self.assertEqual(output.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
| 334 | 1 |
class a_ :
"""simple docstring"""
def __init__( self : Dict ,snake_case : int ):
SCREAMING_SNAKE_CASE =n
SCREAMING_SNAKE_CASE =[None] * self.n
SCREAMING_SNAKE_CASE =0 # index of the first element
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =0
def __len__( self : Optional[int] ):
return self.size
def _lowerCAmelCase ( self : Union[str, Any] ):
return self.size == 0
def _lowerCAmelCase ( self : List[Any] ):
return False if self.is_empty() else self.array[self.front]
def _lowerCAmelCase ( self : str ,snake_case : Union[str, Any] ):
if self.size >= self.n:
raise Exception('QUEUE IS FULL' )
SCREAMING_SNAKE_CASE =data
SCREAMING_SNAKE_CASE =(self.rear + 1) % self.n
self.size += 1
return self
def _lowerCAmelCase ( self : List[str] ):
if self.size == 0:
raise Exception('UNDERFLOW' )
SCREAMING_SNAKE_CASE =self.array[self.front]
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =(self.front + 1) % self.n
self.size -= 1
return temp
| 334 |
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
@property
def _lowerCAmelCase ( self : List[Any] ):
return self.feat_extract_tester.prepare_feat_extract_dict()
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case ,'feature_size' ) )
self.assertTrue(hasattr(snake_case ,'sampling_rate' ) )
self.assertTrue(hasattr(snake_case ,'padding_value' ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ):
def _inputs_have_equal_length(snake_case : Dict ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : str ,snake_case : Dict ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length
SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size
SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ):
def _inputs_have_equal_length(snake_case : str ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
# truncate to smallest
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to smallest with np
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to middle
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =12
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
SCREAMING_SNAKE_CASE =len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
def _lowerCAmelCase ( self : Optional[int] ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : Tuple ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : List[str] ):
self._check_truncation(numpify=snake_case )
def _lowerCAmelCase ( self : int ):
self._check_truncation(numpify=snake_case )
@require_torch
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =min(snake_case )
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
for data in source_data:
for i, el in enumerate(lowerCAmelCase_ ):
if len(lowerCAmelCase_ ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(lowerCAmelCase_ ) )
return data_lists
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
for dlist, weight in zip(lowerCAmelCase_, lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =min(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =max(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =[]
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
SCREAMING_SNAKE_CASE =F'Invalid weight of {weight:f} provided'
raise ValueError(lowerCAmelCase_ )
score_lists.append(lowerCAmelCase_ )
return score_lists
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =final_scores[j] + ele
return final_scores
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_data(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =calculate_each_score(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =generate_final_scores(lowerCAmelCase_ )
# append scores to source data
for i, ele in enumerate(lowerCAmelCase_ ):
source_data[i].append(lowerCAmelCase_ )
return source_data
| 334 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_lowerCamelCase =2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_lowerCamelCase =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_lowerCamelCase =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] )
return (item, float(lowerCAmelCase_ ))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 )
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ )
if random.uniform(0, 1 ) < MUTATION_PROBABILITY:
SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ )
return "".join(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
# Generate more children proportionally to the fitness score.
SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1
SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n
for _ in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ )
# Append new string to the population list.
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
return pop
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
if N_POPULATION < N_SELECTED:
SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(lowerCAmelCase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} )
if not_in_genes_list:
SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(lowerCAmelCase_ )
# Generate random starting population.
SCREAMING_SNAKE_CASE =[]
for _ in range(lowerCAmelCase_ ):
population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowerCAmelCase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population]
# Check if there is a matching evolution.
SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowerCAmelCase_ )
# Normalize population score to be between 0 and 1.
SCREAMING_SNAKE_CASE =[
(item, score / len(lowerCAmelCase_ )) for item, score in population_score
]
# This is selection
for i in range(lowerCAmelCase_ ):
population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowerCAmelCase_ ) > N_POPULATION:
break
if __name__ == "__main__":
_lowerCamelCase =(
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
_lowerCamelCase =list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list)
print(
f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'
)
| 334 | 1 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowerCamelCase =logging.getLogger(__name__)
@dataclass
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
__UpperCAmelCase = field(default=lowerCamelCase_ , metadata={'help': 'Whether to SortishSamler or not.'} )
__UpperCAmelCase = field(
default=lowerCamelCase_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
__UpperCAmelCase = field(default=lowerCamelCase_ , metadata={'help': 'whether to use adafactor'} )
__UpperCAmelCase = field(
default=lowerCamelCase_ , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
__UpperCAmelCase = field(
default=lowerCamelCase_ , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
__UpperCAmelCase = field(default=lowerCamelCase_ , metadata={'help': 'Dropout probability. Goes into model.config.'} )
__UpperCAmelCase = field(
default=lowerCamelCase_ , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
__UpperCAmelCase = field(
default='linear' , metadata={'help': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 334 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _lowerCAmelCase ( self : Optional[Any] ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCAmelCase ( self : Union[str, Any] ):
# This test is for deprecated behavior and can be removed in v5
try:
SCREAMING_SNAKE_CASE =tempfile.mktemp()
with open(snake_case ,'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case )
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case )
finally:
os.remove(snake_case )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' ,'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size ,1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def _lowerCAmelCase ( self : int ):
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class a_ ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def _lowerCAmelCase ( cls : List[Any] ):
SCREAMING_SNAKE_CASE =TOKEN
HfFolder.save_token(snake_case )
@classmethod
def _lowerCAmelCase ( cls : Tuple ):
try:
delete_repo(token=cls._token ,repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def _lowerCAmelCase ( self : Any ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
def _lowerCAmelCase ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
@require_tokenizers
def _lowerCAmelCase ( self : str ):
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case )
bert_tokenizer.save_pretrained(snake_case )
SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case )
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(
f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] )
def _lowerCAmelCase ( self : Optional[Any] ):
# Even if the offsets are wrong, we necessarily output correct string
# parts.
SCREAMING_SNAKE_CASE =Trie()
SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] )
self.assertEqual(snake_case ,['AB', 'C'] )
| 334 | 1 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class a_ ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowerCAmelCase ( self : Optional[int] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =UNetaDModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,)
return model
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.dummy_uncond_unet
SCREAMING_SNAKE_CASE =ScoreSdeVeScheduler()
SCREAMING_SNAKE_CASE =ScoreSdeVePipeline(unet=snake_case ,scheduler=snake_case )
sde_ve.to(snake_case )
sde_ve.set_progress_bar_config(disable=snake_case )
SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =sde_ve(num_inference_steps=2 ,output_type='numpy' ,generator=snake_case ).images
SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =sde_ve(num_inference_steps=2 ,output_type='numpy' ,generator=snake_case ,return_dict=snake_case )[
0
]
SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE ='google/ncsnpp-church-256'
SCREAMING_SNAKE_CASE =UNetaDModel.from_pretrained(snake_case )
SCREAMING_SNAKE_CASE =ScoreSdeVeScheduler.from_pretrained(snake_case )
SCREAMING_SNAKE_CASE =ScoreSdeVePipeline(unet=snake_case ,scheduler=snake_case )
sde_ve.to(snake_case )
sde_ve.set_progress_bar_config(disable=snake_case )
SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =sde_ve(num_inference_steps=10 ,output_type='numpy' ,generator=snake_case ).images
SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
SCREAMING_SNAKE_CASE =np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 334 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase =[
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
_lowerCamelCase =[
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' )
return sd
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =OrderedDict()
SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
SCREAMING_SNAKE_CASE =key
for name_pair in rename_keys_prefix:
SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] )
SCREAMING_SNAKE_CASE =d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
SCREAMING_SNAKE_CASE ='pretraining'
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024}
else:
raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
SCREAMING_SNAKE_CASE ='multichoice'
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
SCREAMING_SNAKE_CASE ='vqa_advanced'
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129}
SCREAMING_SNAKE_CASE ='vqa'
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={
'visual_embedding_dim': 1024,
'num_labels': 2,
}
SCREAMING_SNAKE_CASE ='nlvr'
SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ )
# Load State Dict
SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ )
if model_type == "pretraining":
SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ )
elif model_type == "vqa":
SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ )
elif model_type == "nlvr":
SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ )
elif model_type == "multichoice":
SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
# Save Checkpoints
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
_lowerCamelCase =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return " ".join(
''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'nllb-moe'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE =router_z_loss_coef
SCREAMING_SNAKE_CASE =router_aux_loss_coef
SCREAMING_SNAKE_CASE =decoder_sparse_step
SCREAMING_SNAKE_CASE =encoder_sparse_step
SCREAMING_SNAKE_CASE =num_experts
SCREAMING_SNAKE_CASE =expert_capacity
SCREAMING_SNAKE_CASE =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' )
SCREAMING_SNAKE_CASE =router_dtype
SCREAMING_SNAKE_CASE =router_ignore_padding_tokens
SCREAMING_SNAKE_CASE =batch_prioritized_routing
SCREAMING_SNAKE_CASE =second_expert_policy
SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping
SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction
SCREAMING_SNAKE_CASE =moe_token_dropout
SCREAMING_SNAKE_CASE =output_router_logits
super().__init__(
pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
| 334 | 1 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
_lowerCamelCase =pytest.mark.integration
_lowerCamelCase ={"comet"}
_lowerCamelCase =importlib.util.find_spec("fairseq") is not None
_lowerCamelCase ={"code_eval"}
_lowerCamelCase =os.name == "nt"
_lowerCamelCase ={"bertscore", "frugalscore", "perplexity"}
_lowerCamelCase =importlib.util.find_spec("transformers") is not None
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
@wraps(lowerCAmelCase_ )
def wrapper(self, lowerCAmelCase_ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('"test requires Fairseq"' )
else:
test_case(self, lowerCAmelCase_ )
return wrapper
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
@wraps(lowerCAmelCase_ )
def wrapper(self, lowerCAmelCase_ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('"test requires transformers"' )
else:
test_case(self, lowerCAmelCase_ )
return wrapper
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
@wraps(lowerCAmelCase_ )
def wrapper(self, lowerCAmelCase_ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('"test not supported on Windows"' )
else:
test_case(self, lowerCAmelCase_ )
return wrapper
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
@local
class a_ ( parameterized.TestCase ):
"""simple docstring"""
__UpperCAmelCase = {}
__UpperCAmelCase = None
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE ='[...]'
SCREAMING_SNAKE_CASE =importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' ,snake_case ) ).module_path )
SCREAMING_SNAKE_CASE =datasets.load.import_main_class(metric_module.__name__ ,dataset=snake_case )
# check parameters
SCREAMING_SNAKE_CASE =inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(snake_case ,metric_module.__name__ ):
with self.use_local_metrics():
try:
SCREAMING_SNAKE_CASE =doctest.testmod(snake_case ,verbose=snake_case ,raise_on_error=snake_case )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed ,0 )
self.assertGreater(results.attempted ,1 )
@slow
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List[Any] ):
SCREAMING_SNAKE_CASE ='[...]'
SCREAMING_SNAKE_CASE =importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' ,snake_case ) ).module_path )
# run doctest
with self.use_local_metrics():
SCREAMING_SNAKE_CASE =doctest.testmod(snake_case ,verbose=snake_case ,raise_on_error=snake_case )
self.assertEqual(results.failed ,0 )
self.assertGreater(results.attempted ,1 )
@contextmanager
def _lowerCAmelCase ( self : List[str] ,snake_case : int ,snake_case : Optional[int] ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](snake_case ):
yield
else:
yield
@contextmanager
def _lowerCAmelCase ( self : List[Any] ):
def load_local_metric(snake_case : int ,*snake_case : Union[str, Any] ,**snake_case : List[str] ):
return load_metric(os.path.join('metrics' ,snake_case ) ,*snake_case ,**snake_case )
with patch('datasets.load_metric' ) as mock_load_metric:
SCREAMING_SNAKE_CASE =load_local_metric
yield
@classmethod
def _lowerCAmelCase ( cls : Tuple ,snake_case : str ):
def wrapper(snake_case : List[Any] ):
SCREAMING_SNAKE_CASE =contextmanager(snake_case )
SCREAMING_SNAKE_CASE =patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('bleurt' )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('sv', '', '' ) # handle pytest cli flags
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ):
assert len(input_dict['input_ids'] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('bleurt.score._create_predictor' ) as mock_create_predictor:
SCREAMING_SNAKE_CASE =MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('bertscore' )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
import torch
def bert_cos_score_idf(lowerCAmelCase_, lowerCAmelCase_, *lowerCAmelCase_, **lowerCAmelCase_ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCAmelCase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('bert_score.scorer.get_model' ), patch(
'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf:
SCREAMING_SNAKE_CASE =bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('comet' )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
def load_from_checkpoint(lowerCAmelCase_ ):
class a_ :
"""simple docstring"""
def _lowerCAmelCase ( self : str ,snake_case : Any ,*snake_case : List[Any] ,**snake_case : List[Any] ):
assert len(snake_case ) == 2
SCREAMING_SNAKE_CASE =[0.19, 0.92]
return scores, sum(snake_case ) / len(snake_case )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('comet.download_model' ) as mock_download_model:
SCREAMING_SNAKE_CASE =None
with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint:
SCREAMING_SNAKE_CASE =load_from_checkpoint
yield
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =load_metric(os.path.join('metrics', 'seqeval' ) )
SCREAMING_SNAKE_CASE ='ERROR'
SCREAMING_SNAKE_CASE =F'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'
with pytest.raises(lowerCAmelCase_, match=re.escape(lowerCAmelCase_ ) ):
metric.compute(predictions=[], references=[], scheme=lowerCAmelCase_ )
| 334 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =sorted(numsa + numsa )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()]
_lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()]
print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowerCamelCase ={
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'transfo-xl'
__UpperCAmelCase = ['mems']
__UpperCAmelCase = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =[]
self.cutoffs.extend(snake_case )
if proj_share_all_but_first:
SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs )
else:
SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs )
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =d_embed
SCREAMING_SNAKE_CASE =d_head
SCREAMING_SNAKE_CASE =d_inner
SCREAMING_SNAKE_CASE =div_val
SCREAMING_SNAKE_CASE =pre_lnorm
SCREAMING_SNAKE_CASE =n_layer
SCREAMING_SNAKE_CASE =n_head
SCREAMING_SNAKE_CASE =mem_len
SCREAMING_SNAKE_CASE =same_length
SCREAMING_SNAKE_CASE =attn_type
SCREAMING_SNAKE_CASE =clamp_len
SCREAMING_SNAKE_CASE =sample_softmax
SCREAMING_SNAKE_CASE =adaptive
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =dropatt
SCREAMING_SNAKE_CASE =untie_r
SCREAMING_SNAKE_CASE =init
SCREAMING_SNAKE_CASE =init_range
SCREAMING_SNAKE_CASE =proj_init_std
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =layer_norm_epsilon
super().__init__(eos_token_id=snake_case ,**snake_case )
@property
def _lowerCAmelCase ( self : str ):
# Message copied from Transformer-XL documentation
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 334 | 1 |
import re
import string
import numpy as np
import datasets
_lowerCamelCase ="\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
_lowerCamelCase ="\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
_lowerCamelCase ="\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : int ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,reference_urls=[] ,)
def _lowerCAmelCase ( self : str ,snake_case : List[str] ,snake_case : List[str] ,snake_case : List[Any]=None ,snake_case : List[Any]=False ,snake_case : int=False ,snake_case : Optional[int]=False ,):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
SCREAMING_SNAKE_CASE =np.array([re.sub(snake_case ,'' ,snake_case ) for x in predictions] )
SCREAMING_SNAKE_CASE =np.array([re.sub(snake_case ,'' ,snake_case ) for x in references] )
else:
SCREAMING_SNAKE_CASE =np.asarray(snake_case )
SCREAMING_SNAKE_CASE =np.asarray(snake_case )
if ignore_case:
SCREAMING_SNAKE_CASE =np.char.lower(snake_case )
SCREAMING_SNAKE_CASE =np.char.lower(snake_case )
if ignore_punctuation:
SCREAMING_SNAKE_CASE =string.punctuation.maketrans('' ,'' ,string.punctuation )
SCREAMING_SNAKE_CASE =np.char.translate(snake_case ,table=snake_case )
SCREAMING_SNAKE_CASE =np.char.translate(snake_case ,table=snake_case )
if ignore_numbers:
SCREAMING_SNAKE_CASE =string.digits.maketrans('' ,'' ,string.digits )
SCREAMING_SNAKE_CASE =np.char.translate(snake_case ,table=snake_case )
SCREAMING_SNAKE_CASE =np.char.translate(snake_case ,table=snake_case )
SCREAMING_SNAKE_CASE =predictions == references
return {"exact_match": np.mean(snake_case ) * 100}
| 334 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =100
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =out_indices
SCREAMING_SNAKE_CASE =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE =num_patches + 1
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =BeitModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.type_sequence_label_size
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =BeitModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case )
def _lowerCAmelCase ( self : Any ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]:
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.gradient_checkpointing_enable()
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =_config_zero_init(snake_case )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(config=snake_case )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,)
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case )
# prepare bool_masked_pos
SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =281
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 21841) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =2396
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] ,device=snake_case ,)
else:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] ,device=snake_case ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] )
SCREAMING_SNAKE_CASE =torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,snake_case )
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case )
SCREAMING_SNAKE_CASE =torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape ,snake_case )
| 334 | 1 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class a_ :
"""simple docstring"""
__UpperCAmelCase = XGLMConfig
__UpperCAmelCase = {}
__UpperCAmelCase = 'gelu'
def __init__( self : Any ,snake_case : Any ,snake_case : Union[str, Any]=14 ,snake_case : Dict=7 ,snake_case : str=True ,snake_case : Optional[Any]=True ,snake_case : List[Any]=True ,snake_case : List[str]=99 ,snake_case : List[Any]=32 ,snake_case : Union[str, Any]=2 ,snake_case : Dict=4 ,snake_case : str=37 ,snake_case : Tuple="gelu" ,snake_case : Union[str, Any]=0.1 ,snake_case : int=0.1 ,snake_case : int=512 ,snake_case : List[str]=0.02 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =ffn_dim
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =2
SCREAMING_SNAKE_CASE =1
def _lowerCAmelCase ( self : Any ):
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =self.get_config()
SCREAMING_SNAKE_CASE =floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : Optional[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=snake_case ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=snake_case ,)
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) =config_and_inputs
SCREAMING_SNAKE_CASE ={
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =TFXGLMModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,n_embd=37 )
def _lowerCAmelCase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =TFXGLMModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def _lowerCAmelCase ( self : Union[str, Any] ):
super().test_resize_token_embeddings()
@require_tf
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int=True ):
SCREAMING_SNAKE_CASE =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[2, 268, 9865]] ,dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
SCREAMING_SNAKE_CASE =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
# fmt: on
SCREAMING_SNAKE_CASE =model.generate(snake_case ,do_sample=snake_case ,num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() ,snake_case )
@slow
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
SCREAMING_SNAKE_CASE =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
SCREAMING_SNAKE_CASE =tokenizer('Today is a nice day and' ,return_tensors='tf' )
SCREAMING_SNAKE_CASE =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
SCREAMING_SNAKE_CASE =model.generate(snake_case ,do_sample=snake_case ,seed=[7, 0] )
SCREAMING_SNAKE_CASE =tokenizer.decode(output_ids[0] ,skip_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =(
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(snake_case ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
SCREAMING_SNAKE_CASE =XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
SCREAMING_SNAKE_CASE ='left'
# use different length sentences to test batching
SCREAMING_SNAKE_CASE =[
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
SCREAMING_SNAKE_CASE =tokenizer(snake_case ,return_tensors='tf' ,padding=snake_case )
SCREAMING_SNAKE_CASE =inputs['input_ids']
SCREAMING_SNAKE_CASE =model.generate(input_ids=snake_case ,attention_mask=inputs['attention_mask'] ,max_new_tokens=12 )
SCREAMING_SNAKE_CASE =tokenizer(sentences[0] ,return_tensors='tf' ).input_ids
SCREAMING_SNAKE_CASE =model.generate(input_ids=snake_case ,max_new_tokens=12 )
SCREAMING_SNAKE_CASE =tokenizer(sentences[1] ,return_tensors='tf' ).input_ids
SCREAMING_SNAKE_CASE =model.generate(input_ids=snake_case ,max_new_tokens=12 )
SCREAMING_SNAKE_CASE =tokenizer.batch_decode(snake_case ,skip_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.decode(output_non_padded[0] ,skip_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.decode(output_padded[0] ,skip_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =[
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(snake_case ,snake_case )
self.assertListEqual(snake_case ,[non_padded_sentence, padded_sentence] )
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : List[str] ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Optional[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 1
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = True
def __call__( self : str ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch:
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any ,snake_case : nn.Module ):
super().__init__()
SCREAMING_SNAKE_CASE =[]
# - get the stem
feature_blocks.append(('conv1', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('block' ), f'Unexpected layer name {k}'
SCREAMING_SNAKE_CASE =len(snake_case ) + 1
feature_blocks.append((f'res{block_index}', v) )
SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ):
return get_trunk_forward_outputs(
snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ):
SCREAMING_SNAKE_CASE =x.split('-' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Optional[Any] ,snake_case : str ):
