code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : Dict = hf_hub_url(repo_id=UpperCamelCase , path=UpperCamelCase , revision=UpperCamelCase ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(UpperCamelCase )}'''
41
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """xlnet""" __lowercase = ["""mems"""] __lowercase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase_=3_20_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_=40_96 , lowerCAmelCase_="gelu" , lowerCAmelCase_=True , lowerCAmelCase_="bi" , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=-1 , lowerCAmelCase_=False , lowerCAmelCase_="last" , lowerCAmelCase_=True , lowerCAmelCase_="tanh" , lowerCAmelCase_=0.1 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=1 , lowerCAmelCase_=2 , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = d_model _snake_case = n_layer _snake_case = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) _snake_case = d_model // n_head _snake_case = ff_activation _snake_case = d_inner _snake_case = untie_r _snake_case = attn_type _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = dropout _snake_case = mem_len _snake_case = reuse_len _snake_case = bi_data _snake_case = clamp_len _snake_case = same_length _snake_case = summary_type _snake_case = summary_use_proj _snake_case = summary_activation _snake_case = summary_last_dropout _snake_case = start_n_top _snake_case = end_n_top _snake_case = bos_token_id _snake_case = pad_token_id _snake_case = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCAmelCase_ , ) _snake_case = kwargs['use_cache'] _snake_case = use_mems_eval _snake_case = use_mems_train super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
42
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=30 , __lowercase=2 , __lowercase=3 , __lowercase=True , __lowercase=True , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10 , __lowercase=0.02 , __lowercase=3 , __lowercase=0.6 , __lowercase=None , ) -> Tuple: __UpperCamelCase :List[str] = parent __UpperCamelCase :List[Any] = batch_size __UpperCamelCase :str = image_size __UpperCamelCase :List[Any] = patch_size __UpperCamelCase :List[str] = num_channels __UpperCamelCase :Union[str, Any] = is_training __UpperCamelCase :List[str] = use_labels __UpperCamelCase :Tuple = hidden_size __UpperCamelCase :str = num_hidden_layers __UpperCamelCase :List[Any] = num_attention_heads __UpperCamelCase :Optional[Any] = intermediate_size __UpperCamelCase :List[str] = hidden_act __UpperCamelCase :str = hidden_dropout_prob __UpperCamelCase :List[str] = attention_probs_dropout_prob __UpperCamelCase :Union[str, Any] = type_sequence_label_size __UpperCamelCase :List[str] = initializer_range __UpperCamelCase :Optional[int] = mask_ratio __UpperCamelCase :Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCamelCase :Optional[Any] = (image_size // patch_size) ** 2 __UpperCamelCase :Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCamelCase :Tuple = None if self.use_labels: __UpperCamelCase :str = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :List[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self) -> Tuple: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> Any: __UpperCamelCase :Any = TFViTMAEModel(config=__lowercase) __UpperCamelCase :Union[str, Any] = model(__lowercase , training=__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[str]: __UpperCamelCase :str = TFViTMAEForPreTraining(__lowercase) __UpperCamelCase :str = model(__lowercase , training=__lowercase) # expected sequence length = num_patches __UpperCamelCase :List[str] = (self.image_size // self.patch_size) ** 2 __UpperCamelCase :Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images __UpperCamelCase :List[str] = 1 __UpperCamelCase :List[str] = TFViTMAEForPreTraining(__lowercase) __UpperCamelCase :int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCamelCase :Dict = model(__lowercase , training=__lowercase) __UpperCamelCase :List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) :List[str] = config_and_inputs __UpperCamelCase :Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : str = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a__ : Dict = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a__ : Tuple = False a__ : str = False a__ : Optional[Any] = False a__ : Union[str, Any] = False def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[str] = TFViTMAEModelTester(self) __UpperCamelCase :List[str] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37) def UpperCamelCase__ ( self) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''') def UpperCamelCase__ ( self) -> str: pass def UpperCamelCase__ ( self) -> Any: __UpperCamelCase , __UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase :List[Any] = model_class(__lowercase) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) __UpperCamelCase :Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , tf.keras.layers.Layer)) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase , __UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase :Tuple = model_class(__lowercase) __UpperCamelCase :int = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase :Optional[int] = [*signature.parameters.keys()] __UpperCamelCase :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowercase) def UpperCamelCase__ ( self) -> Optional[Any]: # make the mask reproducible np.random.seed(2) __UpperCamelCase , __UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase :Tuple = int((config.image_size // config.patch_size) ** 2) __UpperCamelCase :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: __UpperCamelCase :str = model_class(__lowercase) __UpperCamelCase :Optional[int] = self._prepare_for_class(__lowercase , __lowercase) __UpperCamelCase :Dict = model(__lowercase , noise=__lowercase) __UpperCamelCase :int = copy.deepcopy(self._prepare_for_class(__lowercase , __lowercase)) __UpperCamelCase :Union[str, Any] = model(**__lowercase , noise=__lowercase) __UpperCamelCase :Tuple = outputs_dict[0].numpy() __UpperCamelCase :Union[str, Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)) , 1E-6) def UpperCamelCase__ ( self) -> Optional[int]: # make the mask reproducible np.random.seed(2) __UpperCamelCase , __UpperCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase :int = int((config.image_size // config.patch_size) ** 2) __UpperCamelCase :str = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) def prepare_numpy_arrays(__lowercase): __UpperCamelCase :Optional[int] = {} for k, v in inputs_dict.items(): if tf.is_tensor(__lowercase): __UpperCamelCase :Optional[Any] = v.numpy() else: __UpperCamelCase :Optional[int] = np.array(__lowercase) return inputs_np_dict for model_class in self.all_model_classes: __UpperCamelCase :int = model_class(__lowercase) __UpperCamelCase :Tuple = self._prepare_for_class(__lowercase , __lowercase) __UpperCamelCase :Any = prepare_numpy_arrays(__lowercase) __UpperCamelCase :Any = model(__lowercase , noise=__lowercase) __UpperCamelCase :Tuple = model(**__lowercase , noise=__lowercase) self.assert_outputs_same(__lowercase , __lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[Any]: # make masks reproducible np.random.seed(2) __UpperCamelCase :Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2) __UpperCamelCase :Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) __UpperCamelCase :Dict = tf.constant(__lowercase) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCamelCase :Any = tf_noise super().check_pt_tf_models(__lowercase , __lowercase , __lowercase) def UpperCamelCase__ ( self) -> Tuple: # make mask reproducible np.random.seed(2) __UpperCamelCase , __UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase :Optional[int] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(__lowercase) if module_member_name.endswith('''MainLayer''') # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''')] == model_class.__name__[: -len('''Model''')] for module_member in (getattr(__lowercase , __lowercase),) if isinstance(__lowercase , __lowercase) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__lowercase , '''_keras_serializable''' , __lowercase) } __UpperCamelCase :Union[str, Any] = int((config.image_size // config.patch_size) ** 2) __UpperCamelCase :List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) __UpperCamelCase :str = tf.convert_to_tensor(__lowercase) inputs_dict.update({'''noise''': noise}) for main_layer_class in tf_main_layer_classes: __UpperCamelCase :Optional[int] = main_layer_class(__lowercase) __UpperCamelCase :Optional[Any] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype) for name, tensor in inputs_dict.items() } __UpperCamelCase :Dict = tf.keras.Model(__lowercase , outputs=main_layer(__lowercase)) __UpperCamelCase :str = model(__lowercase) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :str = os.path.join(__lowercase , '''keras_model.h5''') model.save(__lowercase) __UpperCamelCase :List[Any] = tf.keras.models.load_model( __lowercase , custom_objects={main_layer_class.__name__: main_layer_class}) assert isinstance(__lowercase , tf.keras.Model) __UpperCamelCase :Optional[Any] = model(__lowercase) self.assert_outputs_same(__lowercase , __lowercase) @slow def UpperCamelCase__ ( self) -> Dict: # make mask reproducible np.random.seed(2) __UpperCamelCase , __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase :Optional[Any] = int((config.image_size // config.patch_size) ** 2) __UpperCamelCase :Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: __UpperCamelCase :Optional[int] = model_class(__lowercase) __UpperCamelCase :Union[str, Any] = self._prepare_for_class(__lowercase , __lowercase) __UpperCamelCase :Optional[int] = model(__lowercase , noise=__lowercase) if model_class.__name__ == "TFViTMAEModel": __UpperCamelCase :Any = outputs.last_hidden_state.numpy() __UpperCamelCase :Optional[Any] = 0 else: __UpperCamelCase :List[str] = outputs.logits.numpy() __UpperCamelCase :Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase , saved_model=__lowercase) __UpperCamelCase :Optional[int] = model_class.from_pretrained(__lowercase) __UpperCamelCase :List[str] = model(__lowercase , noise=__lowercase) if model_class.__name__ == "TFViTMAEModel": __UpperCamelCase :List[Any] = after_outputs['''last_hidden_state'''].numpy() __UpperCamelCase :List[Any] = 0 else: __UpperCamelCase :Any = after_outputs['''logits'''].numpy() __UpperCamelCase :Tuple = 0 __UpperCamelCase :Any = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__lowercase , 1E-5) def UpperCamelCase__ ( self) -> Union[str, Any]: # make mask reproducible np.random.seed(2) __UpperCamelCase , __UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase :str = int((config.image_size // config.patch_size) ** 2) __UpperCamelCase :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: __UpperCamelCase :Tuple = model_class(__lowercase) __UpperCamelCase :Any = self._prepare_for_class(__lowercase , __lowercase) __UpperCamelCase :Tuple = model(__lowercase , noise=__lowercase) __UpperCamelCase :List[Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__lowercase) __UpperCamelCase :Optional[Any] = model_class.from_config(model.get_config()) # make sure it also accepts a normal config __UpperCamelCase :Any = model_class.from_config(model.config) __UpperCamelCase :List[Any] = new_model(__lowercase) # Build model new_model.set_weights(model.get_weights()) __UpperCamelCase :str = new_model(__lowercase , noise=__lowercase) self.assert_outputs_same(__lowercase , __lowercase) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''') def UpperCamelCase__ ( self) -> Dict: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''') def UpperCamelCase__ ( self) -> Any: pass @slow def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''') self.assertIsNotNone(__lowercase) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self) -> Optional[Any]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''') if is_vision_available() else None @slow def UpperCamelCase__ ( self) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2) __UpperCamelCase :Optional[Any] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''') __UpperCamelCase :Optional[int] = self.default_image_processor __UpperCamelCase :Optional[int] = prepare_img() __UpperCamelCase :Optional[int] = image_processor(images=__lowercase , return_tensors='''tf''') # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCamelCase :Union[str, Any] = ViTMAEConfig() __UpperCamelCase :Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) __UpperCamelCase :Tuple = np.random.uniform(size=(1, num_patches)) # forward pass __UpperCamelCase :int = model(**__lowercase , noise=__lowercase) # verify the logits __UpperCamelCase :Optional[int] = tf.convert_to_tensor([1, 196, 768]) self.assertEqual(outputs.logits.shape , __lowercase) __UpperCamelCase :List[Any] = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __lowercase , atol=1E-4)
43
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