# default to timm!
if x not in self:
SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case )
SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) )
else:
SCREAMING_SNAKE_CASE =super().__getitem__(snake_case )
return val
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __getitem__( self : int ,snake_case : str ):
if "seer" in x and "in1k" not in x:
SCREAMING_SNAKE_CASE =RegNetModel
else:
SCREAMING_SNAKE_CASE =RegNetForImageClassification
return val
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for from_key, to_key in keys:
SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone()
print(F'Copied key={from_key} to={to_key}' )
return to_state_dict
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func()
SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
if from_state_dict is not None:
SCREAMING_SNAKE_CASE =[]
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')]
SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ )
our_model.load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(
our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state
)
SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1]
assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'regnet-x-002': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ),
'regnet-x-004': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ),
'regnet-x-006': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ),
'regnet-x-008': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ),
'regnet-x-016': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ),
'regnet-x-032': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ),
'regnet-x-040': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ),
'regnet-x-064': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ),
'regnet-x-080': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ),
'regnet-x-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ),
'regnet-x-160': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ),
'regnet-x-320': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ),
# y variant
'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
'regnet-y-004': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
'regnet-y-006': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
'regnet-y-008': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
'regnet-y-016': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
'regnet-y-032': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ),
'regnet-y-040': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ),
'regnet-y-064': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ),
'regnet-y-080': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ),
'regnet-y-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ),
'regnet-y-160': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ),
'regnet-y-320': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer': RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer': RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
# finetuned on imagenet
'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
}
SCREAMING_SNAKE_CASE =NameToOurModelFuncMap()
SCREAMING_SNAKE_CASE =NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]:
SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' )
SCREAMING_SNAKE_CASE =model_func()
# check if we have a head, if yes add it
SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model']
SCREAMING_SNAKE_CASE =model_state_dict['trunk']
model.load_state_dict(lowerCAmelCase_ )
return model.eval(), model_state_dict["heads"]
# pretrained
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_token_type_ids
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_choices
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =q_groups
SCREAMING_SNAKE_CASE =k_groups
SCREAMING_SNAKE_CASE =v_groups
SCREAMING_SNAKE_CASE =post_attention_groups
SCREAMING_SNAKE_CASE =intermediate_groups
SCREAMING_SNAKE_CASE =output_groups
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ):
return SqueezeBertConfig(
embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.num_choices
SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,labels=snake_case ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCAmelCase = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case )
@slow
def _lowerCAmelCase ( self : str ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_sentencepiece
@require_tokenizers
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
SCREAMING_SNAKE_CASE =torch.Size((1, 3) )
self.assertEqual(output.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
| 334 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase =16
_lowerCamelCase =32
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' )
def tokenize_function(lowerCAmelCase_ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE =datasets.map(
lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowerCAmelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE =16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE =8
else:
SCREAMING_SNAKE_CASE =None
return tokenizer.pad(
lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCamelCase =mocked_dataloaders # noqa: F811
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1":
SCREAMING_SNAKE_CASE =2
# Initialize accelerator
SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE =config['lr']
SCREAMING_SNAKE_CASE =int(config['num_epochs'] )
SCREAMING_SNAKE_CASE =int(config['seed'] )
SCREAMING_SNAKE_CASE =int(config['batch_size'] )
SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCAmelCase_ )
def inner_training_loop(lowerCAmelCase_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCAmelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE =model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# Now we train the model
for epoch in range(lowerCAmelCase_ ):
model.train()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.loss
accelerator.backward(lowerCAmelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCAmelCase_, references=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.', )
parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCAmelCase_, lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCamelCase ={
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return " ".join(
''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 334 | 1 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={"vocab_file": "vocab.txt"}
_lowerCamelCase ={
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase ={
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
return [l.strip() for l in lines]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =load_vocab_file(snake_case )
SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE =unk_token
SCREAMING_SNAKE_CASE =cls_token
SCREAMING_SNAKE_CASE =pad_token
SCREAMING_SNAKE_CASE =mask_token
SCREAMING_SNAKE_CASE =eos_token
SCREAMING_SNAKE_CASE =self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ):
return text.split()
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ):
return len(self._id_to_token )
def _lowerCAmelCase ( self : List[str] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _lowerCAmelCase ( self : List[Any] ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Any ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.cls_token_id]
SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1]
if token_ids_a is not None:
mask += [0] * len(snake_case ) + [1]
return mask
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ):
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(snake_case ,'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def _lowerCAmelCase ( self : int ):
return self.get_vocab_size(with_added_tokens=snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ):
return super()._add_tokens(snake_case ,special_tokens=snake_case )
| 334 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_lowerCamelCase ="sshleifer/mar_enro_6_3_student"
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
super().setUp()
SCREAMING_SNAKE_CASE =cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,)
SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ):
MarianMTModel.from_pretrained(snake_case )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE ={
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro'
SCREAMING_SNAKE_CASE ={
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' )
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =(
['distillation.py']
+ bash_script.split()
+ [
f'--output_dir={output_dir}',
'--gpus=1',
'--learning_rate=1e-3',
f'--num_train_epochs={epochs}',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
SCREAMING_SNAKE_CASE =distill_main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 334 | 1 |
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class a_ :
"""simple docstring"""
def __init__( self : Optional[Any] ,snake_case : Any ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =13
SCREAMING_SNAKE_CASE =7
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =99
SCREAMING_SNAKE_CASE =32
SCREAMING_SNAKE_CASE =2
SCREAMING_SNAKE_CASE =4
SCREAMING_SNAKE_CASE =37
SCREAMING_SNAKE_CASE ='gelu'
SCREAMING_SNAKE_CASE =0.1
SCREAMING_SNAKE_CASE =0.1
SCREAMING_SNAKE_CASE =512
SCREAMING_SNAKE_CASE =16
SCREAMING_SNAKE_CASE =2
SCREAMING_SNAKE_CASE =0.02
SCREAMING_SNAKE_CASE =3
SCREAMING_SNAKE_CASE =4
SCREAMING_SNAKE_CASE =None
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Union[str, Any] ):
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _lowerCAmelCase ( self : Tuple ,snake_case : Dict ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =TFEsmModel(config=snake_case )
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
SCREAMING_SNAKE_CASE =model(snake_case )
SCREAMING_SNAKE_CASE =[input_ids, input_mask]
SCREAMING_SNAKE_CASE =model(snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Any ,snake_case : int ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,):
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =TFEsmModel(config=snake_case )
SCREAMING_SNAKE_CASE ={
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
SCREAMING_SNAKE_CASE =model(snake_case )
SCREAMING_SNAKE_CASE =[input_ids, input_mask]
SCREAMING_SNAKE_CASE =model(snake_case ,encoder_hidden_states=snake_case )
# Also check the case where encoder outputs are not passed
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : str ,snake_case : int ,snake_case : List[str] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Dict ):
SCREAMING_SNAKE_CASE =TFEsmForMaskedLM(config=snake_case )
SCREAMING_SNAKE_CASE =model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : int ,snake_case : Any ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Optional[Any] ,snake_case : str ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =TFEsmForTokenClassification(config=snake_case )
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': TFEsmModel,
'fill-mask': TFEsmForMaskedLM,
'text-classification': TFEsmForSequenceClassification,
'token-classification': TFEsmForTokenClassification,
'zero-shot': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =TFEsmModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : Tuple ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def _lowerCAmelCase ( self : str ):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =TFEsmModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@unittest.skip('Protein models do not support embedding resizing.' )
def _lowerCAmelCase ( self : int ):
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def _lowerCAmelCase ( self : Dict ):
pass
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
SCREAMING_SNAKE_CASE =model.get_bias()
assert isinstance(snake_case ,snake_case )
for k, v in name.items():
assert isinstance(snake_case ,tf.Variable )
else:
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
assert x is None
SCREAMING_SNAKE_CASE =model.get_bias()
assert name is None
@require_tf
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
SCREAMING_SNAKE_CASE =tf.constant([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
SCREAMING_SNAKE_CASE =[1, 6, 33]
self.assertEqual(list(output.numpy().shape ) ,snake_case )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE =tf.constant(
[
[
[8.921_518, -10.589_814, -6.4_671_307],
[-6.3_967_156, -13.911_377, -1.1_211_915],
[-7.781_247, -13.951_557, -3.740_592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
SCREAMING_SNAKE_CASE =tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE =tf.constant(
[
[
[0.14_443_092, 0.54_125_327, 0.3_247_739],
[0.30_340_484, 0.00_526_676, 0.31_077_722],
[0.32_278_043, -0.24_987_096, 0.3_414_628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
| 334 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_vision_model'
def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =qkv_bias
@classmethod
def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_qformer'
def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,):
super().__init__(pad_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =cross_attention_frequency
SCREAMING_SNAKE_CASE =encoder_hidden_size
@classmethod
def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip-2'
__UpperCAmelCase = True
def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ):
super().__init__(**snake_case )
if vision_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case )
SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case )
SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt'
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case )
SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE =num_query_tokens
SCREAMING_SNAKE_CASE =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE =1.0
SCREAMING_SNAKE_CASE =0.02
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,):
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,)
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE =self.text_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 | 1 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
_lowerCamelCase ="\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n"
_lowerCamelCase ="\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n"
_lowerCamelCase ="\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] ,reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] ,)
def _lowerCAmelCase ( self : str ,snake_case : Optional[Any] ,snake_case : Tuple ,snake_case : List[Any]=None ,snake_case : List[str]=True ,snake_case : Any=False ):
if rouge_types is None:
SCREAMING_SNAKE_CASE =['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
SCREAMING_SNAKE_CASE =rouge_scorer.RougeScorer(rouge_types=snake_case ,use_stemmer=snake_case )
if use_aggregator:
SCREAMING_SNAKE_CASE =scoring.BootstrapAggregator()
else:
SCREAMING_SNAKE_CASE =[]
for ref, pred in zip(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =scorer.score(snake_case ,snake_case )
if use_aggregator:
aggregator.add_scores(snake_case )
else:
scores.append(snake_case )
if use_aggregator:
SCREAMING_SNAKE_CASE =aggregator.aggregate()
else:
SCREAMING_SNAKE_CASE ={}
for key in scores[0]:
SCREAMING_SNAKE_CASE =[score[key] for score in scores]
return result
| 334 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,):
SCREAMING_SNAKE_CASE =compute_mauve(
p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,)
return out
| 334 | 1 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"tensor(bool)": np.bool_,
"tensor(int8)": np.inta,
"tensor(uint8)": np.uinta,
"tensor(int16)": np.intaa,
"tensor(uint16)": np.uintaa,
"tensor(int32)": np.intaa,
"tensor(uint32)": np.uintaa,
"tensor(int64)": np.intaa,
"tensor(uint64)": np.uintaa,
"tensor(float16)": np.floataa,
"tensor(float)": np.floataa,
"tensor(double)": np.floataa,
}
class a_ :
"""simple docstring"""
def __init__( self : Optional[Any] ,snake_case : int=None ,**snake_case : Dict ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
SCREAMING_SNAKE_CASE =model
SCREAMING_SNAKE_CASE =kwargs.get('model_save_dir' ,snake_case )
SCREAMING_SNAKE_CASE =kwargs.get('latest_model_name' ,snake_case )
def __call__( self : Tuple ,**snake_case : str ):
SCREAMING_SNAKE_CASE ={k: np.array(snake_case ) for k, v in kwargs.items()}
return self.model.run(snake_case ,snake_case )
@staticmethod
def _lowerCAmelCase ( snake_case : Union[str, Path] ,snake_case : Any=None ,snake_case : str=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
SCREAMING_SNAKE_CASE ='CPUExecutionProvider'
return ort.InferenceSession(snake_case ,providers=[provider] ,sess_options=snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Union[str, Path] ,snake_case : Optional[str] = None ,**snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =file_name if file_name is not None else ONNX_WEIGHTS_NAME
SCREAMING_SNAKE_CASE =self.model_save_dir.joinpath(self.latest_model_name )
SCREAMING_SNAKE_CASE =Path(snake_case ).joinpath(snake_case )
try:
shutil.copyfile(snake_case ,snake_case )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
SCREAMING_SNAKE_CASE =self.model_save_dir.joinpath(snake_case )
if src_path.exists():
SCREAMING_SNAKE_CASE =Path(snake_case ).joinpath(snake_case )
try:
shutil.copyfile(snake_case ,snake_case )
except shutil.SameFileError:
pass
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Union[str, Any] ,):
if os.path.isfile(snake_case ):
logger.error(f'Provided path ({save_directory}) should be a directory, not a file' )
return
os.makedirs(snake_case ,exist_ok=snake_case )
# saving model weights/files
self._save_pretrained(snake_case ,**snake_case )
@classmethod
def _lowerCAmelCase ( cls : Optional[Any] ,snake_case : Union[str, Path] ,snake_case : Optional[Union[bool, str, None]] = None ,snake_case : Optional[Union[str, None]] = None ,snake_case : bool = False ,snake_case : Optional[str] = None ,snake_case : Optional[str] = None ,snake_case : Optional[str] = None ,snake_case : Optional["ort.SessionOptions"] = None ,**snake_case : Optional[Any] ,):
SCREAMING_SNAKE_CASE =file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(snake_case ):
SCREAMING_SNAKE_CASE =OnnxRuntimeModel.load_model(
os.path.join(snake_case ,snake_case ) ,provider=snake_case ,sess_options=snake_case )
SCREAMING_SNAKE_CASE =Path(snake_case )
# load model from hub
else:
# download model
SCREAMING_SNAKE_CASE =hf_hub_download(
repo_id=snake_case ,filename=snake_case ,use_auth_token=snake_case ,revision=snake_case ,cache_dir=snake_case ,force_download=snake_case ,)
SCREAMING_SNAKE_CASE =Path(snake_case ).parent
SCREAMING_SNAKE_CASE =Path(snake_case ).name
SCREAMING_SNAKE_CASE =OnnxRuntimeModel.load_model(snake_case ,provider=snake_case ,sess_options=snake_case )
return cls(model=snake_case ,**snake_case )
@classmethod
def _lowerCAmelCase ( cls : Optional[Any] ,snake_case : Union[str, Path] ,snake_case : bool = True ,snake_case : Optional[str] = None ,snake_case : Optional[str] = None ,**snake_case : Optional[Any] ,):
SCREAMING_SNAKE_CASE =None
if len(str(snake_case ).split('@' ) ) == 2:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =model_id.split('@' )
return cls._from_pretrained(
model_id=snake_case ,revision=snake_case ,cache_dir=snake_case ,force_download=snake_case ,use_auth_token=snake_case ,**snake_case ,)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'vit_mae'
def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =qkv_bias
SCREAMING_SNAKE_CASE =decoder_num_attention_heads
SCREAMING_SNAKE_CASE =decoder_hidden_size
SCREAMING_SNAKE_CASE =decoder_num_hidden_layers
SCREAMING_SNAKE_CASE =decoder_intermediate_size
SCREAMING_SNAKE_CASE =mask_ratio
SCREAMING_SNAKE_CASE =norm_pix_loss
| 334 | 1 |
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_lowerCamelCase =logging.get_logger(__name__) # pylint: disable=invalid-name
_lowerCamelCase ="\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n"
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=8 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
SCREAMING_SNAKE_CASE =width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=512, lowerCAmelCase_=512 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1 )
SCREAMING_SNAKE_CASE =np.array(pil_image.convert('RGB' ) )
SCREAMING_SNAKE_CASE =arr.astype(np.floataa ) / 127.5 - 1
SCREAMING_SNAKE_CASE =np.transpose(lowerCAmelCase_, [2, 0, 1] )
SCREAMING_SNAKE_CASE =torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 )
return image
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : UNetaDConditionModel ,snake_case : DDPMScheduler ,snake_case : VQModel ,):
super().__init__()
self.register_modules(
unet=snake_case ,scheduler=snake_case ,movq=snake_case ,)
SCREAMING_SNAKE_CASE =2 ** (len(self.movq.config.block_out_channels ) - 1)
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ,snake_case : str ,snake_case : Any ):
# get the original timestep using init_timestep
SCREAMING_SNAKE_CASE =min(int(num_inference_steps * strength ) ,snake_case )
SCREAMING_SNAKE_CASE =max(num_inference_steps - init_timestep ,0 )
SCREAMING_SNAKE_CASE =self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Any ,snake_case : Union[str, Any] ,snake_case : Tuple ,snake_case : Dict ,snake_case : Optional[int] ,snake_case : Optional[int] ,snake_case : List[Any]=None ):
if not isinstance(snake_case ,(torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case )}' )
SCREAMING_SNAKE_CASE =image.to(device=snake_case ,dtype=snake_case )
SCREAMING_SNAKE_CASE =batch_size * num_images_per_prompt
if image.shape[1] == 4:
SCREAMING_SNAKE_CASE =image
else:
if isinstance(snake_case ,snake_case ) and len(snake_case ) != batch_size:
raise ValueError(
f'You have passed a list of generators of length {len(snake_case )}, but requested an effective batch'
f' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
elif isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =[
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case )
]
SCREAMING_SNAKE_CASE =torch.cat(snake_case ,dim=0 )
else:
SCREAMING_SNAKE_CASE =self.movq.encode(snake_case ).latent_dist.sample(snake_case )
SCREAMING_SNAKE_CASE =self.movq.config.scaling_factor * init_latents
SCREAMING_SNAKE_CASE =torch.cat([init_latents] ,dim=0 )
SCREAMING_SNAKE_CASE =init_latents.shape
SCREAMING_SNAKE_CASE =randn_tensor(snake_case ,generator=snake_case ,device=snake_case ,dtype=snake_case )
# get latents
SCREAMING_SNAKE_CASE =self.scheduler.add_noise(snake_case ,snake_case ,snake_case )
SCREAMING_SNAKE_CASE =init_latents
return latents
def _lowerCAmelCase ( self : Any ,snake_case : Optional[Any]=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
SCREAMING_SNAKE_CASE =torch.device(f'cuda:{gpu_id}' )
SCREAMING_SNAKE_CASE =[
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(snake_case ,snake_case )
def _lowerCAmelCase ( self : int ,snake_case : Any=0 ):
if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' )
SCREAMING_SNAKE_CASE =torch.device(f'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to('cpu' ,silence_dtype_warnings=snake_case )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
SCREAMING_SNAKE_CASE =None
for cpu_offloaded_model in [self.unet, self.movq]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cpu_offload_with_hook(snake_case ,snake_case ,prev_module_hook=snake_case )
# We'll offload the last model manually.
SCREAMING_SNAKE_CASE =hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _lowerCAmelCase ( self : List[Any] ):
if not hasattr(self.unet ,'_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(snake_case ,'_hf_hook' )
and hasattr(module._hf_hook ,'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(snake_case )
def __call__( self : Any ,snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] ,snake_case : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] ,snake_case : int = 512 ,snake_case : int = 512 ,snake_case : int = 100 ,snake_case : float = 4.0 ,snake_case : float = 0.3 ,snake_case : int = 1 ,snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,snake_case : Optional[str] = "pil" ,snake_case : bool = True ,):
SCREAMING_SNAKE_CASE =self._execution_device
SCREAMING_SNAKE_CASE =guidance_scale > 1.0
if isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =torch.cat(snake_case ,dim=0 )
SCREAMING_SNAKE_CASE =image_embeds.shape[0]
if isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =torch.cat(snake_case ,dim=0 )
if do_classifier_free_guidance:
SCREAMING_SNAKE_CASE =image_embeds.repeat_interleave(snake_case ,dim=0 )
SCREAMING_SNAKE_CASE =negative_image_embeds.repeat_interleave(snake_case ,dim=0 )
SCREAMING_SNAKE_CASE =torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=snake_case )
if not isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =[image]
if not all(isinstance(snake_case ,(PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
f'Input is in incorrect format: {[type(snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor' )
SCREAMING_SNAKE_CASE =torch.cat([prepare_image(snake_case ,snake_case ,snake_case ) for i in image] ,dim=0 )
SCREAMING_SNAKE_CASE =image.to(dtype=image_embeds.dtype ,device=snake_case )
SCREAMING_SNAKE_CASE =self.movq.encode(snake_case )['latents']
SCREAMING_SNAKE_CASE =latents.repeat_interleave(snake_case ,dim=0 )
self.scheduler.set_timesteps(snake_case ,device=snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.get_timesteps(snake_case ,snake_case ,snake_case )
SCREAMING_SNAKE_CASE =timesteps[:1].repeat(batch_size * num_images_per_prompt )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =downscale_height_and_width(snake_case ,snake_case ,self.movq_scale_factor )
SCREAMING_SNAKE_CASE =self.prepare_latents(
snake_case ,snake_case ,snake_case ,snake_case ,image_embeds.dtype ,snake_case ,snake_case )
for i, t in enumerate(self.progress_bar(snake_case ) ):
# expand the latents if we are doing classifier free guidance
SCREAMING_SNAKE_CASE =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
SCREAMING_SNAKE_CASE ={'image_embeds': image_embeds}
SCREAMING_SNAKE_CASE =self.unet(
sample=snake_case ,timestep=snake_case ,encoder_hidden_states=snake_case ,added_cond_kwargs=snake_case ,return_dict=snake_case ,)[0]
if do_classifier_free_guidance:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =noise_pred.split(latents.shape[1] ,dim=1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =noise_pred.chunk(2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =variance_pred.chunk(2 )
SCREAMING_SNAKE_CASE =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
SCREAMING_SNAKE_CASE =torch.cat([noise_pred, variance_pred_text] ,dim=1 )
if not (
hasattr(self.scheduler.config ,'variance_type' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =noise_pred.split(latents.shape[1] ,dim=1 )
# compute the previous noisy sample x_t -> x_t-1
SCREAMING_SNAKE_CASE =self.scheduler.step(
snake_case ,snake_case ,snake_case ,generator=snake_case ,)[0]
# post-processing
SCREAMING_SNAKE_CASE =self.movq.decode(snake_case ,force_not_quantize=snake_case )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
SCREAMING_SNAKE_CASE =image * 0.5 + 0.5
SCREAMING_SNAKE_CASE =image.clamp(0 ,1 )
SCREAMING_SNAKE_CASE =image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE =self.numpy_to_pil(snake_case )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case )
| 334 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
_lowerCamelCase ={
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 | 1 |
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = None
__UpperCAmelCase = field(default='Translation' , init=lowerCamelCase_ , repr=lowerCamelCase_ )
def __call__( self : str ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def _lowerCAmelCase ( self : Tuple ):
from .features import Value
return {k: Value('string' ) for k in sorted(self.languages )}
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = None
__UpperCAmelCase = field(default='TranslationVariableLanguages' , init=lowerCamelCase_ , repr=lowerCamelCase_ )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =sorted(set(self.languages ) ) if self.languages else None
SCREAMING_SNAKE_CASE =len(self.languages ) if self.languages else None
def __call__( self : Dict ):
return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} )
def _lowerCAmelCase ( self : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =set(self.languages )
if self.languages and set(snake_case ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(snake_case ) - lang_set ) )}) are not in valid set ({", ".join(snake_case )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
SCREAMING_SNAKE_CASE =[]
for lang, text in translation_dict.items():
if isinstance(snake_case ,snake_case ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =zip(*sorted(snake_case ) )
return {"language": languages, "translation": translations}
def _lowerCAmelCase ( self : Optional[Any] ):
from .features import Sequence, Value
return {
"language": Sequence(Value('string' ) ),
"translation": Sequence(Value('string' ) ),
}
| 334 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : Any ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() )
def _lowerCAmelCase ( self : Union[str, Any] ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : int ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : Dict ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
@require_pil
def _lowerCAmelCase ( self : int ):
import PIL.Image
SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects:
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' ,snake_case )
self.assertFalse(kwargs['optimize_list_casting'] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
SCREAMING_SNAKE_CASE =pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(lowerCAmelCase_ )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=10 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=10 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1}, key=1 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' )
with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(lowerCAmelCase_, 1 )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if pa.types.is_list(lowerCAmelCase_ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if isinstance(lst[0], lowerCAmelCase_ ):
change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =value
@pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype', [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
], )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=lowerCAmelCase_ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow'
with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs, type(lowerCAmelCase_ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(lowerCAmelCase_ )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(stream=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
import PIL.Image
SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(
stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer:
writer.write({'image': image_path} )
writer.finalize()
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'], lowerCAmelCase_ )
with open(lowerCAmelCase_, 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(stream=lowerCAmelCase_ ) as writer:
writer._build_writer(inferred_schema=lowerCAmelCase_ )
assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
| 334 | 1 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class a_ ( unittest.TestCase ):
"""simple docstring"""
@parameterized.expand([(None,), ('foo.json',)] )
def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ):
SCREAMING_SNAKE_CASE =GenerationConfig(
do_sample=snake_case ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(snake_case ,config_name=snake_case )
SCREAMING_SNAKE_CASE =GenerationConfig.from_pretrained(snake_case ,config_name=snake_case )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample ,snake_case )
self.assertEqual(loaded_config.temperature ,0.7 )
self.assertEqual(loaded_config.length_penalty ,1.0 )
self.assertEqual(loaded_config.bad_words_ids ,[[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k ,50 )
self.assertEqual(loaded_config.max_length ,20 )
self.assertEqual(loaded_config.max_time ,snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE =GenerationConfig.from_model_config(snake_case )
SCREAMING_SNAKE_CASE =GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(snake_case ,snake_case )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id ,default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id ,model_config.eos_token_id )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =GenerationConfig()
SCREAMING_SNAKE_CASE ={
'max_new_tokens': 1024,
'foo': 'bar',
}
SCREAMING_SNAKE_CASE =copy.deepcopy(snake_case )
SCREAMING_SNAKE_CASE =generation_config.update(**snake_case )
# update_kwargs was not modified (no side effects)
self.assertEqual(snake_case ,snake_case )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens ,1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(snake_case ,{'foo': 'bar'} )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =GenerationConfig()
SCREAMING_SNAKE_CASE ='bar'
with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir:
generation_config.save_pretrained(snake_case )
SCREAMING_SNAKE_CASE =GenerationConfig.from_pretrained(snake_case )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo ,'bar' )
SCREAMING_SNAKE_CASE =GenerationConfig.from_model_config(snake_case )
assert not hasattr(snake_case ,'foo' ) # no new kwargs should be initialized if from config
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =GenerationConfig()
self.assertEqual(default_config.temperature ,1.0 )
self.assertEqual(default_config.do_sample ,snake_case )
self.assertEqual(default_config.num_beams ,1 )
SCREAMING_SNAKE_CASE =GenerationConfig(
do_sample=snake_case ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,)
self.assertEqual(config.temperature ,0.7 )
self.assertEqual(config.do_sample ,snake_case )
self.assertEqual(config.num_beams ,1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(snake_case )
SCREAMING_SNAKE_CASE =GenerationConfig.from_pretrained(snake_case ,temperature=1.0 )
self.assertEqual(loaded_config.temperature ,1.0 )
self.assertEqual(loaded_config.do_sample ,snake_case )
self.assertEqual(loaded_config.num_beams ,1 ) # default value
@is_staging_test
class a_ ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def _lowerCAmelCase ( cls : List[str] ):
SCREAMING_SNAKE_CASE =TOKEN
HfFolder.save_token(snake_case )
@classmethod
def _lowerCAmelCase ( cls : Any ):
try:
delete_repo(token=cls._token ,repo_id='test-generation-config' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='valid_org/test-generation-config-org' )
except HTTPError:
pass
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =GenerationConfig(
do_sample=snake_case ,temperature=0.7 ,length_penalty=1.0 ,)
config.push_to_hub('test-generation-config' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =GenerationConfig.from_pretrained(f'{USER}/test-generation-config' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(snake_case ,getattr(snake_case ,snake_case ) )
# Reset repo
delete_repo(token=self._token ,repo_id='test-generation-config' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
snake_case ,repo_id='test-generation-config' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =GenerationConfig.from_pretrained(f'{USER}/test-generation-config' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(snake_case ,getattr(snake_case ,snake_case ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =GenerationConfig(
do_sample=snake_case ,temperature=0.7 ,length_penalty=1.0 ,)
config.push_to_hub('valid_org/test-generation-config-org' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(snake_case ,getattr(snake_case ,snake_case ) )
# Reset repo
delete_repo(token=self._token ,repo_id='valid_org/test-generation-config-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
snake_case ,repo_id='valid_org/test-generation-config-org' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(snake_case ,getattr(snake_case ,snake_case ) )
| 334 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def snake_case__ ( ):
"""simple docstring"""
assert or_gate(0, 0 ) == 0
assert or_gate(0, 1 ) == 1
assert or_gate(1, 0 ) == 1
assert or_gate(1, 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 334 | 1 |
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
_lowerCamelCase =get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
_lowerCamelCase =json.load(f)
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ,snake_case : Dict ):
return FSMTTokenizer.from_pretrained(snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : List[Any] ):
SCREAMING_SNAKE_CASE =FSMTForConditionalGeneration.from_pretrained(snake_case ).to(snake_case )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['en-ru', 26.0],
['ru-en', 22.0],
['en-de', 22.0],
['de-en', 29.0],
] )
@slow
def _lowerCAmelCase ( self : List[Any] ,snake_case : int ,snake_case : Tuple ):
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
SCREAMING_SNAKE_CASE =f'facebook/wmt19-{pair}'
SCREAMING_SNAKE_CASE =self.get_tokenizer(snake_case )
SCREAMING_SNAKE_CASE =self.get_model(snake_case )
SCREAMING_SNAKE_CASE =bleu_data[pair]['src']
SCREAMING_SNAKE_CASE =bleu_data[pair]['tgt']
SCREAMING_SNAKE_CASE =tokenizer(snake_case ,return_tensors='pt' ,truncation=snake_case ,padding='longest' ).to(snake_case )
SCREAMING_SNAKE_CASE =model.generate(
input_ids=batch.input_ids ,num_beams=8 ,)
SCREAMING_SNAKE_CASE =tokenizer.batch_decode(
snake_case ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case )
SCREAMING_SNAKE_CASE =calculate_bleu(snake_case ,snake_case )
print(snake_case )
self.assertGreaterEqual(scores['bleu'] ,snake_case )
| 334 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={"vocab_file": "vocab.txt"}
_lowerCamelCase ={
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase ={
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
return [l.strip() for l in lines]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =load_vocab_file(snake_case )
SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE =unk_token
SCREAMING_SNAKE_CASE =cls_token
SCREAMING_SNAKE_CASE =pad_token
SCREAMING_SNAKE_CASE =mask_token
SCREAMING_SNAKE_CASE =eos_token
SCREAMING_SNAKE_CASE =self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ):
return text.split()
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ):
return len(self._id_to_token )
def _lowerCAmelCase ( self : List[str] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _lowerCAmelCase ( self : List[Any] ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Any ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.cls_token_id]
SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1]
if token_ids_a is not None:
mask += [0] * len(snake_case ) + [1]
return mask
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ):
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(snake_case ,'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def _lowerCAmelCase ( self : int ):
return self.get_vocab_size(with_added_tokens=snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ):
return super()._add_tokens(snake_case ,special_tokens=snake_case )
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCamelCase ={}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["MLukeTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : int ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Tuple ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 0
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def __call__( self : int ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ):
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one."
SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}'
print(lowerCAmelCase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {checkpoint_name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(snake_case ,'embed_dim' ) )
self.parent.assertTrue(hasattr(snake_case ,'num_heads' ) )
class a_ :
"""simple docstring"""
def __init__( self : List[str] ,snake_case : List[Any] ,snake_case : Any=13 ,snake_case : Dict=64 ,snake_case : Optional[int]=3 ,snake_case : List[Any]=[16, 48, 96] ,snake_case : int=[1, 3, 6] ,snake_case : Union[str, Any]=[1, 2, 10] ,snake_case : Optional[Any]=[7, 3, 3] ,snake_case : Any=[4, 2, 2] ,snake_case : List[Any]=[2, 1, 1] ,snake_case : Optional[int]=[2, 2, 2] ,snake_case : Optional[int]=[False, False, True] ,snake_case : List[str]=[0.0, 0.0, 0.0] ,snake_case : List[Any]=0.02 ,snake_case : Optional[int]=1e-12 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Optional[int]=2 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_sizes
SCREAMING_SNAKE_CASE =patch_stride
SCREAMING_SNAKE_CASE =patch_padding
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =embed_dim
SCREAMING_SNAKE_CASE =num_heads
SCREAMING_SNAKE_CASE =stride_kv
SCREAMING_SNAKE_CASE =depth
SCREAMING_SNAKE_CASE =cls_token
SCREAMING_SNAKE_CASE =attention_drop_rate
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels
def _lowerCAmelCase ( self : Tuple ):
return CvtConfig(
image_size=self.image_size ,num_labels=self.num_labels ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,num_heads=self.num_heads ,patch_sizes=self.patch_sizes ,patch_padding=self.patch_padding ,patch_stride=self.patch_stride ,stride_kv=self.stride_kv ,depth=self.depth ,cls_token=self.cls_token ,attention_drop_rate=self.attention_drop_rate ,initializer_range=self.initializer_range ,)
def _lowerCAmelCase ( self : List[str] ,snake_case : int ,snake_case : Union[str, Any] ,snake_case : Any ):
SCREAMING_SNAKE_CASE =CvtModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
SCREAMING_SNAKE_CASE =(self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =image_size[0], image_size[1]
for i in range(len(self.depth ) ):
SCREAMING_SNAKE_CASE =floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
SCREAMING_SNAKE_CASE =floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dim[-1], height, width) )
def _lowerCAmelCase ( self : Dict ,snake_case : Any ,snake_case : int ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =CvtForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
__UpperCAmelCase = (
{'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =CvtModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : Optional[Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCAmelCase ( self : Union[str, Any] ):
return
@unittest.skip(reason='Cvt does not output attentions' )
def _lowerCAmelCase ( self : Tuple ):
pass
@unittest.skip(reason='Cvt does not use inputs_embeds' )
def _lowerCAmelCase ( self : int ):
pass
@unittest.skip(reason='Cvt does not support input and output embeddings' )
def _lowerCAmelCase ( self : List[str] ):
pass
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Dict ):
def check_hidden_states_output(snake_case : int ,snake_case : str ,snake_case : List[Any] ):
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(snake_case ,snake_case ) )
SCREAMING_SNAKE_CASE =outputs.hidden_states
SCREAMING_SNAKE_CASE =len(self.model_tester.depth )
self.assertEqual(len(snake_case ) ,snake_case )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) ,[
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] ,)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =True
check_hidden_states_output(snake_case ,snake_case ,snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE =True
check_hidden_states_output(snake_case ,snake_case ,snake_case )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _lowerCAmelCase ( self : Optional[Any] ):
pass
@slow
def _lowerCAmelCase ( self : List[Any] ):
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =CvtModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,snake_case ,atol=1e-4 ) )
| 334 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =None
if token is not None:
SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
SCREAMING_SNAKE_CASE ='636036'
SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json()
return result["workflow_runs"]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
SCREAMING_SNAKE_CASE =workflow_run['id']
break
return workflow_run_id
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ )
if workflow_run_id is not None:
SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
SCREAMING_SNAKE_CASE =artifacts_links[artifact_name]
download_artifact(
artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={}
for artifact_name in artifact_names:
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' )
if os.path.isfile(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE ={}
with zipfile.ZipFile(lowerCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
with z.open(lowerCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' )
return results
| 334 | 1 |
from typing import TYPE_CHECKING
from ..utils import _LazyModule
_lowerCamelCase ={
"config": [
"EXTERNAL_DATA_FORMAT_SIZE_LIMIT",
"OnnxConfig",
"OnnxConfigWithPast",
"OnnxSeq2SeqConfigWithPast",
"PatchingSpec",
],
"convert": ["export", "validate_model_outputs"],
"features": ["FeaturesManager"],
"utils": ["ParameterFormat", "compute_serialized_parameters_size"],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_token_type_ids
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_choices
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =q_groups
SCREAMING_SNAKE_CASE =k_groups
SCREAMING_SNAKE_CASE =v_groups
SCREAMING_SNAKE_CASE =post_attention_groups
SCREAMING_SNAKE_CASE =intermediate_groups
SCREAMING_SNAKE_CASE =output_groups
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ):
return SqueezeBertConfig(
embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.num_choices
SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,labels=snake_case ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCAmelCase = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case )
@slow
def _lowerCAmelCase ( self : str ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_sentencepiece
@require_tokenizers
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
SCREAMING_SNAKE_CASE =torch.Size((1, 3) )
self.assertEqual(output.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
| 334 | 1 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
_lowerCamelCase =logging.get_logger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Dict ,*snake_case : str ,**snake_case : int ):
warnings.warn(
'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use SegformerImageProcessor instead.' ,snake_case ,)
super().__init__(*snake_case ,**snake_case )
| 334 |
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
@property
def _lowerCAmelCase ( self : List[Any] ):
return self.feat_extract_tester.prepare_feat_extract_dict()
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case ,'feature_size' ) )
self.assertTrue(hasattr(snake_case ,'sampling_rate' ) )
self.assertTrue(hasattr(snake_case ,'padding_value' ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ):
def _inputs_have_equal_length(snake_case : Dict ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : str ,snake_case : Dict ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length
SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size
SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ):
def _inputs_have_equal_length(snake_case : str ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
# truncate to smallest
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to smallest with np
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to middle
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =12
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
SCREAMING_SNAKE_CASE =len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
def _lowerCAmelCase ( self : Optional[int] ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : Tuple ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : List[str] ):
self._check_truncation(numpify=snake_case )
def _lowerCAmelCase ( self : int ):
self._check_truncation(numpify=snake_case )
@require_torch
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =min(snake_case )
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
| 334 | 1 |
import math
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if initial_intensity < 0:
raise ValueError('The value of intensity cannot be negative' )
# handling of negative values of initial intensity
if angle < 0 or angle > 360:
raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(lowerCAmelCase_ ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name="malus_law")
| 334 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_lowerCamelCase =2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_lowerCamelCase =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_lowerCamelCase =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] )
return (item, float(lowerCAmelCase_ ))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 )
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ )
if random.uniform(0, 1 ) < MUTATION_PROBABILITY:
SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ )
return "".join(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
# Generate more children proportionally to the fitness score.
SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1
SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n
for _ in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ )
# Append new string to the population list.
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
return pop
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
if N_POPULATION < N_SELECTED:
SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(lowerCAmelCase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} )
if not_in_genes_list:
SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(lowerCAmelCase_ )
# Generate random starting population.
SCREAMING_SNAKE_CASE =[]
for _ in range(lowerCAmelCase_ ):
population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowerCAmelCase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population]
# Check if there is a matching evolution.
SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowerCAmelCase_ )
# Normalize population score to be between 0 and 1.
SCREAMING_SNAKE_CASE =[
(item, score / len(lowerCAmelCase_ )) for item, score in population_score
]
# This is selection
for i in range(lowerCAmelCase_ ):
population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowerCAmelCase_ ) > N_POPULATION:
break
if __name__ == "__main__":
_lowerCamelCase =(
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
_lowerCamelCase =list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list)
print(
f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'
)
| 334 | 1 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class a_ :
"""simple docstring"""
def __init__( self : List[str] ,snake_case : Any ,snake_case : Optional[Any]=13 ,snake_case : int=7 ,snake_case : Optional[Any]=True ,snake_case : List[Any]=True ,snake_case : Tuple=True ,snake_case : Union[str, Any]=True ,snake_case : Optional[int]=99 ,snake_case : Tuple=16 ,snake_case : Dict=36 ,snake_case : str=6 ,snake_case : Dict=6 ,snake_case : List[str]=6 ,snake_case : Union[str, Any]=37 ,snake_case : Tuple="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Any=0.1 ,snake_case : Optional[int]=512 ,snake_case : int=16 ,snake_case : Union[str, Any]=2 ,snake_case : str=0.02 ,snake_case : List[str]=3 ,snake_case : Optional[int]=4 ,snake_case : Dict=None ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_token_type_ids
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =embedding_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_hidden_groups
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_choices
SCREAMING_SNAKE_CASE =scope
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ):
return AlbertConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[Any] ,snake_case : Tuple ,snake_case : Optional[int] ,snake_case : Any ,snake_case : List[str] ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =AlbertModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case )
SCREAMING_SNAKE_CASE =model(snake_case ,token_type_ids=snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _lowerCAmelCase ( self : str ,snake_case : Optional[Any] ,snake_case : Any ,snake_case : int ,snake_case : Tuple ,snake_case : int ,snake_case : int ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =AlbertForPreTraining(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,sentence_order_label=snake_case ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels) )
def _lowerCAmelCase ( self : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : List[Any] ,snake_case : int ,snake_case : str ,snake_case : Any ,snake_case : Dict ):
SCREAMING_SNAKE_CASE =AlbertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : int ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ,snake_case : Optional[Any] ,snake_case : int ,snake_case : Optional[Any] ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =AlbertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,start_positions=snake_case ,end_positions=snake_case ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : str ,snake_case : List[str] ,snake_case : Dict ,snake_case : Union[str, Any] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =AlbertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Any ,snake_case : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =AlbertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : Tuple ,snake_case : str ,snake_case : Any ,snake_case : Union[str, Any] ,snake_case : str ,snake_case : Any ,snake_case : Optional[Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =self.num_choices
SCREAMING_SNAKE_CASE =AlbertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': AlbertModel,
'fill-mask': AlbertForMaskedLM,
'question-answering': AlbertForQuestionAnswering,
'text-classification': AlbertForSequenceClassification,
'token-classification': AlbertForTokenClassification,
'zero-shot': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = True
def _lowerCAmelCase ( self : Tuple ,snake_case : Optional[int] ,snake_case : Any ,snake_case : List[Any]=False ):
SCREAMING_SNAKE_CASE =super()._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
if return_labels:
if model_class in get_values(snake_case ):
SCREAMING_SNAKE_CASE =torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=snake_case )
SCREAMING_SNAKE_CASE =torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=snake_case )
return inputs_dict
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =AlbertModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : Dict ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
SCREAMING_SNAKE_CASE =type
self.model_tester.create_and_check_model(*snake_case )
@slow
def _lowerCAmelCase ( self : int ):
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =AlbertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =AlbertModel.from_pretrained('albert-base-v2' )
SCREAMING_SNAKE_CASE =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
SCREAMING_SNAKE_CASE =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case )[0]
SCREAMING_SNAKE_CASE =torch.Size((1, 11, 768) )
self.assertEqual(output.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,snake_case ,atol=1e-4 ) )
| 334 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _lowerCAmelCase ( self : Optional[Any] ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCAmelCase ( self : Union[str, Any] ):
# This test is for deprecated behavior and can be removed in v5
try:
SCREAMING_SNAKE_CASE =tempfile.mktemp()
with open(snake_case ,'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case )
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case )
finally:
os.remove(snake_case )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' ,'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size ,1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def _lowerCAmelCase ( self : int ):
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class a_ ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def _lowerCAmelCase ( cls : List[Any] ):
SCREAMING_SNAKE_CASE =TOKEN
HfFolder.save_token(snake_case )
@classmethod
def _lowerCAmelCase ( cls : Tuple ):
try:
delete_repo(token=cls._token ,repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def _lowerCAmelCase ( self : Any ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
def _lowerCAmelCase ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
@require_tokenizers
def _lowerCAmelCase ( self : str ):
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case )
bert_tokenizer.save_pretrained(snake_case )
SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case )
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(
f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] )
def _lowerCAmelCase ( self : Optional[Any] ):
# Even if the offsets are wrong, we necessarily output correct string
# parts.
SCREAMING_SNAKE_CASE =Trie()
SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] )
self.assertEqual(snake_case ,['AB', 'C'] )
| 334 | 1 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
_lowerCamelCase =logging.getLogger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[str] ,snake_case : Dict=-1 ):
# in NER datasets, the last column is usually reserved for NER label
SCREAMING_SNAKE_CASE =label_idx
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[Any] ,snake_case : Union[Split, str] ):
if isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =mode.value
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,f'{mode}.txt' )
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =[]
with open(snake_case ,encoding='utf-8' ) as f:
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =[]
for line in f:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' ,words=snake_case ,labels=snake_case ) )
guid_index += 1
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =[]
else:
SCREAMING_SNAKE_CASE =line.split(' ' )
words.append(splits[0] )
if len(snake_case ) > 1:
labels.append(splits[self.label_idx].replace('\n' ,'' ) )
else:
# Examples could have no label for mode = "test"
labels.append('O' )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' ,words=snake_case ,labels=snake_case ) )
return examples
def _lowerCAmelCase ( self : List[str] ,snake_case : TextIO ,snake_case : TextIO ,snake_case : List ):
SCREAMING_SNAKE_CASE =0
for line in test_input_reader:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
writer.write(snake_case )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
SCREAMING_SNAKE_CASE =line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n'
writer.write(snake_case )
else:
logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' ,line.split()[0] )
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
if path:
with open(snake_case ,'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
if "O" not in labels:
SCREAMING_SNAKE_CASE =['O'] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple ):
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def _lowerCAmelCase ( self : Tuple ,snake_case : str ):
if path:
with open(snake_case ,'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
if "O" not in labels:
SCREAMING_SNAKE_CASE =['O'] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : str ,snake_case : Optional[int] ,snake_case : Union[Split, str] ):
if isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =mode.value
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,f'{mode}.txt' )
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =[]
with open(snake_case ,encoding='utf-8' ) as f:
for sentence in parse_incr(snake_case ):
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =[]
for token in sentence:
words.append(token['form'] )
labels.append(token['upos'] )
assert len(snake_case ) == len(snake_case )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' ,words=snake_case ,labels=snake_case ) )
guid_index += 1
return examples
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : TextIO ,snake_case : TextIO ,snake_case : List ):
SCREAMING_SNAKE_CASE =0
for sentence in parse_incr(snake_case ):
SCREAMING_SNAKE_CASE =preds_list[example_id]
SCREAMING_SNAKE_CASE =''
for token in sentence:
out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) '
out += "\n"
writer.write(snake_case )
example_id += 1
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
if path:
with open(snake_case ,'r' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 334 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase =[
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
_lowerCamelCase =[
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' )
return sd
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =OrderedDict()
SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
SCREAMING_SNAKE_CASE =key
for name_pair in rename_keys_prefix:
SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] )
SCREAMING_SNAKE_CASE =d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
SCREAMING_SNAKE_CASE ='pretraining'
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024}
else:
raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
SCREAMING_SNAKE_CASE ='multichoice'
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
SCREAMING_SNAKE_CASE ='vqa_advanced'
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129}
SCREAMING_SNAKE_CASE ='vqa'
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={
'visual_embedding_dim': 1024,
'num_labels': 2,
}
SCREAMING_SNAKE_CASE ='nlvr'
SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ )
# Load State Dict
SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ )
if model_type == "pretraining":
SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ )
elif model_type == "vqa":
SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ )
elif model_type == "nlvr":
SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ )
elif model_type == "multichoice":
SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
# Save Checkpoints
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
_lowerCamelCase =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=False ):
"""simple docstring"""
if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =len(set_a.intersection(lowerCAmelCase_ ) )
if alternative_union:
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ ) + len(lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =len(set_a.union(lowerCAmelCase_ ) )
return intersection / union
if isinstance(lowerCAmelCase_, (list, tuple) ) and isinstance(lowerCAmelCase_, (list, tuple) ):
SCREAMING_SNAKE_CASE =[element for element in set_a if element in set_b]
if alternative_union:
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ ) + len(lowerCAmelCase_ )
return len(lowerCAmelCase_ ) / union
else:
SCREAMING_SNAKE_CASE =set_a + [element for element in set_b if element not in set_a]
return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ )
return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ )
return None
if __name__ == "__main__":
_lowerCamelCase ={"a", "b", "c", "d", "e"}
_lowerCamelCase ={"c", "d", "e", "f", "h", "i"}
print(jaccard_similarity(set_a, set_b))
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'nllb-moe'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE =router_z_loss_coef
SCREAMING_SNAKE_CASE =router_aux_loss_coef
SCREAMING_SNAKE_CASE =decoder_sparse_step
SCREAMING_SNAKE_CASE =encoder_sparse_step
SCREAMING_SNAKE_CASE =num_experts
SCREAMING_SNAKE_CASE =expert_capacity
SCREAMING_SNAKE_CASE =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' )
SCREAMING_SNAKE_CASE =router_dtype
SCREAMING_SNAKE_CASE =router_ignore_padding_tokens
SCREAMING_SNAKE_CASE =batch_prioritized_routing
SCREAMING_SNAKE_CASE =second_expert_policy
SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping
SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction
SCREAMING_SNAKE_CASE =moe_token_dropout
SCREAMING_SNAKE_CASE =output_router_logits
super().__init__(
pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
| 334 | 1 |
import os
from distutils.util import strtobool
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for e in env_keys:
SCREAMING_SNAKE_CASE =int(os.environ.get(lowerCAmelCase_, -1 ) )
if val >= 0:
return val
return default
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =os.environ.get(lowerCAmelCase_, str(lowerCAmelCase_ ) )
return strtobool(lowerCAmelCase_ ) == 1 # As its name indicates `strtobool` actually returns an int...
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_="no" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =os.environ.get(lowerCAmelCase_, str(lowerCAmelCase_ ) )
return value
| 334 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =sorted(numsa + numsa )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()]
_lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()]
print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
_lowerCamelCase ={
"configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"],
"processing_speech_to_text": ["Speech2TextProcessor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["Speech2TextTokenizer"]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["Speech2TextFeatureExtractor"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSpeech2TextForConditionalGeneration",
"TFSpeech2TextModel",
"TFSpeech2TextPreTrainedModel",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Speech2TextForConditionalGeneration",
"Speech2TextModel",
"Speech2TextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'transfo-xl'
__UpperCAmelCase = ['mems']
__UpperCAmelCase = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =[]
self.cutoffs.extend(snake_case )
if proj_share_all_but_first:
SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs )
else:
SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs )
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =d_embed
SCREAMING_SNAKE_CASE =d_head
SCREAMING_SNAKE_CASE =d_inner
SCREAMING_SNAKE_CASE =div_val
SCREAMING_SNAKE_CASE =pre_lnorm
SCREAMING_SNAKE_CASE =n_layer
SCREAMING_SNAKE_CASE =n_head
SCREAMING_SNAKE_CASE =mem_len
SCREAMING_SNAKE_CASE =same_length
SCREAMING_SNAKE_CASE =attn_type
SCREAMING_SNAKE_CASE =clamp_len
SCREAMING_SNAKE_CASE =sample_softmax
SCREAMING_SNAKE_CASE =adaptive
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =dropatt
SCREAMING_SNAKE_CASE =untie_r
SCREAMING_SNAKE_CASE =init
SCREAMING_SNAKE_CASE =init_range
SCREAMING_SNAKE_CASE =proj_init_std
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =layer_norm_epsilon
super().__init__(eos_token_id=snake_case ,**snake_case )
@property
def _lowerCAmelCase ( self : str ):
# Message copied from Transformer-XL documentation
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 334 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'data2vec-text'
def __init__( self : int ,snake_case : Dict=30522 ,snake_case : str=768 ,snake_case : Any=12 ,snake_case : Tuple=12 ,snake_case : Optional[int]=3072 ,snake_case : List[Any]="gelu" ,snake_case : Optional[int]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : List[str]=512 ,snake_case : Optional[Any]=2 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : Optional[int]=1 ,snake_case : Dict=0 ,snake_case : Any=2 ,snake_case : List[str]="absolute" ,snake_case : str=True ,snake_case : int=None ,**snake_case : Union[str, Any] ,):
super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =classifier_dropout
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@property
def _lowerCAmelCase ( self : str ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 334 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =100
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =out_indices
SCREAMING_SNAKE_CASE =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE =num_patches + 1
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =BeitModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.type_sequence_label_size
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =BeitModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case )
def _lowerCAmelCase ( self : Any ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]:
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.gradient_checkpointing_enable()
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =_config_zero_init(snake_case )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(config=snake_case )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,)
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case )
# prepare bool_masked_pos
SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =281
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 21841) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =2396
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] ,device=snake_case ,)
else:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] ,device=snake_case ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] )
SCREAMING_SNAKE_CASE =torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,snake_case )
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case )
SCREAMING_SNAKE_CASE =torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape ,snake_case )
| 334 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_vision_model'
def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =qkv_bias
@classmethod
def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_qformer'
def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,):
super().__init__(pad_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =cross_attention_frequency
SCREAMING_SNAKE_CASE =encoder_hidden_size
@classmethod
def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip-2'
__UpperCAmelCase = True
def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ):
super().__init__(**snake_case )
if vision_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case )
SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case )
SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt'
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case )
SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE =num_query_tokens
SCREAMING_SNAKE_CASE =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE =1.0
SCREAMING_SNAKE_CASE =0.02
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,):
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,)
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE =self.text_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : List[str] ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Optional[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 1
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = True
def __call__( self : str ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch:
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any ,snake_case : nn.Module ):
super().__init__()
SCREAMING_SNAKE_CASE =[]
# - get the stem
feature_blocks.append(('conv1', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('block' ), f'Unexpected layer name {k}'
SCREAMING_SNAKE_CASE =len(snake_case ) + 1
feature_blocks.append((f'res{block_index}', v) )
SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ):
return get_trunk_forward_outputs(
snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ):
SCREAMING_SNAKE_CASE =x.split('-' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Optional[Any] ,snake_case : str ):