"""simple docstring""" # Algorithm for the pigeonhole sorting def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Dict: _lowerCAmelCase : Any = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Dict = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : Tuple = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Optional[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase ,_lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Tuple = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def SCREAMING_SNAKE_CASE ( ) -> List[Any]: _lowerCAmelCase : List[str] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" ,""" """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
44
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def lowercase ( lowerCAmelCase__ : SplitDict ) -> List[Any]: __a = split_dict._to_yaml_list() assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) __a = SplitDict._from_yaml_list(lowerCAmelCase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __a = None # the split name of split_dict takes over the name of the split info object __a = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=lowerCAmelCase__ ), SplitInfo(dataset_name='''my_dataset''' )] ) def lowercase ( lowerCAmelCase__ : int ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files __a = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
45
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) lowerCAmelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase , lowercase ) def _snake_case ( self , **lowercase ) -> Dict: return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> int: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowercase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowercase ) lowerCAmelCase = tokenizer(lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowercase ) lowerCAmelCase = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
46
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCamelCase : str = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
47
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
import logging from transformers.configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger(__name__) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = """masked_bert""" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__="topK" , UpperCamelCase__="constant" , UpperCamelCase__=0.0 , **UpperCamelCase__ , ) -> List[Any]: super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : int = vocab_size lowerCamelCase : Tuple = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : List[str] = hidden_act lowerCamelCase : List[str] = intermediate_size lowerCamelCase : Dict = hidden_dropout_prob lowerCamelCase : Tuple = attention_probs_dropout_prob lowerCamelCase : Tuple = max_position_embeddings lowerCamelCase : Any = type_vocab_size lowerCamelCase : str = initializer_range lowerCamelCase : Union[str, Any] = layer_norm_eps lowerCamelCase : int = pruning_method lowerCamelCase : Tuple = mask_init lowerCamelCase : List[Any] = mask_scale
48
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __snake_case ( _UpperCAmelCase ): __a = VideoMAEConfig() set_architecture_configs(_UpperCAmelCase , _UpperCAmelCase ) if "finetuned" not in model_name: __a = False if "finetuned" in model_name: __a = '''huggingface/label-files''' if "kinetics" in model_name: __a = 400 __a = '''kinetics400-id2label.json''' elif "ssv2" in model_name: __a = 174 __a = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) __a = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if "small" in model_name: __a = 384 __a = 1536 __a = 12 __a = 16 __a = 12 __a = 3 __a = 192 __a = 768 elif "large" in model_name: __a = 1024 __a = 4096 __a = 24 __a = 16 __a = 12 __a = 8 __a = 512 __a = 2048 elif "huge" in model_name: __a = 1280 __a = 5120 __a = 32 __a = 16 __a = 12 __a = 8 __a = 640 __a = 2560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def __snake_case ( _UpperCAmelCase ): if "encoder." in name: __a = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: __a = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: __a = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: __a = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __a = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __a = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: __a = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: __a = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: __a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: __a = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: __a = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: __a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __a = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: __a = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: __a = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: __a = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __a = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __a = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: __a = name.replace('''head''' , '''classifier''' ) return name def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_UpperCAmelCase ) if key.startswith('''encoder.''' ): __a = key.replace('''encoder.''' , '''''' ) if "qkv" in key: __a = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): __a = config.decoder_hidden_size __a = int(key_split[2] ) __a = '''decoder.decoder_layers.''' if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = config.hidden_size __a = int(key_split[1] ) __a = '''videomae.encoder.layer.''' if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val return orig_state_dict def __snake_case ( ): __a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __a = np.load(_UpperCAmelCase ) return list(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = get_videomae_config(_UpperCAmelCase ) if "finetuned" in model_name: __a = VideoMAEForVideoClassification(_UpperCAmelCase ) else: __a = VideoMAEForPreTraining(_UpperCAmelCase ) # download original checkpoint, hosted on Google Drive __a = '''pytorch_model.bin''' gdown.cached_download(_UpperCAmelCase , _UpperCAmelCase , quiet=_UpperCAmelCase ) __a = torch.load(_UpperCAmelCase , map_location='''cpu''' ) if "model" in files: __a = files['''model'''] else: __a = files['''module'''] __a = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # verify model on basic input __a = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __a = prepare_video() __a = image_processor(_UpperCAmelCase , return_tensors='''pt''' ) if "finetuned" not in model_name: __a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) __a = torch.load(_UpperCAmelCase ) __a = model(**_UpperCAmelCase ) __a = outputs.logits __a = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __a = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": __a = outputs.loss assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(_UpperCAmelCase , organization='''nielsr''' ) if __name__ == "__main__": __snake_case :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case :Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
49
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
from __future__ import annotations import math _UpperCAmelCase : Any = """2020.9.26""" _UpperCAmelCase : Optional[int] = """xcodz-dot, cclaus, dhruvmanila""" def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> tuple[float, float]: if not all(isinstance(_UpperCAmelCase , (float, int) ) for val in locals().values() ): lowerCamelCase__ : Any = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(_UpperCAmelCase ) lowerCamelCase__ : str = ((x * distance) / (z + distance)) * scale lowerCamelCase__ : Union[str, Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> tuple[float, float, float]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('Axis must be a str' ) lowerCamelCase__ : List[str] = locals() del input_variables["axis"] if not all(isinstance(_UpperCAmelCase , (float, int) ) for val in input_variables.values() ): lowerCamelCase__ : str = ( 'Input values except axis must either be float or int: ' F"""{list(input_variables.values() )}""" ) raise TypeError(_UpperCAmelCase ) lowerCamelCase__ : Any = (angle % 360) / 450 * 180 / math.pi if axis == "z": lowerCamelCase__ : Dict = x * math.cos(_UpperCAmelCase ) - y * math.sin(_UpperCAmelCase ) lowerCamelCase__ : Dict = y * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) lowerCamelCase__ : int = z elif axis == "x": lowerCamelCase__ : Dict = y * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) lowerCamelCase__ : int = z * math.cos(_UpperCAmelCase ) + y * math.sin(_UpperCAmelCase ) lowerCamelCase__ : str = x elif axis == "y": lowerCamelCase__ : List[str] = x * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) lowerCamelCase__ : int = z * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) lowerCamelCase__ : Any = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
50
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __snake_case ( a ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCAmelCase__ : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCAmelCase__ : str = "text" UpperCAmelCase__ : str = "labels" def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , _snake_case): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") UpperCAmelCase_ = copy.deepcopy(self) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def lowerCamelCase ( self : Dict): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
51
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class A__ ( __snake_case ): _UpperCAmelCase :Dict = 'bart' _UpperCAmelCase :str = ['past_key_values'] _UpperCAmelCase :Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A_=5_0265 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=3 , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , **A_ , ): '''simple docstring''' UpperCamelCase : int = vocab_size UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Any = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = encoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : List[str] = decoder_layers UpperCamelCase : Optional[int] = decoder_attention_heads UpperCamelCase : int = dropout UpperCamelCase : int = attention_dropout UpperCamelCase : Tuple = activation_dropout UpperCamelCase : Tuple = activation_function UpperCamelCase : int = init_std UpperCamelCase : List[Any] = encoder_layerdrop UpperCamelCase : List[str] = decoder_layerdrop UpperCamelCase : Dict = classifier_dropout UpperCamelCase : Optional[int] = use_cache UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , A_ ): UpperCamelCase : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase : List[str] = {0: "batch"} UpperCamelCase : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase : Dict = {0: "batch", 1: "decoder_sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(A_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase : Optional[int] = self.num_layers for i in range(A_ ): UpperCamelCase : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCamelCase : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Tuple = super().outputs else: UpperCamelCase : Dict = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase : int = self.num_layers for i in range(A_ ): UpperCamelCase : int = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Tuple = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase : List[Any] = seq_length if not self.use_past else 1 UpperCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase : Optional[int] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase : List[Any] = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Optional[Any] = common_inputs["input_ids"].shape UpperCamelCase : List[Any] = common_inputs["decoder_input_ids"].shape[1] UpperCamelCase , UpperCamelCase : List[str] = self.num_attention_heads UpperCamelCase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : List[Any] = decoder_seq_length + 3 UpperCamelCase : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase : Union[str, Any] = self.num_layers UpperCamelCase : Any = min(A_ , A_ ) UpperCamelCase : List[str] = max(A_ , A_ ) - min_num_layers UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase : Optional[Any] = seqlen + 2 UpperCamelCase , UpperCamelCase : List[Any] = self.num_layers UpperCamelCase , UpperCamelCase : Optional[int] = self.num_attention_heads UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : Optional[Any] = common_inputs["attention_mask"].dtype UpperCamelCase : int = torch.cat( [common_inputs["attention_mask"], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase : Optional[Any] = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : Optional[Any] = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase : int = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase : Dict = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": UpperCamelCase : List[str] = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[Any] = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase : Optional[Any] = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
52
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) a__ : Tuple =logging.getLogger(__name__) def lowercase__ ( __lowercase : str ) -> str: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=__lowercase ) __UpperCamelCase = { 'repo_id': str(__lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(__lowercase , 'git_log.json' ) , 'w' ) as f: json.dump(__lowercase , __lowercase , indent=4 ) def lowercase__ ( __lowercase : int ) -> List[Any]: """simple docstring""" if params.n_gpu <= 0: __UpperCamelCase = 0 __UpperCamelCase = -1 __UpperCamelCase = True __UpperCamelCase = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 __UpperCamelCase = int(os.environ['WORLD_SIZE'] ) __UpperCamelCase = int(os.environ['N_GPU_NODE'] ) __UpperCamelCase = int(os.environ['RANK'] ) # number of nodes / node ID __UpperCamelCase = params.world_size // params.n_gpu_per_node __UpperCamelCase = params.global_rank // params.n_gpu_per_node __UpperCamelCase = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 1 __UpperCamelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __UpperCamelCase = params.node_id == 0 and params.local_rank == 0 __UpperCamelCase = params.n_nodes > 1 # summary __UpperCamelCase = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def lowercase__ ( __lowercase : List[Any] ) -> Any: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
53
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example a__ : Dict = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a__ : List[str] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for i in range(len(lowerCAmelCase_ ) ): __SCREAMING_SNAKE_CASE = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __SCREAMING_SNAKE_CASE = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCAmelCase_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCAmelCase_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCAmelCase_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __SCREAMING_SNAKE_CASE = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCAmelCase_ ) return next_generation def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for _ in range(lowerCAmelCase_ ): # Create output image __SCREAMING_SNAKE_CASE = Image.new("RGB" , (len(cells[0] ), len(lowerCAmelCase_ )) ) __SCREAMING_SNAKE_CASE = img.load() # Save cells to image for x in range(len(lowerCAmelCase_ ) ): for y in range(len(cells[0] ) ): __SCREAMING_SNAKE_CASE = 255 - cells[y][x] * 255 __SCREAMING_SNAKE_CASE = (colour, colour, colour) # Save image images.append(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = new_generation(lowerCAmelCase_ ) return images if __name__ == "__main__": a__ : Optional[Any] = generate_images(GLIDER, 1_6) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
54
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
'''simple docstring''' from torch import nn def __snake_case ( UpperCAmelCase_ : Union[str, Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
55
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self : Tuple , lowercase_ : Optional[int] , lowercase_ : str=3 , lowercase_ : Optional[int]=32 , lowercase_ : str=3 , lowercase_ : int=10 , lowercase_ : int=[10, 20, 30, 40] , lowercase_ : Optional[Any]=[1, 1, 2, 1] , lowercase_ : List[str]=True , lowercase_ : Optional[int]=True , lowercase_ : int="relu" , lowercase_ : Dict=3 , lowercase_ : Dict=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = embeddings_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = scope snake_case_ = len(lowercase_ ) def A_ ( self : Any ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def A_ ( self : Optional[Any] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def A_ ( self : int , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] ): snake_case_ = RegNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ): snake_case_ = self.num_labels snake_case_ = RegNetForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : str ): snake_case_ = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Tuple ): snake_case_ = RegNetModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def A_ ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : List[Any] ): return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def A_ ( self : Any ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def A_ ( self : Optional[Any] ): pass def A_ ( self : Dict ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def A_ ( self : Optional[Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(config=lowercase_ ) for name, module in model.named_modules(): if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) def A_ ( self : List[str] ): def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] ): snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case_ = layer_type snake_case_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def A_ ( self : List[Any] ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = RegNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __magic_name__ ( ) -> Any: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def A_ ( self : Any ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A_ ( self : Tuple ): snake_case_ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**lowercase_ ) # verify the logits snake_case_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
56
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging A : str = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =CLIPConfig __UpperCAmelCase : Dict =["""CLIPEncoderLayer"""] def __init__( self , __a ): super().__init__(__a ) __lowerCAmelCase = CLIPVisionModelWithProjection(config.vision_config ) __lowerCAmelCase = nn.Linear(config.vision_config.projection_dim , 1 ) __lowerCAmelCase = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def snake_case ( self , __a , __a , __a=0.5 , __a=0.5 ): __lowerCAmelCase = self.vision_model(__a )[0] __lowerCAmelCase = self.p_head(__a ) __lowerCAmelCase = nsfw_detected.flatten() __lowerCAmelCase = nsfw_detected > p_threshold __lowerCAmelCase = nsfw_detected.tolist() if any(__a ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(__a ): if nsfw_detected_: __lowerCAmelCase = np.zeros(images[idx].shape ) __lowerCAmelCase = self.w_head(__a ) __lowerCAmelCase = watermark_detected.flatten() __lowerCAmelCase = watermark_detected > w_threshold __lowerCAmelCase = watermark_detected.tolist() if any(__a ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(__a ): if watermark_detected_: __lowerCAmelCase = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
57
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DebertaVaTokenizer UpperCamelCase = DebertaVaTokenizerFast UpperCamelCase = True UpperCamelCase = True def snake_case_( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_( self , A ) -> Dict: _SCREAMING_SNAKE_CASE = """this is a test""" _SCREAMING_SNAKE_CASE = """this is a test""" return input_text, output_text def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = """<pad>""" _SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(A ) , 3_0001 ) def snake_case_( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def snake_case_( self ) -> Any: # fmt: off _SCREAMING_SNAKE_CASE = """ \tHeLLo!how \n Are yoU? """ _SCREAMING_SNAKE_CASE = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def snake_case_( self ) -> List[Any]: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def snake_case_( self ) -> Optional[int]: pass def snake_case_( self ) -> Optional[Any]: # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> List[str]: # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> str: # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> Union[str, Any]: # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> List[str]: # fmt: off _SCREAMING_SNAKE_CASE = """ \tHeLLo!how \n Are yoU? """ _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , do_lower_case=A , split_by_punct=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(tokenizer.encode(A , add_special_tokens=A ) ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A , add_special_tokens=A ) ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = """This is a test""" _SCREAMING_SNAKE_CASE = [13, 1, 4398, 25, 21, 1289] _SCREAMING_SNAKE_CASE = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A , keep_accents=A ) _SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast(A , keep_accents=A ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A , A ) # fmt: off _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _SCREAMING_SNAKE_CASE = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] _SCREAMING_SNAKE_CASE = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A , A ) def snake_case_( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = DebertaVaTokenizer(A ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A , A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , A , ) @slow def snake_case_( self ) -> List[str]: # fmt: off _SCREAMING_SNAKE_CASE = {"""input_ids""": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
58
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
59
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _snake_case ( _snake_case : Iterable[str] , _snake_case : int ): lowerCAmelCase : Optional[int] = iter(_snake_case ) while True: lowerCAmelCase : Tuple = tuple(itertools.islice(_snake_case , _snake_case ) ) if not chunk: return yield chunk def _snake_case ( _snake_case : str ): lowerCAmelCase : List[Any] = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase : Union[str, Any] = '''''' if len(_snake_case ) < 2: return dirty for i in range(len(_snake_case ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_snake_case ) & 1: clean += "X" return clean def _snake_case ( _snake_case : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCAmelCase : Dict = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase : Any = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_snake_case ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_snake_case ) return table def _snake_case ( _snake_case : str , _snake_case : str ): lowerCAmelCase : Union[str, Any] = generate_table(_snake_case ) lowerCAmelCase : str = prepare_input(_snake_case ) lowerCAmelCase : Any = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_snake_case , 2 ): lowerCAmelCase, lowerCAmelCase : List[Any] = divmod(table.index(_snake_case ) , 5 ) lowerCAmelCase, lowerCAmelCase : List[str] = divmod(table.index(_snake_case ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _snake_case ( _snake_case : str , _snake_case : str ): lowerCAmelCase : Dict = generate_table(_snake_case ) lowerCAmelCase : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_snake_case , 2 ): lowerCAmelCase, lowerCAmelCase : List[str] = divmod(table.index(_snake_case ) , 5 ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = divmod(table.index(_snake_case ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
60
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ): UpperCAmelCase : Any = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_choices def __magic_name__ ( self : str ): UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : int ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Any = True UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
336
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = XGLMConfig SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu""" def __init__( self , lowercase_ , lowercase_=14 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = ffn_dim UpperCAmelCase_ : int = activation_function UpperCAmelCase_ : List[str] = activation_dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Tuple = 1 def UpperCamelCase__ ( self ): """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase_ : Optional[int] = None if self.use_input_mask: UpperCAmelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Union[str, Any] = self.get_config() UpperCAmelCase_ : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase__ ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Any = config_and_inputs UpperCAmelCase_ : List[str] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : Tuple = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : List[str] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = TFXGLMModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self , lowercase_=True ): """simple docstring""" UpperCAmelCase_ : List[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ : Union[str, Any] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase_ : Tuple = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on UpperCAmelCase_ : List[str] = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ : Any = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) UpperCAmelCase_ : Optional[Any] = tokenizer("Today is a nice day and" , return_tensors="tf" ) UpperCAmelCase_ : Optional[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): UpperCAmelCase_ : List[Any] = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) UpperCAmelCase_ : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase_ : Dict = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ : Tuple = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ : Any = "left" # use different length sentences to test batching UpperCAmelCase_ : List[str] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] UpperCAmelCase_ : List[Any] = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ ) UpperCAmelCase_ : Optional[int] = inputs["input_ids"] UpperCAmelCase_ : Union[str, Any] = model.generate(input_ids=lowercase_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) UpperCAmelCase_ : Optional[int] = tokenizer(sentences[0] , return_tensors="tf" ).input_ids UpperCAmelCase_ : Optional[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) UpperCAmelCase_ : List[str] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids UpperCAmelCase_ : List[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase_ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase_ : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase_ : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