# default to timm!
if x not in self:
SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case )
SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) )
else:
SCREAMING_SNAKE_CASE =super().__getitem__(snake_case )
return val
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __getitem__( self : int ,snake_case : str ):
if "seer" in x and "in1k" not in x:
SCREAMING_SNAKE_CASE =RegNetModel
else:
SCREAMING_SNAKE_CASE =RegNetForImageClassification
return val
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for from_key, to_key in keys:
SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone()
print(F'Copied key={from_key} to={to_key}' )
return to_state_dict
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func()
SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
if from_state_dict is not None:
SCREAMING_SNAKE_CASE =[]
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')]
SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ )
our_model.load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(
our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state
)
SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1]
assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'regnet-x-002': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ),
'regnet-x-004': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ),
'regnet-x-006': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ),
'regnet-x-008': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ),
'regnet-x-016': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ),
'regnet-x-032': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ),
'regnet-x-040': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ),
'regnet-x-064': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ),
'regnet-x-080': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ),
'regnet-x-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ),
'regnet-x-160': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ),
'regnet-x-320': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ),
# y variant
'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
'regnet-y-004': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
'regnet-y-006': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
'regnet-y-008': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
'regnet-y-016': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
'regnet-y-032': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ),
'regnet-y-040': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ),
'regnet-y-064': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ),
'regnet-y-080': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ),
'regnet-y-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ),
'regnet-y-160': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ),
'regnet-y-320': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer': RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer': RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
# finetuned on imagenet
'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
}
SCREAMING_SNAKE_CASE =NameToOurModelFuncMap()
SCREAMING_SNAKE_CASE =NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]:
SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' )
SCREAMING_SNAKE_CASE =model_func()
# check if we have a head, if yes add it
SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model']
SCREAMING_SNAKE_CASE =model_state_dict['trunk']
model.load_state_dict(lowerCAmelCase_ )
return model.eval(), model_state_dict["heads"]
# pretrained
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
from maths.prime_factors import prime_factors
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =F'Input value of [number={number}] must be an integer'
raise TypeError(lowerCAmelCase_ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(lowerCAmelCase_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase =16
_lowerCamelCase =32
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' )
def tokenize_function(lowerCAmelCase_ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE =datasets.map(
lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowerCAmelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE =16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE =8
else:
SCREAMING_SNAKE_CASE =None
return tokenizer.pad(
lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCamelCase =mocked_dataloaders # noqa: F811
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1":
SCREAMING_SNAKE_CASE =2
# Initialize accelerator
SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE =config['lr']
SCREAMING_SNAKE_CASE =int(config['num_epochs'] )
SCREAMING_SNAKE_CASE =int(config['seed'] )
SCREAMING_SNAKE_CASE =int(config['batch_size'] )
SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCAmelCase_ )
def inner_training_loop(lowerCAmelCase_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCAmelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE =model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# Now we train the model
for epoch in range(lowerCAmelCase_ ):
model.train()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.loss
accelerator.backward(lowerCAmelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCAmelCase_, references=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.', )
parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCAmelCase_, lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 334 | 1 |
from __future__ import annotations
from typing import Any
class a_ :
"""simple docstring"""
def __init__( self : str ,snake_case : int = 6 ):
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
self.create_linked_list(snake_case )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ):
SCREAMING_SNAKE_CASE =Node()
SCREAMING_SNAKE_CASE =current_node
SCREAMING_SNAKE_CASE =current_node
SCREAMING_SNAKE_CASE =current_node
for _ in range(1 ,snake_case ):
SCREAMING_SNAKE_CASE =Node()
SCREAMING_SNAKE_CASE =current_node
SCREAMING_SNAKE_CASE =previous_node
SCREAMING_SNAKE_CASE =current_node
SCREAMING_SNAKE_CASE =self.front
SCREAMING_SNAKE_CASE =previous_node
def _lowerCAmelCase ( self : Union[str, Any] ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def _lowerCAmelCase ( self : Dict ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
SCREAMING_SNAKE_CASE =self.rear.next
if self.rear:
SCREAMING_SNAKE_CASE =data
def _lowerCAmelCase ( self : str ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
SCREAMING_SNAKE_CASE =self.front.data
SCREAMING_SNAKE_CASE =None
return data
SCREAMING_SNAKE_CASE =self.front
SCREAMING_SNAKE_CASE =old_front.next
SCREAMING_SNAKE_CASE =old_front.data
SCREAMING_SNAKE_CASE =None
return data
def _lowerCAmelCase ( self : Optional[Any] ):
if self.is_empty():
raise Exception('Empty Queue' )
def _lowerCAmelCase ( self : List[Any] ):
if self.rear and self.rear.next == self.front:
raise Exception('Full Queue' )
class a_ :
"""simple docstring"""
def __init__( self : str ):
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return " ".join(
''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 334 | 1 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : Any ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() )
def _lowerCAmelCase ( self : Union[str, Any] ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : int ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : Dict ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
@require_pil
def _lowerCAmelCase ( self : int ):
import PIL.Image
SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects:
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' ,snake_case )
self.assertFalse(kwargs['optimize_list_casting'] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
SCREAMING_SNAKE_CASE =pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(lowerCAmelCase_ )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=10 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=10 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1}, key=1 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' )
with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(lowerCAmelCase_, 1 )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if pa.types.is_list(lowerCAmelCase_ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if isinstance(lst[0], lowerCAmelCase_ ):
change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =value
@pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype', [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
], )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=lowerCAmelCase_ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow'
with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs, type(lowerCAmelCase_ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(lowerCAmelCase_ )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(stream=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
import PIL.Image
SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(
stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer:
writer.write({'image': image_path} )
writer.finalize()
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'], lowerCAmelCase_ )
with open(lowerCAmelCase_, 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(stream=lowerCAmelCase_ ) as writer:
writer._build_writer(inferred_schema=lowerCAmelCase_ )
assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
| 334 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_lowerCamelCase ="sshleifer/mar_enro_6_3_student"
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
super().setUp()
SCREAMING_SNAKE_CASE =cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,)
SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ):
MarianMTModel.from_pretrained(snake_case )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE ={
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro'
SCREAMING_SNAKE_CASE ={
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' )
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =(
['distillation.py']
+ bash_script.split()
+ [
f'--output_dir={output_dir}',
'--gpus=1',
'--learning_rate=1e-3',
f'--num_train_epochs={epochs}',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
SCREAMING_SNAKE_CASE =distill_main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 334 | 1 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
_lowerCamelCase =collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
_lowerCamelCase ="https://storage.googleapis.com/cvdf-datasets/mnist/"
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =numpy.dtype(numpy.uintaa ).newbyteorder('>' )
return numpy.frombuffer(bytestream.read(4 ), dtype=lowerCAmelCase_ )[0]
@deprecated(lowerCAmelCase_, 'Please use tf.data to implement this functionality.' )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
print('Extracting', f.name )
with gzip.GzipFile(fileobj=lowerCAmelCase_ ) as bytestream:
SCREAMING_SNAKE_CASE =_readaa(lowerCAmelCase_ )
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) )
SCREAMING_SNAKE_CASE =_readaa(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_readaa(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_readaa(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =bytestream.read(rows * cols * num_images )
SCREAMING_SNAKE_CASE =numpy.frombuffer(lowerCAmelCase_, dtype=numpy.uinta )
SCREAMING_SNAKE_CASE =data.reshape(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, 1 )
return data
@deprecated(lowerCAmelCase_, 'Please use tf.one_hot on tensors.' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =labels_dense.shape[0]
SCREAMING_SNAKE_CASE =numpy.arange(lowerCAmelCase_ ) * num_classes
SCREAMING_SNAKE_CASE =numpy.zeros((num_labels, num_classes) )
SCREAMING_SNAKE_CASE =1
return labels_one_hot
@deprecated(lowerCAmelCase_, 'Please use tf.data to implement this functionality.' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=False, lowerCAmelCase_=10 ):
"""simple docstring"""
print('Extracting', f.name )
with gzip.GzipFile(fileobj=lowerCAmelCase_ ) as bytestream:
SCREAMING_SNAKE_CASE =_readaa(lowerCAmelCase_ )
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) )
SCREAMING_SNAKE_CASE =_readaa(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =bytestream.read(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =numpy.frombuffer(lowerCAmelCase_, dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(lowerCAmelCase_, lowerCAmelCase_ )
return labels
class a_ :
"""simple docstring"""
@deprecated(
snake_case ,'Please use alternatives such as official/mnist/_DataSet.py'
' from tensorflow/models.' ,)
def __init__( self : Union[str, Any] ,snake_case : int ,snake_case : Union[str, Any] ,snake_case : Any=False ,snake_case : Optional[int]=False ,snake_case : Tuple=dtypes.floataa ,snake_case : List[Any]=True ,snake_case : Optional[int]=None ,):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =random_seed.get_seed(snake_case )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
SCREAMING_SNAKE_CASE =dtypes.as_dtype(snake_case ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype )
if fake_data:
SCREAMING_SNAKE_CASE =10000
SCREAMING_SNAKE_CASE =one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'images.shape: {images.shape} labels.shape: {labels.shape}'
SCREAMING_SNAKE_CASE =images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
SCREAMING_SNAKE_CASE =images.reshape(
images.shape[0] ,images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
SCREAMING_SNAKE_CASE =images.astype(numpy.floataa )
SCREAMING_SNAKE_CASE =numpy.multiply(snake_case ,1.0 / 255.0 )
SCREAMING_SNAKE_CASE =images
SCREAMING_SNAKE_CASE =labels
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =0
@property
def _lowerCAmelCase ( self : str ):
return self._images
@property
def _lowerCAmelCase ( self : str ):
return self._labels
@property
def _lowerCAmelCase ( self : Tuple ):
return self._num_examples
@property
def _lowerCAmelCase ( self : Dict ):
return self._epochs_completed
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : int ,snake_case : Tuple=False ,snake_case : Tuple=True ):
if fake_data:
SCREAMING_SNAKE_CASE =[1] * 784
SCREAMING_SNAKE_CASE =[1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(snake_case )],
[fake_label for _ in range(snake_case )],
)
SCREAMING_SNAKE_CASE =self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples )
numpy.random.shuffle(snake_case )
SCREAMING_SNAKE_CASE =self.images[perma]
SCREAMING_SNAKE_CASE =self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
SCREAMING_SNAKE_CASE =self._num_examples - start
SCREAMING_SNAKE_CASE =self._images[start : self._num_examples]
SCREAMING_SNAKE_CASE =self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples )
numpy.random.shuffle(snake_case )
SCREAMING_SNAKE_CASE =self.images[perm]
SCREAMING_SNAKE_CASE =self.labels[perm]
# Start next epoch
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =batch_size - rest_num_examples
SCREAMING_SNAKE_CASE =self._index_in_epoch
SCREAMING_SNAKE_CASE =self._images[start:end]
SCREAMING_SNAKE_CASE =self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) ,axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) ,axis=0 ),
)
else:
self._index_in_epoch += batch_size
SCREAMING_SNAKE_CASE =self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(lowerCAmelCase_, 'Please write your own downloading logic.' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if not gfile.Exists(lowerCAmelCase_ ):
gfile.MakeDirs(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, lowerCAmelCase_ )
if not gfile.Exists(lowerCAmelCase_ ):
urllib.request.urlretrieve(lowerCAmelCase_, lowerCAmelCase_ ) # noqa: S310
with gfile.GFile(lowerCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE =f.size()
print('Successfully downloaded', lowerCAmelCase_, lowerCAmelCase_, 'bytes.' )
return filepath
@deprecated(
lowerCAmelCase_, 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=False, lowerCAmelCase_=False, lowerCAmelCase_=dtypes.floataa, lowerCAmelCase_=True, lowerCAmelCase_=5000, lowerCAmelCase_=None, lowerCAmelCase_=DEFAULT_SOURCE_URL, ):
"""simple docstring"""
if fake_data:
def fake():
return _DataSet(
[], [], fake_data=lowerCAmelCase_, one_hot=lowerCAmelCase_, dtype=lowerCAmelCase_, seed=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =fake()
SCREAMING_SNAKE_CASE =fake()
SCREAMING_SNAKE_CASE =fake()
return _Datasets(train=lowerCAmelCase_, validation=lowerCAmelCase_, test=lowerCAmelCase_ )
if not source_url: # empty string check
SCREAMING_SNAKE_CASE =DEFAULT_SOURCE_URL
SCREAMING_SNAKE_CASE ='train-images-idx3-ubyte.gz'
SCREAMING_SNAKE_CASE ='train-labels-idx1-ubyte.gz'
SCREAMING_SNAKE_CASE ='t10k-images-idx3-ubyte.gz'
SCREAMING_SNAKE_CASE ='t10k-labels-idx1-ubyte.gz'
SCREAMING_SNAKE_CASE =_maybe_download(
lowerCAmelCase_, lowerCAmelCase_, source_url + train_images_file )
with gfile.Open(lowerCAmelCase_, 'rb' ) as f:
SCREAMING_SNAKE_CASE =_extract_images(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_maybe_download(
lowerCAmelCase_, lowerCAmelCase_, source_url + train_labels_file )
with gfile.Open(lowerCAmelCase_, 'rb' ) as f:
SCREAMING_SNAKE_CASE =_extract_labels(lowerCAmelCase_, one_hot=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_maybe_download(
lowerCAmelCase_, lowerCAmelCase_, source_url + test_images_file )
with gfile.Open(lowerCAmelCase_, 'rb' ) as f:
SCREAMING_SNAKE_CASE =_extract_images(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_maybe_download(
lowerCAmelCase_, lowerCAmelCase_, source_url + test_labels_file )
with gfile.Open(lowerCAmelCase_, 'rb' ) as f:
SCREAMING_SNAKE_CASE =_extract_labels(lowerCAmelCase_, one_hot=lowerCAmelCase_ )
if not 0 <= validation_size <= len(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =(
'Validation size should be between 0 and '
F'{len(lowerCAmelCase_ )}. Received: {validation_size}.'
)
raise ValueError(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =train_images[:validation_size]
SCREAMING_SNAKE_CASE =train_labels[:validation_size]
SCREAMING_SNAKE_CASE =train_images[validation_size:]
SCREAMING_SNAKE_CASE =train_labels[validation_size:]
SCREAMING_SNAKE_CASE ={'dtype': dtype, 'reshape': reshape, 'seed': seed}
SCREAMING_SNAKE_CASE =_DataSet(lowerCAmelCase_, lowerCAmelCase_, **lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_DataSet(lowerCAmelCase_, lowerCAmelCase_, **lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_DataSet(lowerCAmelCase_, lowerCAmelCase_, **lowerCAmelCase_ )
return _Datasets(train=lowerCAmelCase_, validation=lowerCAmelCase_, test=lowerCAmelCase_ )
| 334 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_vision_model'
def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =qkv_bias
@classmethod
def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_qformer'
def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,):
super().__init__(pad_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =cross_attention_frequency
SCREAMING_SNAKE_CASE =encoder_hidden_size
@classmethod
def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip-2'
__UpperCAmelCase = True
def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ):
super().__init__(**snake_case )
if vision_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case )
SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case )
SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt'
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case )
SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE =num_query_tokens
SCREAMING_SNAKE_CASE =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE =1.0
SCREAMING_SNAKE_CASE =0.02
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,):
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,)
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE =self.text_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 | 1 |
from manim import *
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =Rectangle(height=0.5 ,width=0.5 )
SCREAMING_SNAKE_CASE =Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE =Rectangle(height=0.25 ,width=0.25 )
SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 )
SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 )
SCREAMING_SNAKE_CASE =VGroup(snake_case ,snake_case ).arrange(snake_case ,buff=0 )
SCREAMING_SNAKE_CASE =Text('CPU' ,font_size=24 )
SCREAMING_SNAKE_CASE =Group(snake_case ,snake_case ).arrange(snake_case ,buff=0.5 ,aligned_edge=snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(snake_case )
SCREAMING_SNAKE_CASE =[mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 )
SCREAMING_SNAKE_CASE =Text('GPU' ,font_size=24 )
SCREAMING_SNAKE_CASE =Group(snake_case ,snake_case ).arrange(snake_case ,buff=0.5 ,aligned_edge=snake_case )
gpu.move_to([-1, -1, 0] )
self.add(snake_case )
SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 )
SCREAMING_SNAKE_CASE =Text('Model' ,font_size=24 )
SCREAMING_SNAKE_CASE =Group(snake_case ,snake_case ).arrange(snake_case ,buff=0.5 ,aligned_edge=snake_case )
model.move_to([3, -1.0, 0] )
self.add(snake_case )
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =[]
for i, rect in enumerate(snake_case ):
SCREAMING_SNAKE_CASE =fill.copy().set_fill(snake_case ,opacity=0.8 )
target.move_to(snake_case )
model_arr.append(snake_case )
SCREAMING_SNAKE_CASE =Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case ,opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(snake_case )
self.add(*snake_case ,*snake_case )
SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 )
SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 )
SCREAMING_SNAKE_CASE =VGroup(snake_case ,snake_case ).arrange(snake_case ,buff=0 )
SCREAMING_SNAKE_CASE =Text('Disk' ,font_size=24 )
SCREAMING_SNAKE_CASE =Group(snake_case ,snake_case ).arrange(snake_case ,buff=0.5 ,aligned_edge=snake_case )
disk.move_to([-4, -1.25, 0] )
self.add(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE =MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
self.add(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,)
blue_text.next_to(snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() )
self.add(snake_case )
SCREAMING_SNAKE_CASE =MarkupText(
f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,)
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case ) )
SCREAMING_SNAKE_CASE =Square(0.3 )
input.set_fill(snake_case ,opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] ,snake_case ,buff=0.5 )
self.play(Write(snake_case ) )
input.generate_target()
input.target.next_to(model_arr[0] ,direction=snake_case ,buff=0.02 )
self.play(MoveToTarget(snake_case ) )
self.play(FadeOut(snake_case ) )
SCREAMING_SNAKE_CASE =Arrow(start=snake_case ,end=snake_case ,color=snake_case ,buff=0.5 )
a.next_to(model_arr[0].get_left() ,snake_case ,buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
SCREAMING_SNAKE_CASE =MarkupText(
f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,)
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case ,run_time=3 ) )
SCREAMING_SNAKE_CASE ={'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(snake_case ) ,Circumscribe(model_arr[0] ,color=snake_case ,**snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=snake_case ,**snake_case ) ,Circumscribe(gpu_rect[0] ,color=snake_case ,**snake_case ) ,)
self.play(MoveToTarget(model_cpu_arr[0] ) )
SCREAMING_SNAKE_CASE =a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 ,snake_case ,buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
SCREAMING_SNAKE_CASE =AnimationGroup(
FadeOut(snake_case ,run_time=0.5 ) ,MoveToTarget(snake_case ,run_time=0.5 ) ,FadeIn(snake_case ,run_time=0.5 ) ,lag_ratio=0.2 )
self.play(snake_case )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
SCREAMING_SNAKE_CASE =0.7
self.play(
Circumscribe(model_arr[i] ,**snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=snake_case ,**snake_case ) ,Circumscribe(gpu_rect[0] ,color=snake_case ,**snake_case ) ,Circumscribe(model_arr[i + 1] ,color=snake_case ,**snake_case ) ,)
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,)
else:
self.play(
MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,)
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 )
self.play(
Circumscribe(model_arr[-1] ,color=snake_case ,**snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=snake_case ,**snake_case ) ,Circumscribe(gpu_rect[0] ,color=snake_case ,**snake_case ) ,)
self.play(MoveToTarget(model_cpu_arr[i] ) )
SCREAMING_SNAKE_CASE =a_c
SCREAMING_SNAKE_CASE =a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 )
self.play(
FadeOut(snake_case ) ,FadeOut(snake_case ,run_time=0.5 ) ,)
SCREAMING_SNAKE_CASE =MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case ,run_time=3 ) ,MoveToTarget(snake_case ) )
self.wait()
| 334 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,):
SCREAMING_SNAKE_CASE =compute_mauve(
p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,)
return out
| 334 | 1 |
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_lowerCamelCase ="src/transformers"
_lowerCamelCase ="docs/source/en"
_lowerCamelCase ="."