61
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.txt"} _lowerCamelCase : List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase : List[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def a__ ( UpperCAmelCase : List[str] ) -> Any: with open(UpperCAmelCase , '''r''' ) as f: UpperCAmelCase : Dict = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ): super().__init__(**__A ) UpperCAmelCase : Tuple = load_vocab_file(__A ) UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Union[str, Any] = unk_token UpperCAmelCase : Optional[Any] = cls_token UpperCAmelCase : Optional[int] = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : List[str] = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __magic_name__ ( self : Tuple, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : List[Any], __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ): return text.split() def __magic_name__ ( self : Optional[int], __A : Dict=False ): return len(self._id_to_token ) def __magic_name__ ( self : int ): return {token: i for i, token in enumerate(self.all_tokens )} def __magic_name__ ( self : Tuple, __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: mask += [0] * len(__A ) + [1] return mask def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ): UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__A, '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __magic_name__ ( self : Dict ): return self.get_vocab_size(with_added_tokens=__A ) def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ): return super()._add_tokens(__A, special_tokens=__A )
336
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = PriorTransformer UpperCAmelCase__ : List[str] = "hidden_states" @property def _a ( self ) -> int: __UpperCamelCase =4 __UpperCamelCase =8 __UpperCamelCase =7 __UpperCamelCase =floats_tensor((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =floats_tensor((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(A_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _a ( self , A_=0 ) -> Dict: torch.manual_seed(A_ ) __UpperCamelCase =4 __UpperCamelCase =8 __UpperCamelCase =7 __UpperCamelCase =torch.randn((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =torch.randn((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(A_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _a ( self ) -> Tuple: return (4, 8) @property def _a ( self ) -> List[Any]: return (4, 8) def _a ( self ) -> str: __UpperCamelCase ={ 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } __UpperCamelCase =self.dummy_input return init_dict, inputs_dict def _a ( self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase =PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(A_ ) __UpperCamelCase =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _a ( self ) -> Any: __UpperCamelCase , __UpperCamelCase =self.prepare_init_args_and_inputs_for_common() __UpperCamelCase =self.model_class(**A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __UpperCamelCase =model.to(A_ ) if hasattr(A_ , 'set_default_attn_processor' ): model.set_default_attn_processor() __UpperCamelCase =self.get_dummy_seed_input() with torch.no_grad(): __UpperCamelCase =model(**A_ )[0] __UpperCamelCase =output[0, :5].flatten().cpu() print(A_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __UpperCamelCase =torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(A_ , A_ , rtol=1E-2 ) ) @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_=1 , A_=768 , A_=77 , A_=0 ) -> Union[str, Any]: torch.manual_seed(A_ ) __UpperCamelCase =batch_size __UpperCamelCase =embedding_dim __UpperCamelCase =num_embeddings __UpperCamelCase =torch.randn((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =torch.randn((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(A_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _a ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def _a ( self , A_ , A_ ) -> int: __UpperCamelCase =PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(A_ ) __UpperCamelCase =self.get_dummy_seed_input(seed=A_ ) with torch.no_grad(): __UpperCamelCase =model(**A_ )[0] assert list(sample.shape ) == [1, 768] __UpperCamelCase =sample[0, :8].flatten().cpu() print(A_ ) __UpperCamelCase =torch.tensor(A_ ) assert torch_all_close(A_ , A_ , atol=1E-3 )
62
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(EulerDiscreteScheduler,) __a =10 def UpperCamelCase__ ( self : List[Any] , **__a : Union[str, Any] ): _a = { "num_train_timesteps": 11_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__a ) return config def UpperCamelCase__ ( self : int ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : str ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : int ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Any ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__a , __a ) _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , generator=__a ) _a = output.prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def UpperCamelCase__ ( self : Any ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type="v_prediction" ) _a = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__a , __a ) _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , generator=__a ) _a = output.prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _a = sample.to(__a ) for t in scheduler.timesteps: _a = scheduler.scale_model_input(__a , __a ) _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , generator=__a ) _a = output.prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def UpperCamelCase__ ( self : Optional[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _a = sample.to(__a ) for t in scheduler.timesteps: _a = scheduler.scale_model_input(__a , __a ) _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , generator=__a ) _a = output.prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
63
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
from typing import List import numpy as np def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' UpperCAmelCase__ = {key: len(__A ) for key, value in gen_kwargs.items() if isinstance(__A, __A )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) UpperCAmelCase__ = max(lists_lengths.values(), default=0 ) return max(1, __A ) def lowerCAmelCase_ ( __A, __A ) -> List[range]: '''simple docstring''' UpperCAmelCase__ = [] for group_idx in range(__A ): UpperCAmelCase__ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCAmelCase__ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCAmelCase__ = range(__A, start + num_shards_to_add ) shards_indices_per_group.append(__A ) return shards_indices_per_group def lowerCAmelCase_ ( __A, __A ) -> List[dict]: '''simple docstring''' UpperCAmelCase__ = _number_of_shards_in_gen_kwargs(__A ) if num_shards == 1: return [dict(__A )] else: UpperCAmelCase__ = _distribute_shards(num_shards=__A, max_num_jobs=__A ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__A, __A ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__A ) ) ] def lowerCAmelCase_ ( __A ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], __A ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowerCAmelCase_ ( __A, __A ) -> dict: '''simple docstring''' UpperCAmelCase__ = {len(__A ) for value in gen_kwargs.values() if isinstance(__A, __A )} UpperCAmelCase__ = {} for size in list_sizes: UpperCAmelCase__ = list(range(__A ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCAmelCase__ = dict(__A ) for key, value in shuffled_kwargs.items(): if isinstance(__A, __A ): UpperCAmelCase__ = [value[i] for i in indices_per_size[len(__A )]] return shuffled_kwargs
65
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = torch.load(_lowercase, map_location="""cpu""" ) if "model" in sd.keys(): snake_case_ :str = torch.load(_lowercase, map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case_ :Tuple = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) snake_case_ :str = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case_ :List[Any] = sd.pop(_lowercase ) snake_case_ :Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case_ :Any = sd[key] # We split QKV in separate Q,K,V snake_case_ :Dict = key.replace(""".qkv_proj.""", """.q_proj.""" ) snake_case_ :Optional[Any] = key.replace(""".qkv_proj.""", """.k_proj.""" ) snake_case_ :Optional[Any] = key.replace(""".qkv_proj.""", """.v_proj.""" ) snake_case_ :Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case_, snake_case_, snake_case_ :Any = torch.split(_lowercase, depth // 3, dim=0 ) snake_case_ :List[Any] = q snake_case_ :Union[str, Any] = k snake_case_ :Optional[int] = v del sd[key] return sd @torch.no_grad() def A_ ( _lowercase, _lowercase, _lowercase=None ): '''simple docstring''' snake_case_ :Optional[int] = load_checkpoint(_lowercase ) if config is not None: snake_case_ :List[str] = OPTConfig.from_pretrained(_lowercase ) else: snake_case_ :List[Any] = OPTConfig() snake_case_ :str = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __a = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
66
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
'''simple docstring''' def __lowerCAmelCase ( ) -> int: return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(UpperCamelCase__ , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
67
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Accelerator , SCREAMING_SNAKE_CASE_: int = 1_6 ) -> Tuple: '''simple docstring''' A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_: Dict ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_: Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 1_6 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="longest" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Tuple ) -> str: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE_ ) == "1": A__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) set_seed(SCREAMING_SNAKE_CASE_ ) A__ , A__ = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=1_0_0 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: A__ = os.path.split(SCREAMING_SNAKE_CASE_ )[-1].split("." )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: A__ = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**SCREAMING_SNAKE_CASE_ ) A__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() A__ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**SCREAMING_SNAKE_CASE_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(SCREAMING_SNAKE_CASE_ ), "epoch": epoch, } , step=SCREAMING_SNAKE_CASE_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=SCREAMING_SNAKE_CASE_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) A__ = parser.parse_args() A__ = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
68
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: snake_case_ = nn.functional.normalize(UpperCAmelCase ) snake_case_ = nn.functional.normalize(UpperCAmelCase ) return torch.mm(UpperCAmelCase , normalized_text_embeds.t() ) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = CLIPConfig SCREAMING_SNAKE_CASE_ = ["CLIPEncoderLayer"] def __init__( self, lowerCAmelCase__) -> Optional[int]: super().__init__(lowerCAmelCase__) snake_case_ = CLIPVisionModel(config.vision_config) snake_case_ = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(17), requires_grad=lowerCAmelCase__) snake_case_ = nn.Parameter(torch.ones(3), requires_grad=lowerCAmelCase__) @torch.no_grad() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = self.vision_model(lowerCAmelCase__)[1] # pooled_output snake_case_ = self.visual_projection(lowerCAmelCase__) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ = cosine_distance(lowerCAmelCase__, self.special_care_embeds).cpu().float().numpy() snake_case_ = cosine_distance(lowerCAmelCase__, self.concept_embeds).cpu().float().numpy() snake_case_ = [] snake_case_ = image_embeds.shape[0] for i in range(lowerCAmelCase__): snake_case_ = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ = 0.0 for concept_idx in range(len(special_cos_dist[0])): snake_case_ = special_cos_dist[i][concept_idx] snake_case_ = self.special_care_embeds_weights[concept_idx].item() snake_case_ = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]}) snake_case_ = 0.01 for concept_idx in range(len(cos_dist[0])): snake_case_ = cos_dist[i][concept_idx] snake_case_ = self.concept_embeds_weights[concept_idx].item() snake_case_ = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__) result.append(lowerCAmelCase__) snake_case_ = [len(res['bad_concepts']) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: snake_case_ = self.vision_model(lowerCAmelCase__)[1] # pooled_output snake_case_ = self.visual_projection(lowerCAmelCase__) snake_case_ = cosine_distance(lowerCAmelCase__, self.special_care_embeds) snake_case_ = cosine_distance(lowerCAmelCase__, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ = 0.0 snake_case_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ = torch.any(special_scores > 0, dim=1) snake_case_ = special_care * 0.01 snake_case_ = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) snake_case_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ = torch.any(concept_scores > 0, dim=1) return images, has_nsfw_concepts
69
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
'''simple docstring''' A__ : str =[ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [False] * len(lowerCAmelCase ) _lowerCAmelCase = [s] _lowerCAmelCase = True while queue: _lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase ) _lowerCAmelCase = True _lowerCAmelCase = u return visited[t] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [-1] * (len(lowerCAmelCase )) _lowerCAmelCase = 0 _lowerCAmelCase = [] _lowerCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = float("""Inf""" ) _lowerCAmelCase = sink while s != source: # Find the minimum value in select path _lowerCAmelCase = min(lowerCAmelCase , graph[parent[s]][s] ) _lowerCAmelCase = parent[s] max_flow += path_flow _lowerCAmelCase = sink while v != source: _lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCAmelCase = parent[v] for i in range(len(lowerCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
70
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
def A ( a_ = 1_000_000 ) -> int: __UpperCamelCase : List[Any] =limit + 1 __UpperCamelCase : Any =[0] * limit for first_term in range(1 ,a_ ): for n in range(a_ ,a_ ,a_ ): __UpperCamelCase : str =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __UpperCamelCase : Dict =sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
71
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
"""simple docstring""" def snake_case_ ( A_ : int ): '''simple docstring''' assert isinstance(A_, A_ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: _lowerCamelCase : List[Any] = F'''The input value of [n={number}] has to be > 0''' raise ValueError(A_ ) else: _lowerCamelCase : Dict = sylvester(number - 1 ) _lowerCamelCase : Dict = num - 1 _lowerCamelCase : Optional[int] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
72
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
73
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
0
"""simple docstring""" import math def _snake_case ( snake_case__ : list , snake_case__ : int = 0 , snake_case__ : int = 0 ): A = end or len(snake_case__ ) for i in range(snake_case__ , snake_case__ ): A = i A = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: A = array[temp_index - 1] temp_index -= 1 A = temp_index_value return array def _snake_case ( snake_case__ : list , snake_case__ : int , snake_case__ : int ): # Max Heap A = index A = 2 * index + 1 # Left Node A = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: A = left_index if right_index < heap_size and array[largest] < array[right_index]: A = right_index if largest != index: A , A = array[largest], array[index] heapify(snake_case__ , snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : list ): A = len(snake_case__ ) for i in range(n // 2 , -1 , -1 ): heapify(snake_case__ , snake_case__ , snake_case__ ) for i in range(n - 1 , 0 , -1 ): A , A = array[0], array[i] heapify(snake_case__ , 0 , snake_case__ ) return array def _snake_case ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _snake_case ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ): A = low A = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i A , A = array[j], array[i] i += 1 def _snake_case ( snake_case__ : list ): if len(snake_case__ ) == 0: return array A = 2 * math.ceil(math.loga(len(snake_case__ ) ) ) A = 16 return intro_sort(snake_case__ , 0 , len(snake_case__ ) , snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ): while end - start > size_threshold: if max_depth == 0: return heap_sort(snake_case__ ) max_depth -= 1 A = median_of_a(snake_case__ , snake_case__ , start + ((end - start) // 2) + 1 , end - 1 ) A = partition(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) intro_sort(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A = p return insertion_sort(snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input('''Enter numbers separated by a comma : ''').strip() _lowercase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
74
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
'''simple docstring''' def a_ ( __snake_case : list ) -> bool: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__snake_case ) == 1: return True lowerCamelCase_ =series[1] - series[0] for index in range(len(__snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def a_ ( __snake_case : list ) -> float: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowerCamelCase_ =0 for val in series: answer += val return answer / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
75
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack SCREAMING_SNAKE_CASE : set[int] = set() return any( node not in visited and depth_first_search(_a , _a , _a , _a) for node in graph) def lowerCamelCase__ ( _a , _a , _a , _a): visited.add(_a) rec_stk.add(_a) for node in graph[vertex]: if node not in visited: if depth_first_search(_a , _a , _a , _a): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_a) return False if __name__ == "__main__": from doctest import testmod testmod()
76
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(_a) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> Union[str, Any]: super().__init__(*a , **a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _UpperCAmelCase ( self , a=None , a=None , a=None ) -> Dict: lowercase__ : int = {} lowercase__ : List[str] = {} if prompt is not None: lowercase__ : Any = prompt if generate_kwargs is not None: lowercase__ : Dict = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase__ : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowercase__ : List[str] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , a , **a ) -> List[str]: return super().__call__(a , **a ) def _UpperCAmelCase ( self , a , a=None ) -> Optional[Any]: lowercase__ : List[Any] = load_image(a ) if prompt is not None: if not isinstance(a , a ): raise ValueError( f"""Received an invalid text input, got - {type(a )} - but expected a single string. """ 'Note also that one single text can be provided for conditional image to text generation.' ) lowercase__ : Optional[Any] = self.model.config.model_type if model_type == "git": lowercase__ : List[str] = self.image_processor(images=a , return_tensors=self.framework ) lowercase__ : List[Any] = self.tokenizer(text=a , add_special_tokens=a ).input_ids lowercase__ : int = [self.tokenizer.cls_token_id] + input_ids lowercase__ : Tuple = torch.tensor(a ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowercase__ : Dict = self.image_processor(images=a , header_text=a , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase__ : int = self.image_processor(images=a , return_tensors=self.framework ) lowercase__ : Optional[int] = self.tokenizer(a , return_tensors=self.framework ) model_inputs.update(a ) else: raise ValueError(f"""Model type {model_type} does not support conditional text generation""" ) else: lowercase__ : Any = self.image_processor(images=a , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase__ : Optional[int] = None return model_inputs def _UpperCAmelCase ( self , a , a=None ) -> Dict: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , a ) and all(x is None for x in model_inputs['input_ids'] ) ): lowercase__ : Tuple = None if generate_kwargs is None: lowercase__ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase__ : Optional[int] = model_inputs.pop(self.model.main_input_name ) lowercase__ : List[Any] = self.model.generate(a , **a , **a ) return model_outputs def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : List[str] = [] for output_ids in model_outputs: lowercase__ : str = { 'generated_text': self.tokenizer.decode( a , skip_special_tokens=a , ) } records.append(a ) return records
77
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Optional[int] , *lowercase_ :Dict , **lowercase_ :Optional[int] ) -> List[str]: super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , 'vision' ) self.check_model_type(lowercase_ ) def __call__( self :str , lowercase_ :Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ :str ) -> Optional[int]: return super().__call__(lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Dict , **lowercase_ :str ) -> List[str]: return {}, {}, {} def UpperCAmelCase__ ( self :str , lowercase_ :Optional[int] ) -> Any: UpperCAmelCase = load_image(lowercase_ ) UpperCAmelCase = image.size UpperCAmelCase = self.image_processor(images=lowercase_ , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :int ) -> str: UpperCAmelCase = self.model(**lowercase_ ) return model_outputs def UpperCAmelCase__ ( self :str , lowercase_ :Union[str, Any] ) -> Tuple: UpperCAmelCase = model_outputs.predicted_depth UpperCAmelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=lowercase_ ) UpperCAmelCase = prediction.squeeze().cpu().numpy() UpperCAmelCase = (output * 2_55 / np.max(lowercase_ )).astype('uint8' ) UpperCAmelCase = Image.fromarray(lowercase_ ) UpperCAmelCase = {} UpperCAmelCase = predicted_depth UpperCAmelCase = depth return output_dict
78
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''encoder-decoder''' snake_case = True def __init__( self : Optional[int] , **__UpperCAmelCase : Any ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _A = kwargs.pop("encoder" ) _A = encoder_config.pop("model_type" ) _A = kwargs.pop("decoder" ) _A = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _A = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase ) _A = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase ) _A = True @classmethod def lowerCAmelCase ( cls : str , __UpperCAmelCase : PretrainedConfig , __UpperCAmelCase : PretrainedConfig , **__UpperCAmelCase : str ): '''simple docstring''' logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _A = True _A = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = copy.deepcopy(self.__dict__ ) _A = self.encoder.to_dict() _A = self.decoder.to_dict() _A = self.__class__.model_type return output
79
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
'''simple docstring''' import string from math import logaa def _UpperCamelCase ( __A , __A ) -> int: '''simple docstring''' UpperCamelCase__ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) UpperCamelCase__ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( __A , __A ) -> tuple[int, int]: '''simple docstring''' UpperCamelCase__ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCamelCase__ = corpus_without_punctuation.split("\n" ) UpperCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__A )) def _UpperCamelCase ( __A , __A , __A=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase ( __A , __A ) -> float: '''simple docstring''' return round(tf * idf , 3 )
80
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase_ : str = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase_ : Any = TaTokenizerFast lowerCamelCase_ : Tuple = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase_ : Optional[int] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
81
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=snake_case , default=snake_case , required=snake_case , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=snake_case , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=snake_case , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=snake_case , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=snake_case , default=0 , help="""cuda_id.""" , ) _lowerCAmelCase = parser.parse_args() return args def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" if not len(snake_case ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) _lowerCAmelCase , _lowerCAmelCase = imgs[0].size _lowerCAmelCase = Image.new("""RGB""" , size=(cols * w, rows * h) ) _lowerCAmelCase , _lowerCAmelCase = grid.size for i, img in enumerate(snake_case ): grid.paste(snake_case , box=(i % cols * w, i // cols * h) ) return grid def _UpperCAmelCase ( snake_case , snake_case="robotic cat with wings" , snake_case=7.5 , snake_case=50 , snake_case=1 , snake_case=42 , ): """simple docstring""" _lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(snake_case ) _lowerCAmelCase = pipeline( snake_case , guidance_scale=snake_case , num_inference_steps=snake_case , generator=snake_case , num_images_per_prompt=snake_case , ).images _lowerCAmelCase = int(math.sqrt(snake_case ) ) _lowerCAmelCase = image_grid(snake_case , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images A__ = parse_args() # Load models and create wrapper for stable diffusion A__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") A__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") A__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") A__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") A__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) A__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): A__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: A__ = unet.to(torch.device("""cuda""", args.cuda_id)) A__ = pipeline.to(unet.device) A__ , A__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) A__ = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