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r', encoding='utf-8', newline='\n' ) as f:
SCREAMING_SNAKE_CASE =f.readlines()
# Find the start prompt.
SCREAMING_SNAKE_CASE =0
while not lines[start_index].startswith(lowerCAmelCase_ ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE =start_index
while not lines[end_index].startswith(lowerCAmelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_lowerCamelCase ="Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_lowerCamelCase =re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_lowerCamelCase =re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_lowerCamelCase =re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
_lowerCamelCase =direct_transformers_import(TRANSFORMERS_PATH)
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', lowerCAmelCase_ )
return [m.group(0 ) for m in matches]
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =2 if text == '✅' or text == '❌' else len(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(width - text_length) // 2
SCREAMING_SNAKE_CASE =width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
SCREAMING_SNAKE_CASE ={
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
SCREAMING_SNAKE_CASE ={name: config.replace('Config', '' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
SCREAMING_SNAKE_CASE =collections.defaultdict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =collections.defaultdict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =collections.defaultdict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =collections.defaultdict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =collections.defaultdict(lowerCAmelCase_ )
# Let's lookup through all transformers object (once).
for attr_name in dir(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =None
if attr_name.endswith('Tokenizer' ):
SCREAMING_SNAKE_CASE =slow_tokenizers
SCREAMING_SNAKE_CASE =attr_name[:-9]
elif attr_name.endswith('TokenizerFast' ):
SCREAMING_SNAKE_CASE =fast_tokenizers
SCREAMING_SNAKE_CASE =attr_name[:-13]
elif _re_tf_models.match(lowerCAmelCase_ ) is not None:
SCREAMING_SNAKE_CASE =tf_models
SCREAMING_SNAKE_CASE =_re_tf_models.match(lowerCAmelCase_ ).groups()[0]
elif _re_flax_models.match(lowerCAmelCase_ ) is not None:
SCREAMING_SNAKE_CASE =flax_models
SCREAMING_SNAKE_CASE =_re_flax_models.match(lowerCAmelCase_ ).groups()[0]
elif _re_pt_models.match(lowerCAmelCase_ ) is not None:
SCREAMING_SNAKE_CASE =pt_models
SCREAMING_SNAKE_CASE =_re_pt_models.match(lowerCAmelCase_ ).groups()[0]
if lookup_dict is not None:
while len(lowerCAmelCase_ ) > 0:
if attr_name in model_name_to_prefix.values():
SCREAMING_SNAKE_CASE =True
break
# Try again after removing the last word in the name
SCREAMING_SNAKE_CASE =''.join(camel_case_split(lowerCAmelCase_ )[:-1] )
# Let's build that table!
SCREAMING_SNAKE_CASE =list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
SCREAMING_SNAKE_CASE =['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
SCREAMING_SNAKE_CASE =[len(lowerCAmelCase_ ) + 2 for c in columns]
SCREAMING_SNAKE_CASE =max([len(lowerCAmelCase_ ) for name in model_names] ) + 2
# Build the table per se
SCREAMING_SNAKE_CASE ='|' + '|'.join([_center_text(lowerCAmelCase_, lowerCAmelCase_ ) for c, w in zip(lowerCAmelCase_, lowerCAmelCase_ )] ) + '|\n'
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n"
SCREAMING_SNAKE_CASE ={True: '✅', False: '❌'}
for name in model_names:
SCREAMING_SNAKE_CASE =model_name_to_prefix[name]
SCREAMING_SNAKE_CASE =[
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(lowerCAmelCase_, lowerCAmelCase_ ) for l, w in zip(lowerCAmelCase_, lowerCAmelCase_ )] ) + "|\n"
return table
def snake_case__ ( lowerCAmelCase_=False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =_find_text_in_file(
filename=os.path.join(lowerCAmelCase_, 'index.md' ), start_prompt='<!--This table is updated automatically from the auto modules', end_prompt='<!-- End table-->', )
SCREAMING_SNAKE_CASE =get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(lowerCAmelCase_, 'index.md' ), 'w', encoding='utf-8', newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_lowerCamelCase =parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'vit_mae'
def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =qkv_bias
SCREAMING_SNAKE_CASE =decoder_num_attention_heads
SCREAMING_SNAKE_CASE =decoder_hidden_size
SCREAMING_SNAKE_CASE =decoder_num_hidden_layers
SCREAMING_SNAKE_CASE =decoder_intermediate_size
SCREAMING_SNAKE_CASE =mask_ratio
SCREAMING_SNAKE_CASE =norm_pix_loss
| 334 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ="▁"
_lowerCamelCase ={"vocab_file": "sentencepiece.bpe.model"}
_lowerCamelCase ={
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model"
),
}
}
_lowerCamelCase ={
"facebook/nllb-200-distilled-600M": 10_24,
}
# fmt: off
_lowerCamelCase =["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = ['input_ids', 'attention_mask']
__UpperCAmelCase = []
__UpperCAmelCase = []
def __init__( self : List[str] ,snake_case : List[str] ,snake_case : Any="<s>" ,snake_case : str="</s>" ,snake_case : List[str]="</s>" ,snake_case : Dict="<s>" ,snake_case : Dict="<unk>" ,snake_case : List[str]="<pad>" ,snake_case : List[str]="<mask>" ,snake_case : Optional[int]=None ,snake_case : str=None ,snake_case : Dict=None ,snake_case : Optional[Dict[str, Any]] = None ,snake_case : Optional[int]=None ,snake_case : Tuple=False ,**snake_case : List[Any] ,):
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE =AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else mask_token
SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs
SCREAMING_SNAKE_CASE =legacy_behaviour
super().__init__(
bos_token=snake_case ,eos_token=snake_case ,unk_token=snake_case ,sep_token=snake_case ,cls_token=snake_case ,pad_token=snake_case ,mask_token=snake_case ,tokenizer_file=snake_case ,src_lang=snake_case ,tgt_lang=snake_case ,additional_special_tokens=snake_case ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=snake_case ,**snake_case ,)
SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(snake_case ) )
SCREAMING_SNAKE_CASE =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
SCREAMING_SNAKE_CASE ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =len(self.sp_model )
SCREAMING_SNAKE_CASE ={
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case )
}
SCREAMING_SNAKE_CASE ={v: k for k, v in self.lang_code_to_id.items()}
SCREAMING_SNAKE_CASE =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
SCREAMING_SNAKE_CASE ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
SCREAMING_SNAKE_CASE =list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
SCREAMING_SNAKE_CASE =src_lang if src_lang is not None else 'eng_Latn'
SCREAMING_SNAKE_CASE =self.lang_code_to_id[self._src_lang]
SCREAMING_SNAKE_CASE =tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Any ):
SCREAMING_SNAKE_CASE =self.__dict__.copy()
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Dict ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def _lowerCAmelCase ( self : Dict ):
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def _lowerCAmelCase ( self : Tuple ):
return self._src_lang
@src_lang.setter
def _lowerCAmelCase ( self : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _lowerCAmelCase ( self : str ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ,snake_case : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case ,token_ids_a=snake_case ,already_has_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =[1] * len(self.prefix_tokens )
SCREAMING_SNAKE_CASE =[1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(snake_case )) + suffix_ones
return prefix_ones + ([0] * len(snake_case )) + ([0] * len(snake_case )) + suffix_ones
def _lowerCAmelCase ( self : str ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCAmelCase ( self : Any ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.sep_token_id]
SCREAMING_SNAKE_CASE =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCAmelCase ( self : int ,snake_case : str ,snake_case : str ,snake_case : Optional[str] ,snake_case : Optional[str] ,**snake_case : Optional[Any] ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
SCREAMING_SNAKE_CASE =src_lang
SCREAMING_SNAKE_CASE =self(snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =self.convert_tokens_to_ids(snake_case )
SCREAMING_SNAKE_CASE =tgt_lang_id
return inputs
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE ={self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : str ):
return self.sp_model.encode(snake_case ,out_type=snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : Any ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
SCREAMING_SNAKE_CASE =self.sp_model.PieceToId(snake_case )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Any ):
SCREAMING_SNAKE_CASE =''.join(snake_case ).replace(snake_case ,' ' ).strip()
return out_string
def _lowerCAmelCase ( self : Any ,snake_case : str ,snake_case : Optional[str] = None ):
if not os.path.isdir(snake_case ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
SCREAMING_SNAKE_CASE =os.path.join(
snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case ,'wb' ) as fi:
SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto()
fi.write(snake_case )
return (out_vocab_file,)
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List[str] ,snake_case : str = "eng_Latn" ,snake_case : Optional[List[str]] = None ,snake_case : str = "fra_Latn" ,**snake_case : Dict ,):
SCREAMING_SNAKE_CASE =src_lang
SCREAMING_SNAKE_CASE =tgt_lang
return super().prepare_seqaseq_batch(snake_case ,snake_case ,**snake_case )
def _lowerCAmelCase ( self : List[str] ):
return self.set_src_lang_special_tokens(self.src_lang )
def _lowerCAmelCase ( self : str ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _lowerCAmelCase ( self : List[Any] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =[self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE =[self.cur_lang_code]
SCREAMING_SNAKE_CASE =[self.eos_token_id]
def _lowerCAmelCase ( self : str ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.lang_code_to_id[lang]
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =[self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE =[self.cur_lang_code]
SCREAMING_SNAKE_CASE =[self.eos_token_id]
| 334 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
_lowerCamelCase ={
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 | 1 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =[
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(snake_case ) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =[
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(snake_case ) )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =[
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(snake_case ) )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =[
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
self.assertTrue(is_safetensors_compatible(snake_case ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =[
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
# Removed: 'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(snake_case ) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =[
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE ='fp16'
self.assertTrue(is_safetensors_compatible(snake_case ,variant=snake_case ) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =[
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE ='fp16'
self.assertTrue(is_safetensors_compatible(snake_case ,variant=snake_case ) )
def _lowerCAmelCase ( self : int ):
# pass variant but use the non-variant filenames
SCREAMING_SNAKE_CASE =[
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
SCREAMING_SNAKE_CASE ='fp16'
self.assertTrue(is_safetensors_compatible(snake_case ,variant=snake_case ) )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =[
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE ='fp16'
self.assertFalse(is_safetensors_compatible(snake_case ,variant=snake_case ) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =[
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE ='fp16'
self.assertTrue(is_safetensors_compatible(snake_case ,variant=snake_case ) )
def _lowerCAmelCase ( self : Any ):
# pass variant but use the non-variant filenames
SCREAMING_SNAKE_CASE =[
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
SCREAMING_SNAKE_CASE ='fp16'
self.assertTrue(is_safetensors_compatible(snake_case ,variant=snake_case ) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =[
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
# 'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE ='fp16'
self.assertFalse(is_safetensors_compatible(snake_case ,variant=snake_case ) )
| 334 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : Any ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() )
def _lowerCAmelCase ( self : Union[str, Any] ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : int ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : Dict ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
@require_pil
def _lowerCAmelCase ( self : int ):
import PIL.Image
SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects:
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' ,snake_case )
self.assertFalse(kwargs['optimize_list_casting'] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
SCREAMING_SNAKE_CASE =pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(lowerCAmelCase_ )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=10 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=10 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1}, key=1 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' )
with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(lowerCAmelCase_, 1 )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if pa.types.is_list(lowerCAmelCase_ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if isinstance(lst[0], lowerCAmelCase_ ):
change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =value
@pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype', [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
], )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=lowerCAmelCase_ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow'
with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs, type(lowerCAmelCase_ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(lowerCAmelCase_ )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(stream=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
import PIL.Image
SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(
stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer:
writer.write({'image': image_path} )
writer.finalize()
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'], lowerCAmelCase_ )
with open(lowerCAmelCase_, 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(stream=lowerCAmelCase_ ) as writer:
writer._build_writer(inferred_schema=lowerCAmelCase_ )
assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
| 334 | 1 |
import math
import flax.linen as nn
import jax.numpy as jnp
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 1, lowerCAmelCase_ = 1, lowerCAmelCase_ = 1.0e4, lowerCAmelCase_ = False, lowerCAmelCase_ = 1.0, ):
"""simple docstring"""
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, F'Embedding dimension {embedding_dim} should be even'
SCREAMING_SNAKE_CASE =float(embedding_dim // 2 )
SCREAMING_SNAKE_CASE =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
SCREAMING_SNAKE_CASE =min_timescale * jnp.exp(jnp.arange(lowerCAmelCase_, dtype=jnp.floataa ) * -log_timescale_increment )
SCREAMING_SNAKE_CASE =jnp.expand_dims(lowerCAmelCase_, 1 ) * jnp.expand_dims(lowerCAmelCase_, 0 )
# scale embeddings
SCREAMING_SNAKE_CASE =scale * emb
if flip_sin_to_cos:
SCREAMING_SNAKE_CASE =jnp.concatenate([jnp.cos(lowerCAmelCase_ ), jnp.sin(lowerCAmelCase_ )], axis=1 )
else:
SCREAMING_SNAKE_CASE =jnp.concatenate([jnp.sin(lowerCAmelCase_ ), jnp.cos(lowerCAmelCase_ )], axis=1 )
SCREAMING_SNAKE_CASE =jnp.reshape(lowerCAmelCase_, [jnp.shape(lowerCAmelCase_ )[0], embedding_dim] )
return signal
class a_ ( nn.Module ):
"""simple docstring"""
__UpperCAmelCase = 32
__UpperCAmelCase = jnp.floataa
@nn.compact
def __call__( self : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =nn.Dense(self.time_embed_dim ,dtype=self.dtype ,name='linear_1' )(snake_case )
SCREAMING_SNAKE_CASE =nn.silu(snake_case )
SCREAMING_SNAKE_CASE =nn.Dense(self.time_embed_dim ,dtype=self.dtype ,name='linear_2' )(snake_case )
return temb
class a_ ( nn.Module ):
"""simple docstring"""
__UpperCAmelCase = 32
__UpperCAmelCase = False
__UpperCAmelCase = 1
@nn.compact
def __call__( self : Dict ,snake_case : List[str] ):
return get_sinusoidal_embeddings(
snake_case ,embedding_dim=self.dim ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.freq_shift )
| 334 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def snake_case__ ( ):
"""simple docstring"""
assert or_gate(0, 0 ) == 0
assert or_gate(0, 1 ) == 1
assert or_gate(1, 0 ) == 1
assert or_gate(1, 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 334 | 1 |
import baseaa
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return baseaa.aaaencode(string.encode('utf-8' ) )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return baseaa.aaadecode(lowerCAmelCase_ ).decode('utf-8' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={"vocab_file": "vocab.txt"}
_lowerCamelCase ={
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase ={
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
return [l.strip() for l in lines]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =load_vocab_file(snake_case )
SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE =unk_token
SCREAMING_SNAKE_CASE =cls_token
SCREAMING_SNAKE_CASE =pad_token
SCREAMING_SNAKE_CASE =mask_token
SCREAMING_SNAKE_CASE =eos_token
SCREAMING_SNAKE_CASE =self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ):
return text.split()
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ):
return len(self._id_to_token )
def _lowerCAmelCase ( self : List[str] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _lowerCAmelCase ( self : List[Any] ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Any ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.cls_token_id]
SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1]
if token_ids_a is not None:
mask += [0] * len(snake_case ) + [1]
return mask
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ):
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(snake_case ,'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def _lowerCAmelCase ( self : int ):
return self.get_vocab_size(with_added_tokens=snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ):
return super()._add_tokens(snake_case ,special_tokens=snake_case )
| 334 | 1 |
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
# TODO Update this
_lowerCamelCase ={
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'esm'
def __init__( self : List[Any] ,snake_case : Optional[Any]=None ,snake_case : Union[str, Any]=None ,snake_case : List[str]=None ,snake_case : str=768 ,snake_case : Optional[int]=12 ,snake_case : Any=12 ,snake_case : Optional[int]=3072 ,snake_case : List[str]=0.1 ,snake_case : str=0.1 ,snake_case : Tuple=1026 ,snake_case : Any=0.02 ,snake_case : List[Any]=1e-12 ,snake_case : Dict="absolute" ,snake_case : Tuple=True ,snake_case : Tuple=None ,snake_case : int=False ,snake_case : Optional[int]=False ,snake_case : Any=None ,snake_case : int=None ,**snake_case : List[str] ,):
super().__init__(pad_token_id=snake_case ,mask_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =emb_layer_norm_before
SCREAMING_SNAKE_CASE =token_dropout
SCREAMING_SNAKE_CASE =is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
SCREAMING_SNAKE_CASE =EsmFoldConfig()
elif isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =EsmFoldConfig(**snake_case )
SCREAMING_SNAKE_CASE =esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
SCREAMING_SNAKE_CASE =get_default_vocab_list()
else:
SCREAMING_SNAKE_CASE =vocab_list
else:
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.esmfold_config is not None and getattr(self.esmfold_config ,'use_esm_attn_map' ,snake_case ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =super().to_dict()
if isinstance(self.esmfold_config ,snake_case ):
SCREAMING_SNAKE_CASE =self.esmfold_config.to_dict()
return output
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = 0
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = 128
__UpperCAmelCase = None
def _lowerCAmelCase ( self : int ):
if self.trunk is None:
SCREAMING_SNAKE_CASE =TrunkConfig()
elif isinstance(self.trunk ,snake_case ):
SCREAMING_SNAKE_CASE =TrunkConfig(**self.trunk )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =asdict(self )
SCREAMING_SNAKE_CASE =self.trunk.to_dict()
return output
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 48
__UpperCAmelCase = 1_024
__UpperCAmelCase = 128
__UpperCAmelCase = 32
__UpperCAmelCase = 32
__UpperCAmelCase = 32
__UpperCAmelCase = 0
__UpperCAmelCase = 0
__UpperCAmelCase = False
__UpperCAmelCase = 4
__UpperCAmelCase = 128
__UpperCAmelCase = None
def _lowerCAmelCase ( self : str ):
if self.structure_module is None:
SCREAMING_SNAKE_CASE =StructureModuleConfig()
elif isinstance(self.structure_module ,snake_case ):
SCREAMING_SNAKE_CASE =StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
SCREAMING_SNAKE_CASE =self.sequence_state_dim // self.sequence_head_width
SCREAMING_SNAKE_CASE =self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =asdict(self )
SCREAMING_SNAKE_CASE =self.structure_module.to_dict()
return output
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 384
__UpperCAmelCase = 128
__UpperCAmelCase = 16
__UpperCAmelCase = 128
__UpperCAmelCase = 12
__UpperCAmelCase = 4
__UpperCAmelCase = 8
__UpperCAmelCase = 0.1
__UpperCAmelCase = 8
__UpperCAmelCase = 1
__UpperCAmelCase = 2
__UpperCAmelCase = 7
__UpperCAmelCase = 10
__UpperCAmelCase = 1e-8
__UpperCAmelCase = 1e5
def _lowerCAmelCase ( self : List[Any] ):
return asdict(self )
def snake_case__ ( ):
"""simple docstring"""
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : int ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Tuple ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 0
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def __call__( self : int ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ):
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one."
SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}'
print(lowerCAmelCase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {checkpoint_name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
def get_matched_characters(lowerCAmelCase_, lowerCAmelCase_ ) -> str:
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =min(len(_stra ), len(_stra ) ) // 2
for i, l in enumerate(_stra ):
SCREAMING_SNAKE_CASE =int(max(0, i - limit ) )
SCREAMING_SNAKE_CASE =int(min(i + limit + 1, len(_stra ) ) )
if l in _stra[left:right]:
matched.append(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =F'{_stra[0:_stra.index(lowerCAmelCase_ )]} {_stra[_stra.index(lowerCAmelCase_ ) + 1:]}'
return "".join(lowerCAmelCase_ )
# matching characters
SCREAMING_SNAKE_CASE =get_matched_characters(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =get_matched_characters(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ )
# transposition
SCREAMING_SNAKE_CASE =(
len([(ca, ca) for ca, ca in zip(lowerCAmelCase_, lowerCAmelCase_ ) if ca != ca] ) // 2
)
if not match_count:
SCREAMING_SNAKE_CASE =0.0
else:
SCREAMING_SNAKE_CASE =(
1
/ 3
* (
match_count / len(lowerCAmelCase_ )
+ match_count / len(lowerCAmelCase_ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
SCREAMING_SNAKE_CASE =0
for ca, ca in zip(stra[:4], stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 334 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =None
if token is not None:
SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
SCREAMING_SNAKE_CASE ='636036'
SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json()
return result["workflow_runs"]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
SCREAMING_SNAKE_CASE =workflow_run['id']
break
return workflow_run_id
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ )
if workflow_run_id is not None:
SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
SCREAMING_SNAKE_CASE =artifacts_links[artifact_name]
download_artifact(
artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={}
for artifact_name in artifact_names:
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' )
if os.path.isfile(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE ={}
with zipfile.ZipFile(lowerCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
with z.open(lowerCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' )
return results
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def snake_case__ ( ):
"""simple docstring"""
assert or_gate(0, 0 ) == 0
assert or_gate(0, 1 ) == 1
assert or_gate(1, 0 ) == 1
assert or_gate(1, 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 334 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_token_type_ids
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_choices
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =q_groups
SCREAMING_SNAKE_CASE =k_groups
SCREAMING_SNAKE_CASE =v_groups
SCREAMING_SNAKE_CASE =post_attention_groups
SCREAMING_SNAKE_CASE =intermediate_groups
SCREAMING_SNAKE_CASE =output_groups
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ):
return SqueezeBertConfig(
embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.num_choices
SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,labels=snake_case ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCAmelCase = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case )
@slow
def _lowerCAmelCase ( self : str ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_sentencepiece
@require_tokenizers
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
SCREAMING_SNAKE_CASE =torch.Size((1, 3) )
self.assertEqual(output.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
| 334 | 1 |
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
_lowerCamelCase =logging.get_logger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ,snake_case : Any ):
if isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =[label.strip() for label in labels.split(',' ) if label.strip()]
return labels
def __call__( self : List[str] ,snake_case : Any ,snake_case : Dict ,snake_case : List[Any] ):
if len(snake_case ) == 0 or len(snake_case ) == 0:
raise ValueError('You must include at least one label and at least one sequence.' )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
'The provided hypothesis_template "{}" was not able to be formatted with the target labels. '
'Make sure the passed template includes formatting syntax such as {{}} where the label should go.'
).format(snake_case ) )
if isinstance(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =[sequences]
SCREAMING_SNAKE_CASE =[]
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(snake_case )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(lowerCamelCase_ )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int ,snake_case : Any=ZeroShotClassificationArgumentHandler() ,*snake_case : List[Any] ,**snake_case : Tuple ):
SCREAMING_SNAKE_CASE =args_parser
super().__init__(*snake_case ,**snake_case )
if self.entailment_id == -1:
logger.warning(
'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to '
'-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' )
@property
def _lowerCAmelCase ( self : Tuple ):
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith('entail' ):
return ind
return -1
def _lowerCAmelCase ( self : str ,snake_case : Tuple ,snake_case : Dict=True ,snake_case : List[str]=True ,snake_case : Union[str, Any]=TruncationStrategy.ONLY_FIRST ,**snake_case : int ):
SCREAMING_SNAKE_CASE =self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
'Tokenizer was not supporting padding necessary for zero-shot, attempting to use '
' `pad_token=eos_token`' )
SCREAMING_SNAKE_CASE =self.tokenizer.eos_token
try:
SCREAMING_SNAKE_CASE =self.tokenizer(
snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,padding=snake_case ,truncation=snake_case ,)
except Exception as e:
if "too short" in str(snake_case ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
SCREAMING_SNAKE_CASE =self.tokenizer(
snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,padding=snake_case ,truncation=TruncationStrategy.DO_NOT_TRUNCATE ,)
else:
raise e
return inputs
def _lowerCAmelCase ( self : Dict ,**snake_case : List[Any] ):
if kwargs.get('multi_class' ,snake_case ) is not None:
SCREAMING_SNAKE_CASE =kwargs['multi_class']
logger.warning(
'The `multi_class` argument has been deprecated and renamed to `multi_label`. '
'`multi_class` will be removed in a future version of Transformers.' )
SCREAMING_SNAKE_CASE ={}
if "candidate_labels" in kwargs:
SCREAMING_SNAKE_CASE =self._args_parser._parse_labels(kwargs['candidate_labels'] )
if "hypothesis_template" in kwargs:
SCREAMING_SNAKE_CASE =kwargs['hypothesis_template']
SCREAMING_SNAKE_CASE ={}
if "multi_label" in kwargs:
SCREAMING_SNAKE_CASE =kwargs['multi_label']
return preprocess_params, {}, postprocess_params
def __call__( self : str ,snake_case : Union[str, List[str]] ,*snake_case : List[Any] ,**snake_case : Tuple ,):
if len(snake_case ) == 0:
pass
elif len(snake_case ) == 1 and "candidate_labels" not in kwargs:
SCREAMING_SNAKE_CASE =args[0]
else:
raise ValueError(f'Unable to understand extra arguments {args}' )
return super().__call__(snake_case ,**snake_case )
def _lowerCAmelCase ( self : Tuple ,snake_case : Tuple ,snake_case : Any=None ,snake_case : Union[str, Any]="This example is {}." ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self._args_parser(snake_case ,snake_case ,snake_case )
for i, (candidate_label, sequence_pair) in enumerate(zip(snake_case ,snake_case ) ):
SCREAMING_SNAKE_CASE =self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(snake_case ) - 1,
**model_input,
}
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ):
SCREAMING_SNAKE_CASE =inputs['candidate_label']
SCREAMING_SNAKE_CASE =inputs['sequence']
SCREAMING_SNAKE_CASE ={k: inputs[k] for k in self.tokenizer.model_input_names}
SCREAMING_SNAKE_CASE =self.model(**snake_case )
SCREAMING_SNAKE_CASE ={
'candidate_label': candidate_label,
'sequence': sequence,
'is_last': inputs['is_last'],
**outputs,
}
return model_outputs
def _lowerCAmelCase ( self : Any ,snake_case : Union[str, Any] ,snake_case : List[Any]=False ):
SCREAMING_SNAKE_CASE =[outputs['candidate_label'] for outputs in model_outputs]
SCREAMING_SNAKE_CASE =[outputs['sequence'] for outputs in model_outputs]
SCREAMING_SNAKE_CASE =np.concatenate([output['logits'].numpy() for output in model_outputs] )
SCREAMING_SNAKE_CASE =logits.shape[0]
SCREAMING_SNAKE_CASE =len(snake_case )
SCREAMING_SNAKE_CASE =N // n
SCREAMING_SNAKE_CASE =logits.reshape((num_sequences, n, -1) )
if multi_label or len(snake_case ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
SCREAMING_SNAKE_CASE =self.entailment_id
SCREAMING_SNAKE_CASE =-1 if entailment_id == 0 else 0
SCREAMING_SNAKE_CASE =reshaped_outputs[..., [contradiction_id, entailment_id]]
SCREAMING_SNAKE_CASE =np.exp(snake_case ) / np.exp(snake_case ).sum(-1 ,keepdims=snake_case )
SCREAMING_SNAKE_CASE =scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
SCREAMING_SNAKE_CASE =reshaped_outputs[..., self.entailment_id]
SCREAMING_SNAKE_CASE =np.exp(snake_case ) / np.exp(snake_case ).sum(-1 ,keepdims=snake_case )
SCREAMING_SNAKE_CASE =list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 334 |
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
@property
def _lowerCAmelCase ( self : List[Any] ):
return self.feat_extract_tester.prepare_feat_extract_dict()
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case ,'feature_size' ) )
self.assertTrue(hasattr(snake_case ,'sampling_rate' ) )
self.assertTrue(hasattr(snake_case ,'padding_value' ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ):
def _inputs_have_equal_length(snake_case : Dict ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : str ,snake_case : Dict ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length
SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size
SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ):
def _inputs_have_equal_length(snake_case : str ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
# truncate to smallest
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to smallest with np
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to middle
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =12
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
SCREAMING_SNAKE_CASE =len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
def _lowerCAmelCase ( self : Optional[int] ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : Tuple ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : List[str] ):
self._check_truncation(numpify=snake_case )
def _lowerCAmelCase ( self : int ):
self._check_truncation(numpify=snake_case )
@require_torch
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =min(snake_case )
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
| 334 | 1 |
from __future__ import annotations
_lowerCamelCase =list[list[int]]
# assigning initial values to the grid
_lowerCamelCase =[
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
_lowerCamelCase =[
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if location := find_empty_location(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1, 10 ):
if is_safe(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =digit
if sudoku(lowerCAmelCase_ ) is not None:
return grid
SCREAMING_SNAKE_CASE =0
return None
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
for row in grid:
for cell in row:
print(lowerCAmelCase_, end=' ' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
_lowerCamelCase =sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 334 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_lowerCamelCase =2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_lowerCamelCase =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_lowerCamelCase =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] )
return (item, float(lowerCAmelCase_ ))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 )
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ )
if random.uniform(0, 1 ) < MUTATION_PROBABILITY:
SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ )
return "".join(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
# Generate more children proportionally to the fitness score.
SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1
SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n
for _ in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ )
# Append new string to the population list.
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
return pop
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
if N_POPULATION < N_SELECTED:
SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(lowerCAmelCase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} )
if not_in_genes_list:
SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(lowerCAmelCase_ )
# Generate random starting population.
SCREAMING_SNAKE_CASE =[]
for _ in range(lowerCAmelCase_ ):
population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowerCAmelCase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population]
# Check if there is a matching evolution.
SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowerCAmelCase_ )
# Normalize population score to be between 0 and 1.
SCREAMING_SNAKE_CASE =[
(item, score / len(lowerCAmelCase_ )) for item, score in population_score
]
# This is selection
for i in range(lowerCAmelCase_ ):
population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowerCAmelCase_ ) > N_POPULATION:
break
if __name__ == "__main__":
_lowerCamelCase =(
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
_lowerCamelCase =list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list)
print(
f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'
)
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
SCREAMING_SNAKE_CASE =4
SCREAMING_SNAKE_CASE =(1 << p) - 1
for _ in range(p - 2 ):
SCREAMING_SNAKE_CASE =((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 334 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _lowerCAmelCase ( self : Optional[Any] ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCAmelCase ( self : Union[str, Any] ):
# This test is for deprecated behavior and can be removed in v5
try:
SCREAMING_SNAKE_CASE =tempfile.mktemp()
with open(snake_case ,'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case )
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case )
finally:
os.remove(snake_case )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' ,'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size ,1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def _lowerCAmelCase ( self : int ):
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class a_ ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def _lowerCAmelCase ( cls : List[Any] ):
SCREAMING_SNAKE_CASE =TOKEN
HfFolder.save_token(snake_case )
@classmethod
def _lowerCAmelCase ( cls : Tuple ):
try:
delete_repo(token=cls._token ,repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def _lowerCAmelCase ( self : Any ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
def _lowerCAmelCase ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
@require_tokenizers
def _lowerCAmelCase ( self : str ):
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case )
bert_tokenizer.save_pretrained(snake_case )
SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case )
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(
f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] )
def _lowerCAmelCase ( self : Optional[Any] ):
# Even if the offsets are wrong, we necessarily output correct string
# parts.
SCREAMING_SNAKE_CASE =Trie()
SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] )
self.assertEqual(snake_case ,['AB', 'C'] )
| 334 | 1 |
from collections import deque
class a_ :
"""simple docstring"""
def __init__( self : List[str] ,snake_case : str ,snake_case : int ,snake_case : int ):
SCREAMING_SNAKE_CASE =process_name # process name
SCREAMING_SNAKE_CASE =arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
SCREAMING_SNAKE_CASE =arrival_time
SCREAMING_SNAKE_CASE =burst_time # remaining burst time
SCREAMING_SNAKE_CASE =0 # total time of the process wait in ready queue
SCREAMING_SNAKE_CASE =0 # time from arrival time to completion time
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : int ,snake_case : list[int] ,snake_case : deque[Process] ,snake_case : int ,):
# total number of mlfq's queues
SCREAMING_SNAKE_CASE =number_of_queues
# time slice of queues that round robin algorithm applied
SCREAMING_SNAKE_CASE =time_slices
# unfinished process is in this ready_queue
SCREAMING_SNAKE_CASE =queue
# current time
SCREAMING_SNAKE_CASE =current_time
# finished process is in this sequence queue
SCREAMING_SNAKE_CASE =deque()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =[]
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def _lowerCAmelCase ( self : Dict ,snake_case : list[Process] ):
SCREAMING_SNAKE_CASE =[]
for i in range(len(snake_case ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def _lowerCAmelCase ( self : str ,snake_case : list[Process] ):
SCREAMING_SNAKE_CASE =[]
for i in range(len(snake_case ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def _lowerCAmelCase ( self : Dict ,snake_case : list[Process] ):
SCREAMING_SNAKE_CASE =[]
for i in range(len(snake_case ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def _lowerCAmelCase ( self : str ,snake_case : deque[Process] ):
return [q.burst_time for q in queue]
def _lowerCAmelCase ( self : str ,snake_case : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def _lowerCAmelCase ( self : Any ,snake_case : deque[Process] ):
SCREAMING_SNAKE_CASE =deque() # sequence deque of finished process
while len(snake_case ) != 0:
SCREAMING_SNAKE_CASE =ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(snake_case )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
SCREAMING_SNAKE_CASE =0
# set the process's turnaround time because it is finished
SCREAMING_SNAKE_CASE =self.current_time - cp.arrival_time
# set the completion time
SCREAMING_SNAKE_CASE =self.current_time
# add the process to queue that has finished queue
finished.append(snake_case )
self.finish_queue.extend(snake_case ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def _lowerCAmelCase ( self : int ,snake_case : deque[Process] ,snake_case : int ):
SCREAMING_SNAKE_CASE =deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(snake_case ) ):
SCREAMING_SNAKE_CASE =ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(snake_case )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
SCREAMING_SNAKE_CASE =self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(snake_case )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
SCREAMING_SNAKE_CASE =0
# set the finish time
SCREAMING_SNAKE_CASE =self.current_time
# update the process' turnaround time because it is finished
SCREAMING_SNAKE_CASE =self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(snake_case )
self.finish_queue.extend(snake_case ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def _lowerCAmelCase ( self : List[Any] ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.round_robin(
self.ready_queue ,self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
_lowerCamelCase =Process("P1", 0, 53)
_lowerCamelCase =Process("P2", 0, 17)
_lowerCamelCase =Process("P3", 0, 68)
_lowerCamelCase =Process("P4", 0, 24)
_lowerCamelCase =3
_lowerCamelCase =[17, 25]
_lowerCamelCase =deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])})
_lowerCamelCase =Process("P1", 0, 53)
_lowerCamelCase =Process("P2", 0, 17)
_lowerCamelCase =Process("P3", 0, 68)
_lowerCamelCase =Process("P4", 0, 24)
_lowerCamelCase =3
_lowerCamelCase =[17, 25]
_lowerCamelCase =deque([Pa, Pa, Pa, Pa])
_lowerCamelCase =MLFQ(number_of_queues, time_slices, queue, 0)
_lowerCamelCase =mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
f'waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print completion times of processes(P1, P2, P3, P4)
print(
f'completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
f'turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print sequence of finished processes
print(
f'sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'
)
| 334 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase =[
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
_lowerCamelCase =[
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' )
return sd
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =OrderedDict()
SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
SCREAMING_SNAKE_CASE =key
for name_pair in rename_keys_prefix:
SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] )
SCREAMING_SNAKE_CASE =d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
SCREAMING_SNAKE_CASE ='pretraining'
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024}
else:
raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
SCREAMING_SNAKE_CASE ='multichoice'
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
SCREAMING_SNAKE_CASE ='vqa_advanced'
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129}
SCREAMING_SNAKE_CASE ='vqa'
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={
'visual_embedding_dim': 1024,
'num_labels': 2,
}
SCREAMING_SNAKE_CASE ='nlvr'
SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ )
# Load State Dict
SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ )
if model_type == "pretraining":
SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ )
elif model_type == "vqa":
SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ )
elif model_type == "nlvr":
SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ )
elif model_type == "multichoice":
SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
# Save Checkpoints
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
_lowerCamelCase =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 334 | 1 |
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =torch.nn.Linear(10 ,10 )
SCREAMING_SNAKE_CASE =torch.optim.SGD(model.parameters() ,0.1 )
SCREAMING_SNAKE_CASE =Accelerator()
SCREAMING_SNAKE_CASE =accelerator.prepare(snake_case )
try:
pickle.loads(pickle.dumps(snake_case ) )
except Exception as e:
self.fail(f'Accelerated optimizer pickling failed with {e}' )
AcceleratorState._reset_state()
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'nllb-moe'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE =router_z_loss_coef
SCREAMING_SNAKE_CASE =router_aux_loss_coef
SCREAMING_SNAKE_CASE =decoder_sparse_step
SCREAMING_SNAKE_CASE =encoder_sparse_step
SCREAMING_SNAKE_CASE =num_experts
SCREAMING_SNAKE_CASE =expert_capacity
SCREAMING_SNAKE_CASE =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' )
SCREAMING_SNAKE_CASE =router_dtype
SCREAMING_SNAKE_CASE =router_ignore_padding_tokens
SCREAMING_SNAKE_CASE =batch_prioritized_routing
SCREAMING_SNAKE_CASE =second_expert_policy
SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping
SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction
SCREAMING_SNAKE_CASE =moe_token_dropout
SCREAMING_SNAKE_CASE =output_router_logits
super().__init__(
pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
| 334 | 1 |
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a_ ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = GPTSanJapaneseTokenizer
__UpperCAmelCase = False
__UpperCAmelCase = {'do_clean_text': False, 'add_prefix_space': False}
def _lowerCAmelCase ( self : List[str] ):
super().setUp()
# fmt: off
SCREAMING_SNAKE_CASE =['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>']
# fmt: on
SCREAMING_SNAKE_CASE ={'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀
SCREAMING_SNAKE_CASE ={'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['emoji_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
with open(self.emoji_file ,'w' ) as emoji_writer:
emoji_writer.write(json.dumps(snake_case ) )
def _lowerCAmelCase ( self : Dict ,**snake_case : List[str] ):
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname ,**snake_case )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE ='こんにちは、世界。 \nこんばんは、㔺界。😀'
SCREAMING_SNAKE_CASE ='こんにちは、世界。 \nこんばんは、世界。😀'
return input_text, output_text
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.get_input_output_texts(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.encode(snake_case ,add_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case )
return text, ids
def _lowerCAmelCase ( self : List[Any] ):
pass # TODO add if relevant
def _lowerCAmelCase ( self : str ):
pass # TODO add if relevant
def _lowerCAmelCase ( self : Any ):
pass # TODO add if relevant
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.get_tokenizer()
# Testing tokenization
SCREAMING_SNAKE_CASE ='こんにちは、世界。 こんばんは、㔺界。'
SCREAMING_SNAKE_CASE =['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。']
SCREAMING_SNAKE_CASE =tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case ,snake_case )
# Testing conversion to ids without special tokens
SCREAMING_SNAKE_CASE =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
SCREAMING_SNAKE_CASE =tokenizer.convert_tokens_to_ids(snake_case )
self.assertListEqual(snake_case ,snake_case )
# Testing conversion to ids with special tokens
SCREAMING_SNAKE_CASE =tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
SCREAMING_SNAKE_CASE =tokenizer.convert_tokens_to_ids(snake_case )