82
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ): UpperCAmelCase : Any = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_choices def __magic_name__ ( self : str ): UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : int ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Any = True UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
336
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset snake_case_ : Union[str, Any] = 'bert-base-cased' snake_case_ : Any = 'google/pegasus-xsum' snake_case_ : Tuple = [' Sam ate lunch today.', 'Sams lunch ingredients.'] snake_case_ : List[str] = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] snake_case_ : int = 'patrickvonplaten/t5-tiny-random' snake_case_ : Union[str, Any] = 'sshleifer/bart-tiny-random' snake_case_ : Any = 'sshleifer/tiny-mbart' snake_case_ : Any = 'sshleifer/tiny-marian-en-de' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Any = '\n'.join(UpperCAmelCase_ ) Path(UpperCAmelCase_ ).open('w' ).writelines(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(UpperCAmelCase_ , f'{split}.source' ) , UpperCAmelCase_ ) _dump_articles(os.path.join(UpperCAmelCase_ , f'{split}.target' ) , UpperCAmelCase_ ) return tmp_dir class lowercase__ ( lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) @slow def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _UpperCamelCase : Optional[Any] = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in ARTICLES ) _UpperCamelCase : str = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in SUMMARIES ) _UpperCamelCase : Dict = 4 _UpperCamelCase : List[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _UpperCamelCase , _UpperCamelCase : int = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _UpperCamelCase : Optional[Any] = SeqaSeqDataset( lowerCamelCase__ ,data_dir=lowerCamelCase__ ,type_path='train' ,max_source_length=lowerCamelCase__ ,max_target_length=lowerCamelCase__ ,src_lang=lowerCamelCase__ ,tgt_lang=lowerCamelCase__ ,) _UpperCamelCase : Union[str, Any] = DataLoader(lowerCamelCase__ ,batch_size=2 ,collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase__ ,lowerCamelCase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _UpperCamelCase : Tuple = shift_tokens_right(batch['labels'] ,tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _UpperCamelCase : Optional[Any] = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in ARTICLES ) _UpperCamelCase : Dict = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in SUMMARIES ) _UpperCamelCase : Union[str, Any] = 4 _UpperCamelCase : List[str] = LegacySeqaSeqDataset( lowerCamelCase__ ,data_dir=lowerCamelCase__ ,type_path='train' ,max_source_length=20 ,max_target_length=lowerCamelCase__ ,) _UpperCamelCase : Any = DataLoader(lowerCamelCase__ ,batch_size=2 ,collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : str = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _UpperCamelCase : Dict = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _UpperCamelCase : Dict = tmp_dir.joinpath('train.source' ).open().readlines() _UpperCamelCase : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase__ ,lowerCamelCase__ ,128 ,lowerCamelCase__ ) _UpperCamelCase : Tuple = {x.name for x in tmp_dir.iterdir()} _UpperCamelCase : Dict = {x.name for x in save_dir.iterdir()} _UpperCamelCase : Union[str, Any] = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase__ ) < len(lowerCamelCase__ ) assert len(lowerCamelCase__ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE ,reason='This test requires fairseq' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Dict = self._get_dataset(max_len=64 ) _UpperCamelCase : Optional[Any] = 64 _UpperCamelCase : str = ds.make_dynamic_sampler(lowerCamelCase__ ,required_batch_size_multiple=lowerCamelCase__ ) _UpperCamelCase : Tuple = [len(lowerCamelCase__ ) for x in batch_sampler] assert len(set(lowerCamelCase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase__ ) == len(lowerCamelCase__ ) # no dropped or added examples _UpperCamelCase : str = DataLoader(lowerCamelCase__ ,batch_sampler=lowerCamelCase__ ,collate_fn=ds.collate_fn ,num_workers=2 ) _UpperCamelCase : Any = [] _UpperCamelCase : Tuple = [] for batch in data_loader: _UpperCamelCase : str = batch['input_ids'].shape _UpperCamelCase : List[Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _UpperCamelCase : Dict = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase__ ) assert num_src_per_batch[0] == max(lowerCamelCase__ ) if failures: raise AssertionError(F'too many tokens in {len(lowerCamelCase__ )} batches' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = self._get_dataset(max_len=512 ) _UpperCamelCase : Dict = 2 _UpperCamelCase : Any = ds.make_sortish_sampler(lowerCamelCase__ ,shuffle=lowerCamelCase__ ) _UpperCamelCase : List[Any] = DataLoader(lowerCamelCase__ ,batch_size=lowerCamelCase__ ,collate_fn=ds.collate_fn ,num_workers=2 ) _UpperCamelCase : List[str] = DataLoader(lowerCamelCase__ ,batch_size=lowerCamelCase__ ,collate_fn=ds.collate_fn ,num_workers=2 ,sampler=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any]="input_ids" ): return [batch[k].eq(lowerCamelCase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase__ ,k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase__ ,k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase__ ) ) < sum(count_pad_tokens(lowerCamelCase__ ) ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : Optional[int]=1000 ,lowerCamelCase__ : Union[str, Any]=128 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' ,lowerCamelCase__ ): _UpperCamelCase : List[Any] = 'examples/seq2seq/wmt_en_ro' _UpperCamelCase : int = max_len * 2 * 64 if not Path(lowerCamelCase__ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase__ ,lowerCamelCase__ ) else: _UpperCamelCase : Any = 'examples/seq2seq/test_data/wmt_en_ro' _UpperCamelCase : Any = max_len * 4 save_len_file(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : str = SeqaSeqDataset( lowerCamelCase__ ,data_dir=lowerCamelCase__ ,type_path='train' ,max_source_length=lowerCamelCase__ ,max_target_length=lowerCamelCase__ ,n_obs=lowerCamelCase__ ,) return ds, max_tokens, tokenizer def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = self._get_dataset() _UpperCamelCase : Any = set(DistributedSortishSampler(lowerCamelCase__ ,256 ,num_replicas=2 ,rank=0 ,add_extra_examples=lowerCamelCase__ ) ) _UpperCamelCase : List[Any] = set(DistributedSortishSampler(lowerCamelCase__ ,256 ,num_replicas=2 ,rank=1 ,add_extra_examples=lowerCamelCase__ ) ) assert idsa.intersection(lowerCamelCase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase__ ,use_fast=lowerCamelCase__ ) if tok_name == MBART_TINY: _UpperCamelCase : Union[str, Any] = SeqaSeqDataset( lowerCamelCase__ ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ,type_path='train' ,max_source_length=4 ,max_target_length=8 ,src_lang='EN' ,tgt_lang='FR' ,) _UpperCamelCase : Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _UpperCamelCase : Tuple = SeqaSeqDataset( lowerCamelCase__ ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ,type_path='train' ,max_source_length=4 ,max_target_length=8 ,) _UpperCamelCase : Any = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase__ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase__ ) == 0
83
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.txt"} _lowerCamelCase : List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase : List[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def a__ ( UpperCAmelCase : List[str] ) -> Any: with open(UpperCAmelCase , '''r''' ) as f: UpperCAmelCase : Dict = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ): super().__init__(**__A ) UpperCAmelCase : Tuple = load_vocab_file(__A ) UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Union[str, Any] = unk_token UpperCAmelCase : Optional[Any] = cls_token UpperCAmelCase : Optional[int] = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : List[str] = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __magic_name__ ( self : Tuple, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : List[Any], __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ): return text.split() def __magic_name__ ( self : Optional[int], __A : Dict=False ): return len(self._id_to_token ) def __magic_name__ ( self : int ): return {token: i for i, token in enumerate(self.all_tokens )} def __magic_name__ ( self : Tuple, __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: mask += [0] * len(__A ) + [1] return mask def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ): UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__A, '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __magic_name__ ( self : Dict ): return self.get_vocab_size(with_added_tokens=__A ) def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ): return super()._add_tokens(__A, special_tokens=__A )
336
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Tuple=0.999 , lowercase__ : Tuple="cosine" , ) -> Union[str, Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowerCAmelCase_ :Any = [] for i in range(lowercase__ ): lowerCAmelCase_ :Tuple = i / num_diffusion_timesteps lowerCAmelCase_ :List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _SCREAMING_SNAKE_CASE ( A__ , A__ ): UpperCAmelCase_ :Optional[int] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase_ :Optional[Any] = 2 @register_to_config def __init__( self , __A = 1000 , __A = 0.0_0_0_8_5 , __A = 0.0_1_2 , __A = "linear" , __A = None , __A = "epsilon" , __A = "linspace" , __A = 0 , ) -> Tuple: if trained_betas is not None: lowerCAmelCase_ :int = torch.tensor(__A , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase_ :List[Any] = torch.linspace(__A , __A , __A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase_ :Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase_ :Dict = betas_for_alpha_bar(__A ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowerCAmelCase_ :Optional[Any] = 1.0 - self.betas lowerCAmelCase_ :Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__A , __A , __A ) def __lowerCAmelCase ( self , __A , __A=None ) -> List[str]: if schedule_timesteps is None: lowerCAmelCase_ :Any = self.timesteps lowerCAmelCase_ :Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase_ :int = 1 if len(__A ) > 1 else 0 else: lowerCAmelCase_ :str = timestep.cpu().item() if torch.is_tensor(__A ) else timestep lowerCAmelCase_ :Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> str: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , __A , __A , ) -> torch.FloatTensor: lowerCAmelCase_ :List[str] = self.index_for_timestep(__A ) if self.state_in_first_order: lowerCAmelCase_ :str = self.sigmas[step_index] else: lowerCAmelCase_ :Any = self.sigmas_interpol[step_index] lowerCAmelCase_ :int = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , __A , __A = None , __A = None , ) -> Tuple: lowerCAmelCase_ :List[str] = num_inference_steps lowerCAmelCase_ :str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase_ :Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , __A , dtype=__A )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase_ :Any = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase_ :Dict = (np.arange(0 , __A ) * step_ratio).round()[::-1].copy().astype(__A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase_ :Optional[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase_ :int = (np.arange(__A , 0 , -step_ratio )).round().copy().astype(__A ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) lowerCAmelCase_ :List[str] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase_ :Union[str, Any] = torch.from_numpy(np.log(__A ) ).to(__A ) lowerCAmelCase_ :Dict = np.interp(__A , np.arange(0 , len(__A ) ) , __A ) lowerCAmelCase_ :Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase_ :str = torch.from_numpy(__A ).to(device=__A ) # interpolate sigmas lowerCAmelCase_ :List[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowerCAmelCase_ :str = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase_ :str = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__A ).startswith("""mps""" ): # mps does not support float64 lowerCAmelCase_ :Any = torch.from_numpy(__A ).to(__A , dtype=torch.floataa ) else: lowerCAmelCase_ :List[str] = torch.from_numpy(__A ).to(__A ) # interpolate timesteps lowerCAmelCase_ :Tuple = self.sigma_to_t(__A ).to(__A , dtype=timesteps.dtype ) lowerCAmelCase_ :Tuple = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowerCAmelCase_ :str = torch.cat([timesteps[:1], interleaved_timesteps] ) lowerCAmelCase_ :Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase_ :Optional[Any] = defaultdict(__A ) def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: # get log sigma lowerCAmelCase_ :Union[str, Any] = sigma.log() # get distribution lowerCAmelCase_ :Any = log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCAmelCase_ :List[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowerCAmelCase_ :Tuple = low_idx + 1 lowerCAmelCase_ :str = self.log_sigmas[low_idx] lowerCAmelCase_ :Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase_ :Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase_ :Union[str, Any] = w.clamp(0 , 1 ) # transform interpolation to time range lowerCAmelCase_ :Optional[int] = (1 - w) * low_idx + w * high_idx lowerCAmelCase_ :int = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , __A , __A , __A , __A = True , ) -> Union[SchedulerOutput, Tuple]: lowerCAmelCase_ :Optional[int] = self.index_for_timestep(__A ) # advance index counter by 1 lowerCAmelCase_ :Any = timestep.cpu().item() if torch.is_tensor(__A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase_ :Optional[Any] = self.sigmas[step_index] lowerCAmelCase_ :List[str] = self.sigmas_interpol[step_index + 1] lowerCAmelCase_ :str = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCAmelCase_ :str = self.sigmas[step_index - 1] lowerCAmelCase_ :Optional[int] = self.sigmas_interpol[step_index] lowerCAmelCase_ :Union[str, Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase_ :Dict = 0 lowerCAmelCase_ :List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase_ :Tuple = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase_ :str = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase_ :Any = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase_ :List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase_ :int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase_ :List[str] = sigma_interpol - sigma_hat # store for 2nd order step lowerCAmelCase_ :Dict = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCAmelCase_ :List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCAmelCase_ :Optional[int] = sigma_next - sigma_hat lowerCAmelCase_ :Optional[int] = self.sample lowerCAmelCase_ :List[str] = None lowerCAmelCase_ :Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__A ) def __lowerCAmelCase ( self , __A , __A , __A , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase_ :str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__A ): # mps does not support float64 lowerCAmelCase_ :Any = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase_ :Optional[int] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase_ :Tuple = self.timesteps.to(original_samples.device ) lowerCAmelCase_ :int = timesteps.to(original_samples.device ) lowerCAmelCase_ :Dict = [self.index_for_timestep(__A , __A ) for t in timesteps] lowerCAmelCase_ :Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase_ :str = sigma.unsqueeze(-1 ) lowerCAmelCase_ :Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
84
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort lowerCamelCase__ = """1""" lowerCamelCase__ = """0""" lowerCamelCase__ = """1""" lowerCamelCase__ = ort.SessionOptions() lowerCamelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") lowerCamelCase__ = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] lowerCamelCase__ = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) lowerCamelCase__ = ort.RunOptions() lowerCamelCase__ = 128 lowerCamelCase__ = 1 lowerCamelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase__ = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") lowerCamelCase__ = time.time() lowerCamelCase__ = 2_000 lowerCamelCase__ = {} for iter in range(max_iters): lowerCamelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1_000 / max_iters))
86
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
# flake8: noqa # Lint as: python3 UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
87
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __lowerCAmelCase : Tuple = 'facebook/wmt19-en-de' __lowerCAmelCase : Union[str, Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __lowerCAmelCase : Dict = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __lowerCAmelCase : List[str] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test __lowerCAmelCase : Optional[int] = tokenizer(['Making tiny model'], return_tensors='pt') __lowerCAmelCase : List[str] = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save __lowerCAmelCase : Any = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
88
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
'''simple docstring''' import math def __lowerCamelCase ( lowerCAmelCase_ ) -> int: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _a : Tuple = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase_ ) if number < 1: _a : List[Any] = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase_ ) elif number == 1: return 3 elif number == 2: return 5 else: _a : List[Any] = int(math.log(number // 3 , 2 ) ) + 2 _a : str = [3, 5] _a : Optional[int] = 2 _a : Union[str, Any] = 3 for block in range(1 , lowerCAmelCase_ ): for _ in range(lowerCAmelCase_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __lowerCAmelCase = 0 try: __lowerCAmelCase = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
89
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
0
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
90
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from copy import deepcopy class lowerCAmelCase__ : '''simple docstring''' def __init__( self : int , lowercase_ : list[int] | None = None , lowercase_ : int | None = None): '''simple docstring''' if arr is None and size is not None: SCREAMING_SNAKE_CASE_ : str = size SCREAMING_SNAKE_CASE_ : Tuple = [0] * size elif arr is not None: self.init(lowercase_) else: raise ValueError('''Either arr or size must be specified''') def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : list[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = len(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = deepcopy(lowercase_) for i in range(1 , self.size): SCREAMING_SNAKE_CASE_ : List[Any] = self.next_(lowercase_) if j < self.size: self.tree[j] += self.tree[i] def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.tree[:] for i in range(self.size - 1 , 0 , -1): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.next_(lowercase_) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : int): '''simple docstring''' return index + (index & (-index)) @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : int): '''simple docstring''' return index - (index & (-index)) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : int , lowercase_ : int): '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value SCREAMING_SNAKE_CASE_ : Dict = self.next_(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : int , lowercase_ : int): '''simple docstring''' self.add(lowercase_ , value - self.get(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : int): '''simple docstring''' if right == 0: return 0 SCREAMING_SNAKE_CASE_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prev(lowercase_) return result def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : int , lowercase_ : int): '''simple docstring''' return self.prefix(lowercase_) - self.prefix(lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : int): '''simple docstring''' return self.query(lowercase_ , index + 1) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : int): '''simple docstring''' value -= self.tree[0] if value < 0: return -1 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 SCREAMING_SNAKE_CASE_ : Any = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
91
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : str = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowercase_ : Union[str, Any] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__SCREAMING_SNAKE_CASE ) , torch_builtin(__SCREAMING_SNAKE_CASE ) ) ) self.assertFalse(torch.allclose(gelu_python(__SCREAMING_SNAKE_CASE ) , gelu_new(__SCREAMING_SNAKE_CASE ) ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowercase_ : Tuple = get_activation('''gelu''' ) lowercase_ : Any = get_activation('''gelu_10''' ) lowercase_ : List[str] = torch_builtin(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = geluaa(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__SCREAMING_SNAKE_CASE ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self ): """simple docstring""" get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): get_activation('''bogus''' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): get_activation(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = get_activation('''gelu''' ) lowercase_ : Any = 1 lowercase_ : str = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = acta.a
93
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Any = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'vit_msn' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-06 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :List[Any] = hidden_size a :Dict = num_hidden_layers a :Union[str, Any] = num_attention_heads a :Tuple = intermediate_size a :str = hidden_act a :Dict = hidden_dropout_prob a :List[Any] = attention_probs_dropout_prob a :Optional[int] = initializer_range a :str = layer_norm_eps a :Union[str, Any] = image_size a :int = patch_size a :str = num_channels a :Optional[Any] = qkv_bias
94
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : Tuple = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] UpperCAmelCase : int = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] UpperCAmelCase : List[Any] = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): UpperCAmelCase : str = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
95
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case = logging.get_logger(__name__) __snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __snake_case = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __snake_case = { '''facebook/blenderbot_small-90M''': 512, } class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = BlenderbotSmallTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=UpperCamelCase_ , merges=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , ) , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Union[str, Any] = add_prefix_space def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :Optional[int] = [self.sep_token_id] UpperCamelCase__ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
97
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" class snake_case : """simple docstring""" def __init__( self : str ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Tuple ): UpperCAmelCase__ = name UpperCAmelCase__ = value UpperCAmelCase__ = weight def __repr__( self : List[Any] ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def __lowerCAmelCase ( self : Tuple ): return self.value def __lowerCAmelCase ( self : Tuple ): return self.name def __lowerCAmelCase ( self : Optional[int] ): return self.weight def __lowerCAmelCase ( self : int ): return self.value / self.weight def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [] for i in range(len(lowerCamelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = sorted(lowerCamelCase , key=lowerCamelCase , reverse=lowerCamelCase ) UpperCAmelCase__ = [] UpperCAmelCase__ , UpperCAmelCase__ = 0.0, 0.0 for i in range(len(lowerCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
98
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
from __future__ import annotations import queue class A__ : """simple docstring""" def __init__( self , lowercase) -> Any: '''simple docstring''' a__ : List[str] = data a__ : Tuple = None a__ : int = None def A_ ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) a__ : Tuple = input('Enter the value of the root node: ' ).strip().lower() a__ : queue.Queue = queue.Queue() a__ : List[Any] = TreeNode(int(A__ ) ) q.put(A__ ) while not q.empty(): a__ : int = q.get() a__ : Optional[Any] = F'Enter the left node of {node_found.data}: ' a__ : List[Any] = input(A__ ).strip().lower() or 'n' if check == "n": return tree_node a__ : Tuple = TreeNode(int(A__ ) ) a__ : Union[str, Any] = left_node q.put(A__ ) a__ : List[str] = F'Enter the right node of {node_found.data}: ' a__ : str = input(A__ ).strip().lower() or 'n' if check == "n": return tree_node a__ : int = TreeNode(int(A__ ) ) a__ : List[Any] = right_node q.put(A__ ) raise def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ : queue.Queue = queue.Queue() q.put(A__ ) while not q.empty(): a__ : Optional[Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ : queue.Queue = queue.Queue() q.put(A__ ) while not q.empty(): a__ : Dict = [] while not q.empty(): a__ : Optional[int] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(A__ ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ : list[TreeNode] = [] a__ : Any = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(A__ ) a__ : Union[str, Any] = n.left # end of while means current node doesn't have left child a__ : int = stack.pop() # start to traverse its right child a__ : Tuple = n.right def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ : list[TreeNode] = [] a__ : Tuple = node while n or stack: while n: stack.append(A__ ) a__ : Optional[int] = n.left a__ : Any = stack.pop() print(n.data , end=',' ) a__ : List[str] = n.right def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ , a__ : Optional[Any] = [], [] a__ : str = node stacka.append(A__ ) while stacka: # to find the reversed order of post order, store it in stack2 a__ : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(A__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def A_ ( A__ = "" , A__=50 , A__="*" ) -> str: if not s: return "\n" + width * char a__ , a__ : Dict = divmod(width - len(A__ ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowercase : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