self.assertListEqual(snake_case ,snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.get_tokenizer()
# Testing tokenization
SCREAMING_SNAKE_CASE ='こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'
SCREAMING_SNAKE_CASE ='こんにちは、、、、世界。こんばんは、、、、世界。'
SCREAMING_SNAKE_CASE =tokenizer.encode(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.decode(snake_case )
self.assertEqual(snake_case ,snake_case )
@slow
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
SCREAMING_SNAKE_CASE ='こんにちは、世界。'
SCREAMING_SNAKE_CASE ='こんばんは、㔺界。😀'
SCREAMING_SNAKE_CASE ='こんにちは、世界。こんばんは、世界。😀'
SCREAMING_SNAKE_CASE =tokenizer.encode(prefix_text + input_text )
SCREAMING_SNAKE_CASE =tokenizer.encode('' ,prefix_text=prefix_text + input_text )
SCREAMING_SNAKE_CASE =tokenizer.encode(snake_case ,prefix_text=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.decode(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.decode(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.decode(snake_case )
self.assertEqual(snake_case ,snake_case )
self.assertEqual(snake_case ,snake_case )
self.assertEqual(snake_case ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
SCREAMING_SNAKE_CASE ='こんにちは、世界。'
SCREAMING_SNAKE_CASE ='こんばんは、㔺界。😀'
SCREAMING_SNAKE_CASE =len(tokenizer.encode(snake_case ) ) - 2
SCREAMING_SNAKE_CASE =len(tokenizer.encode(snake_case ) ) - 2
SCREAMING_SNAKE_CASE =[1] + [0] * (len_prefix + len_text + 1)
SCREAMING_SNAKE_CASE =[1] * (len_prefix + len_text + 1) + [0]
SCREAMING_SNAKE_CASE =[1] + [1] * (len_prefix) + [0] * (len_text + 1)
SCREAMING_SNAKE_CASE =tokenizer(prefix_text + input_text ).token_type_ids
SCREAMING_SNAKE_CASE =tokenizer('' ,prefix_text=prefix_text + input_text ).token_type_ids
SCREAMING_SNAKE_CASE =tokenizer(snake_case ,prefix_text=snake_case ).token_type_ids
self.assertListEqual(snake_case ,snake_case )
self.assertListEqual(snake_case ,snake_case )
self.assertListEqual(snake_case ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
SCREAMING_SNAKE_CASE =tokenizer.encode('あンいワ' )
SCREAMING_SNAKE_CASE =tokenizer.encode('' ,prefix_text='あンいワ' )
SCREAMING_SNAKE_CASE =tokenizer.encode('いワ' ,prefix_text='あン' )
self.assertEqual(tokenizer.decode(snake_case ) ,tokenizer.decode(snake_case ) )
self.assertEqual(tokenizer.decode(snake_case ) ,tokenizer.decode(snake_case ) )
self.assertNotEqual(snake_case ,snake_case )
self.assertNotEqual(snake_case ,snake_case )
self.assertEqual(x_token_a[1] ,x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] ,x_token_a[3] ) # SEG token
@slow
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
SCREAMING_SNAKE_CASE =[['武田信玄', 'は、'], ['織田信長', 'の配下の、']]
SCREAMING_SNAKE_CASE =tokenizer(snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.batch_encode_plus(snake_case ,padding=snake_case )
# fmt: off
SCREAMING_SNAKE_CASE =[[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]]
SCREAMING_SNAKE_CASE =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
SCREAMING_SNAKE_CASE =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids ,snake_case )
self.assertListEqual(x_token.token_type_ids ,snake_case )
self.assertListEqual(x_token.attention_mask ,snake_case )
self.assertListEqual(x_token_a.input_ids ,snake_case )
self.assertListEqual(x_token_a.token_type_ids ,snake_case )
self.assertListEqual(x_token_a.attention_mask ,snake_case )
def _lowerCAmelCase ( self : List[Any] ):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def _lowerCAmelCase ( self : Tuple ):
# tokenizer has no padding token
pass
| 334 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =sorted(numsa + numsa )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()]
_lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()]
print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
| 334 | 1 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =100
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =out_indices
SCREAMING_SNAKE_CASE =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE =num_patches + 1
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =BeitModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.type_sequence_label_size
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =BeitModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case )
def _lowerCAmelCase ( self : Any ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]:
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.gradient_checkpointing_enable()
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =_config_zero_init(snake_case )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(config=snake_case )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,)
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case )
# prepare bool_masked_pos
SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =281
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 21841) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =2396
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] ,device=snake_case ,)
else:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] ,device=snake_case ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] )
SCREAMING_SNAKE_CASE =torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,snake_case )
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case )
SCREAMING_SNAKE_CASE =torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape ,snake_case )
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'transfo-xl'
__UpperCAmelCase = ['mems']
__UpperCAmelCase = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =[]
self.cutoffs.extend(snake_case )
if proj_share_all_but_first:
SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs )
else:
SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs )
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =d_embed
SCREAMING_SNAKE_CASE =d_head
SCREAMING_SNAKE_CASE =d_inner
SCREAMING_SNAKE_CASE =div_val
SCREAMING_SNAKE_CASE =pre_lnorm
SCREAMING_SNAKE_CASE =n_layer
SCREAMING_SNAKE_CASE =n_head
SCREAMING_SNAKE_CASE =mem_len
SCREAMING_SNAKE_CASE =same_length
SCREAMING_SNAKE_CASE =attn_type
SCREAMING_SNAKE_CASE =clamp_len
SCREAMING_SNAKE_CASE =sample_softmax
SCREAMING_SNAKE_CASE =adaptive
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =dropatt
SCREAMING_SNAKE_CASE =untie_r
SCREAMING_SNAKE_CASE =init
SCREAMING_SNAKE_CASE =init_range
SCREAMING_SNAKE_CASE =proj_init_std
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =layer_norm_epsilon
super().__init__(eos_token_id=snake_case ,**snake_case )
@property
def _lowerCAmelCase ( self : str ):
# Message copied from Transformer-XL documentation
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 334 | 1 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,):
SCREAMING_SNAKE_CASE =compute_mauve(
p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,)
return out
| 334 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =100
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =out_indices
SCREAMING_SNAKE_CASE =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE =num_patches + 1
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =BeitModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.type_sequence_label_size
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =BeitModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case )
def _lowerCAmelCase ( self : Any ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]:
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.gradient_checkpointing_enable()
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =_config_zero_init(snake_case )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(config=snake_case )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,)
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case )
# prepare bool_masked_pos
SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =281
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 21841) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =2396
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] ,device=snake_case ,)
else:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] ,device=snake_case ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] )
SCREAMING_SNAKE_CASE =torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,snake_case )
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case )
SCREAMING_SNAKE_CASE =torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape ,snake_case )
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase ={
"configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimesformerModel",
"TimesformerForVideoClassification",
"TimesformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : List[str] ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Optional[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 1
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = True
def __call__( self : str ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch:
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any ,snake_case : nn.Module ):
super().__init__()
SCREAMING_SNAKE_CASE =[]
# - get the stem
feature_blocks.append(('conv1', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('block' ), f'Unexpected layer name {k}'
SCREAMING_SNAKE_CASE =len(snake_case ) + 1
feature_blocks.append((f'res{block_index}', v) )
SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ):
return get_trunk_forward_outputs(
snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ):
SCREAMING_SNAKE_CASE =x.split('-' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Optional[Any] ,snake_case : str ):
# default to timm!
if x not in self:
SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case )
SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) )
else:
SCREAMING_SNAKE_CASE =super().__getitem__(snake_case )
return val
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __getitem__( self : int ,snake_case : str ):
if "seer" in x and "in1k" not in x:
SCREAMING_SNAKE_CASE =RegNetModel
else:
SCREAMING_SNAKE_CASE =RegNetForImageClassification
return val
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for from_key, to_key in keys:
SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone()
print(F'Copied key={from_key} to={to_key}' )
return to_state_dict
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func()
SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
if from_state_dict is not None:
SCREAMING_SNAKE_CASE =[]
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')]
SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ )
our_model.load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(
our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state
)
SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1]
assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'regnet-x-002': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ),
'regnet-x-004': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ),
'regnet-x-006': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ),
'regnet-x-008': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ),
'regnet-x-016': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ),
'regnet-x-032': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ),
'regnet-x-040': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ),
'regnet-x-064': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ),
'regnet-x-080': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ),
'regnet-x-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ),
'regnet-x-160': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ),
'regnet-x-320': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ),
# y variant
'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
'regnet-y-004': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
'regnet-y-006': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
'regnet-y-008': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
'regnet-y-016': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
'regnet-y-032': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ),
'regnet-y-040': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ),
'regnet-y-064': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ),
'regnet-y-080': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ),
'regnet-y-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ),
'regnet-y-160': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ),
'regnet-y-320': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer': RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer': RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
# finetuned on imagenet
'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
}
SCREAMING_SNAKE_CASE =NameToOurModelFuncMap()
SCREAMING_SNAKE_CASE =NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]:
SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' )
SCREAMING_SNAKE_CASE =model_func()
# check if we have a head, if yes add it
SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model']
SCREAMING_SNAKE_CASE =model_state_dict['trunk']
model.load_state_dict(lowerCAmelCase_ )
return model.eval(), model_state_dict["heads"]
# pretrained
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json",
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'pegasus'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : str ,snake_case : List[str]=50265 ,snake_case : Optional[Any]=1024 ,snake_case : str=12 ,snake_case : List[Any]=4096 ,snake_case : Optional[Any]=16 ,snake_case : List[Any]=12 ,snake_case : Tuple=4096 ,snake_case : int=16 ,snake_case : Any=0.0 ,snake_case : Any=0.0 ,snake_case : str=True ,snake_case : Tuple=True ,snake_case : Union[str, Any]="gelu" ,snake_case : List[str]=1024 ,snake_case : Any=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : Union[str, Any]=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : List[Any]=0 ,snake_case : Optional[Any]=False ,snake_case : Any=0 ,snake_case : Tuple=1 ,snake_case : List[Any]=1 ,**snake_case : Tuple ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,forced_eos_token_id=snake_case ,**snake_case ,)
@property
def _lowerCAmelCase ( self : List[str] ):
return self.encoder_attention_heads
@property
def _lowerCAmelCase ( self : str ):
return self.d_model
| 334 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase =16
_lowerCamelCase =32
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' )
def tokenize_function(lowerCAmelCase_ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE =datasets.map(
lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowerCAmelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE =16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE =8
else:
SCREAMING_SNAKE_CASE =None
return tokenizer.pad(
lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCamelCase =mocked_dataloaders # noqa: F811
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1":
SCREAMING_SNAKE_CASE =2
# Initialize accelerator
SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE =config['lr']
SCREAMING_SNAKE_CASE =int(config['num_epochs'] )
SCREAMING_SNAKE_CASE =int(config['seed'] )
SCREAMING_SNAKE_CASE =int(config['batch_size'] )
SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCAmelCase_ )
def inner_training_loop(lowerCAmelCase_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCAmelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE =model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# Now we train the model
for epoch in range(lowerCAmelCase_ ):
model.train()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.loss
accelerator.backward(lowerCAmelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCAmelCase_, references=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.', )
parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCAmelCase_, lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 334 | 1 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if days_between_payments <= 0:
raise ValueError('days_between_payments must be > 0' )
if daily_interest_rate < 0:
raise ValueError('daily_interest_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * daily_interest_rate * days_between_payments
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
if number_of_compounding_periods <= 0:
raise ValueError('number_of_compounding_periods must be > 0' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
if number_of_years <= 0:
raise ValueError('number_of_years must be > 0' )
if nominal_annual_percentage_rate < 0:
raise ValueError('nominal_annual_percentage_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return compound_interest(
lowerCAmelCase_, nominal_annual_percentage_rate / 365, number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return " ".join(
''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =False
while is_sorted is False: # Until all the indices are traversed keep looping
SCREAMING_SNAKE_CASE =True
for i in range(0, len(lowerCAmelCase_ ) - 1, 2 ): # iterating over all even indices
if input_list[i] > input_list[i + 1]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =input_list[i + 1], input_list[i]
# swapping if elements not in order
SCREAMING_SNAKE_CASE =False
for i in range(1, len(lowerCAmelCase_ ) - 1, 2 ): # iterating over all odd indices
if input_list[i] > input_list[i + 1]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =input_list[i + 1], input_list[i]
# swapping if elements not in order
SCREAMING_SNAKE_CASE =False
return input_list
if __name__ == "__main__":
print("Enter list to be sorted")
_lowerCamelCase =[int(x) for x in input().split()]
# inputing elements of the list in one line
_lowerCamelCase =odd_even_sort(input_list)
print("The sorted list is")
print(sorted_list)
| 334 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_lowerCamelCase ="sshleifer/mar_enro_6_3_student"
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
super().setUp()
SCREAMING_SNAKE_CASE =cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,)
SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ):
MarianMTModel.from_pretrained(snake_case )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE ={
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro'
SCREAMING_SNAKE_CASE ={
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' )
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =(
['distillation.py']
+ bash_script.split()
+ [
f'--output_dir={output_dir}',
'--gpus=1',
'--learning_rate=1e-3',
f'--num_train_epochs={epochs}',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
SCREAMING_SNAKE_CASE =distill_main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 334 | 1 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =SMALL_MODEL_IDENTIFIER
SCREAMING_SNAKE_CASE ='pt'
SCREAMING_SNAKE_CASE ='tf'
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(snake_case )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =TFAutoModel.from_pretrained(self.test_model ,from_pt=snake_case )
model_tf.save_pretrained(snake_case )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE ='mock_framework'
# Framework provided - return whatever the user provides
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(self.test_model ,snake_case )
self.assertEqual(snake_case ,snake_case )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case )
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(snake_case ,snake_case )
self.assertEqual(snake_case ,snake_case )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case )
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(snake_case ,snake_case )
self.assertEqual(snake_case ,snake_case )
def _lowerCAmelCase ( self : Tuple ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case )
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(snake_case )
self.assertEqual(snake_case ,self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case )
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(snake_case )
self.assertEqual(snake_case ,self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =MagicMock(return_value=snake_case )
with patch('transformers.onnx.features.is_tf_available' ,snake_case ):
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case ,self.framework_pt )
# PyTorch not in environment -> use TensorFlow
SCREAMING_SNAKE_CASE =MagicMock(return_value=snake_case )
with patch('transformers.onnx.features.is_torch_available' ,snake_case ):
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case ,self.framework_tf )
# Both in environment -> use PyTorch
SCREAMING_SNAKE_CASE =MagicMock(return_value=snake_case )
SCREAMING_SNAKE_CASE =MagicMock(return_value=snake_case )
with patch('transformers.onnx.features.is_tf_available' ,snake_case ), patch(
'transformers.onnx.features.is_torch_available' ,snake_case ):
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case ,self.framework_pt )
# Both not in environment -> raise error
SCREAMING_SNAKE_CASE =MagicMock(return_value=snake_case )
SCREAMING_SNAKE_CASE =MagicMock(return_value=snake_case )
with patch('transformers.onnx.features.is_tf_available' ,snake_case ), patch(
'transformers.onnx.features.is_torch_available' ,snake_case ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =FeaturesManager.determine_framework(self.test_model )
| 334 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_vision_model'
def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =qkv_bias
@classmethod
def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_qformer'
def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,):
super().__init__(pad_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =cross_attention_frequency
SCREAMING_SNAKE_CASE =encoder_hidden_size
@classmethod
def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip-2'
__UpperCAmelCase = True
def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ):
super().__init__(**snake_case )
if vision_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case )
SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case )
SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt'
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case )
SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE =num_query_tokens
SCREAMING_SNAKE_CASE =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE =1.0
SCREAMING_SNAKE_CASE =0.02
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,):
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,)
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE =self.text_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowerCamelCase ={"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,):
SCREAMING_SNAKE_CASE =compute_mauve(
p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,)
return out
| 334 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = ['image_processor', 'tokenizer']
__UpperCAmelCase = 'ViTImageProcessor'
__UpperCAmelCase = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self : List[str] ,snake_case : List[str]=None ,snake_case : Optional[int]=None ,**snake_case : Dict ):
SCREAMING_SNAKE_CASE =None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' ,snake_case ,)
SCREAMING_SNAKE_CASE =kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(snake_case ,snake_case )
def __call__( self : Union[str, Any] ,snake_case : List[Any]=None ,snake_case : Any=None ,snake_case : Optional[int]=None ,snake_case : Union[str, Any]=None ,**snake_case : Any ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
SCREAMING_SNAKE_CASE =self.tokenizer(snake_case ,return_tensors=snake_case ,**snake_case )
if visual_prompt is not None:
SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,return_tensors=snake_case ,**snake_case )
if images is not None:
SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,return_tensors=snake_case ,**snake_case )
if visual_prompt is not None and images is not None:
SCREAMING_SNAKE_CASE ={
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
SCREAMING_SNAKE_CASE =image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
SCREAMING_SNAKE_CASE ={
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**snake_case ) ,tensor_type=snake_case )
def _lowerCAmelCase ( self : Dict ,*snake_case : List[str] ,**snake_case : Optional[Any] ):
return self.tokenizer.batch_decode(*snake_case ,**snake_case )
def _lowerCAmelCase ( self : int ,*snake_case : Union[str, Any] ,**snake_case : List[str] ):
return self.tokenizer.decode(*snake_case ,**snake_case )
@property
def _lowerCAmelCase ( self : Tuple ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,snake_case ,)
return self.image_processor_class
@property
def _lowerCAmelCase ( self : Dict ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,snake_case ,)
return self.image_processor
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'vit_mae'
def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =qkv_bias
SCREAMING_SNAKE_CASE =decoder_num_attention_heads
SCREAMING_SNAKE_CASE =decoder_hidden_size
SCREAMING_SNAKE_CASE =decoder_num_hidden_layers
SCREAMING_SNAKE_CASE =decoder_intermediate_size
SCREAMING_SNAKE_CASE =mask_ratio
SCREAMING_SNAKE_CASE =norm_pix_loss
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ = 10 ):
"""simple docstring"""
if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or n < 0:
raise ValueError('Invalid input' )
SCREAMING_SNAKE_CASE =10**n
SCREAMING_SNAKE_CASE =28433 * (pow(2, 7830457, lowerCAmelCase_ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'{solution(10) = }')
| 334 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
_lowerCamelCase ={
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.