99
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Union[List[PIL.Image.Image], np.ndarray] __lowercase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : np.ndarray __lowercase : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
100
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if "model" in orig_key: lowercase = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: lowercase = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase = '''yoso.''' + orig_key return orig_key def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase = val lowercase = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase = torch.arange(lowerCAmelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''model_state_dict'''] lowercase = YosoConfig.from_json_file(lowerCAmelCase__ ) lowercase = YosoForMaskedLM(lowerCAmelCase__ ) lowercase = convert_checkpoint_helper(config.max_position_embeddings , lowerCAmelCase__ ) print(model.load_state_dict(lowerCAmelCase__ ) ) model.eval() model.save_pretrained(lowerCAmelCase__ ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowercase__ :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ :Any = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
101
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Model type selected in the list: ' + ', '.join(__snake_case )} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCamelCase__ =field( default=128, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) lowerCamelCase__ =field( default=128, metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'}, ) lowerCamelCase__ =field( default=64, metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) }, ) lowerCamelCase__ =field( default=30, metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCamelCase__ =field( default=0.0, metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCamelCase__ =field( default=20, metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCamelCase__ =field( default=0, metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) }, ) lowerCamelCase__ =field(default=1, metadata={'help': 'multiple threads for converting example to features'} ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='train' lowerCamelCase__ ='dev' class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ = None , a_ = Split.train , a_ = False , a_ = None , a_ = "pt" , ): '''simple docstring''' __snake_case : Optional[Any] = args __snake_case : Optional[Any] = is_language_sensitive __snake_case : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(a_ , a_ ): try: __snake_case : Any = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __snake_case : Optional[int] = mode # Load data features from cache or dataset file __snake_case : Tuple = '''v2''' if args.version_2_with_negative else '''v1''' __snake_case : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : Any = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not args.overwrite_cache: __snake_case : int = time.time() __snake_case : Optional[Any] = torch.load(a_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __snake_case : Tuple = self.old_features['''features'''] __snake_case : Union[str, Any] = self.old_features.get('''dataset''' , a_ ) __snake_case : Optional[Any] = self.old_features.get('''examples''' , a_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ''' future run''' ) else: if mode == Split.dev: __snake_case : str = self.processor.get_dev_examples(args.data_dir ) else: __snake_case : int = self.processor.get_train_examples(args.data_dir ) __snake_case , __snake_case : int = squad_convert_examples_to_features( examples=self.examples , tokenizer=a_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=a_ , ) __snake_case : Union[str, Any] = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , a_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' __snake_case : Tuple = self.features[i] __snake_case : Any = torch.tensor(feature.input_ids , dtype=torch.long ) __snake_case : Optional[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) __snake_case : str = torch.tensor(feature.token_type_ids , dtype=torch.long ) __snake_case : Optional[Any] = torch.tensor(feature.cls_index , dtype=torch.long ) __snake_case : Optional[Any] = torch.tensor(feature.p_mask , dtype=torch.float ) __snake_case : str = torch.tensor(feature.is_impossible , dtype=torch.float ) __snake_case : List[str] = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __snake_case : Dict = torch.tensor(feature.start_position , dtype=torch.long ) __snake_case : str = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
102
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : str = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ['''DeiTFeatureExtractor'''] A__ : int = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : """simple docstring""" def __init__( self : str ,lowercase__ : Tuple ,lowercase__ : Dict=1_3 ,lowercase__ : List[str]=3_0 ,lowercase__ : Tuple=2 ,lowercase__ : Optional[int]=3 ,lowercase__ : List[str]=True ,lowercase__ : Tuple=True ,lowercase__ : int=3_2 ,lowercase__ : List[str]=5 ,lowercase__ : Tuple=4 ,lowercase__ : Any=3_7 ,lowercase__ : Any="gelu" ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : Optional[int]=0.1 ,lowercase__ : str=1_0 ,lowercase__ : Optional[int]=0.0_2 ,lowercase__ : Union[str, Any]=3 ,lowercase__ : Optional[int]=0.6 ,lowercase__ : List[Any]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Optional[int] ,lowercase__ : List[str] ): __lowercase = ViTMAEModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Optional[Any] ): __lowercase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) __lowercase = (self.image_size // self.patch_size) ** 2 __lowercase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __lowercase = 1 __lowercase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(lowercase__ ) __lowercase = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () SCREAMING_SNAKE_CASE : Dict = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ViTMAEModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ ,nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ): # make masks reproducible np.random.seed(2 ) __lowercase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowercase = torch.from_numpy(lowercase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowercase = pt_noise super().check_pt_tf_models(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs[0].cpu().numpy() __lowercase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) __lowercase = model_class.from_pretrained(lowercase__ ) model.to(lowercase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) # Make sure we don't have nans __lowercase = after_outputs[0].cpu().numpy() __lowercase = 0 __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ ,1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def SCREAMING_SNAKE_CASE ( self : int ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ViTMAEModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : str ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) __lowercase = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowercase = ViTMAEConfig() __lowercase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ,noise=torch.from_numpy(lowercase__ ).to(device=lowercase__ ) ) # verify the logits __lowercase = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(lowercase__ ) ,atol=1e-4 ) )
104
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ): UpperCAmelCase : Any = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_choices def __magic_name__ ( self : str ): UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : int ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Any = True UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
336
0
"""simple docstring""" from __future__ import annotations from typing import Any def _SCREAMING_SNAKE_CASE ( _lowercase : list ) ->int: '''simple docstring''' if not postfix_notation: return 0 a : List[str] = {"+", "-", "*", "/"} a : list[Any] = [] for token in postfix_notation: if token in operations: a, a : int = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
105
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.txt"} _lowerCamelCase : List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase : List[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def a__ ( UpperCAmelCase : List[str] ) -> Any: with open(UpperCAmelCase , '''r''' ) as f: UpperCAmelCase : Dict = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ): super().__init__(**__A ) UpperCAmelCase : Tuple = load_vocab_file(__A ) UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Union[str, Any] = unk_token UpperCAmelCase : Optional[Any] = cls_token UpperCAmelCase : Optional[int] = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : List[str] = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __magic_name__ ( self : Tuple, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : List[Any], __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ): return text.split() def __magic_name__ ( self : Optional[int], __A : Dict=False ): return len(self._id_to_token ) def __magic_name__ ( self : int ): return {token: i for i, token in enumerate(self.all_tokens )} def __magic_name__ ( self : Tuple, __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: mask += [0] * len(__A ) + [1] return mask def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ): UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__A, '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __magic_name__ ( self : Dict ): return self.get_vocab_size(with_added_tokens=__A ) def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ): return super()._add_tokens(__A, special_tokens=__A )
336
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = torch.device('''cpu''') def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Any = Image.open(requests.get(A_ , stream=A_ ).raw ) return im def __SCREAMING_SNAKE_CASE ( A_ ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = dct.pop(A_ ) lowerCAmelCase__ : Optional[Any] = val def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Optional[Any] = [] for k in state_dict.keys(): lowerCAmelCase__ : int = k if ".pwconv" in k: lowerCAmelCase__ : Dict = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: lowerCAmelCase__ : Dict = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: lowerCAmelCase__ : Any = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: lowerCAmelCase__ : Union[str, Any] = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: lowerCAmelCase__ : Dict = k_new.split('''.''' ) if ls[2].isdigit(): lowerCAmelCase__ : List[str] = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: lowerCAmelCase__ : List[str] = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : int = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase__ : Any = 10_00 lowerCAmelCase__ : Union[str, Any] = '''huggingface/label-files''' lowerCAmelCase__ : int = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : int = json.load(open(hf_hub_download(A_ , A_ , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ : Optional[int] = {int(A_ ): v for k, v in idalabel.items()} lowerCAmelCase__ : int = idalabel lowerCAmelCase__ : int = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCAmelCase__ : Optional[int] = [3, 3, 6, 4] lowerCAmelCase__ : Dict = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowerCAmelCase__ : Any = [3, 3, 9, 6] lowerCAmelCase__ : Optional[int] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowerCAmelCase__ : Any = [4, 3, 10, 5] lowerCAmelCase__ : List[Any] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowerCAmelCase__ : str = [4, 4, 12, 6] lowerCAmelCase__ : List[str] = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): lowerCAmelCase__ : Tuple = torch.hub.load_state_dict_from_url(A_ , map_location='''cpu''' , check_hash=A_ ) else: lowerCAmelCase__ : str = torch.load(A_ , map_location='''cpu''' ) lowerCAmelCase__ : Optional[int] = checkpoint lowerCAmelCase__ : Dict = create_rename_keys(A_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A_ , A_ , A_ ) # load HuggingFace model lowerCAmelCase__ : Tuple = SwiftFormerForImageClassification(A_ ).eval() hf_model.load_state_dict(A_ ) # prepare test inputs lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : List[Any] = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) lowerCAmelCase__ : int = processor(images=A_ , return_tensors='''pt''' ) # compare outputs from both models lowerCAmelCase__ : str = get_expected_output(A_ ) lowerCAmelCase__ : int = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , A_ , atol=1e-3 ) Path(A_ ).mkdir(exist_ok=A_ ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(A_ ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') __UpperCamelCase : str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
106
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
import argparse import copy def __magic_name__ ( A : int ): '''simple docstring''' a = {} with open(A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: a = [] _list.append([line.split()[1], line.split()[2]] ) a = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: a = [] _list.append([line.split()[0], line.split()[2]] ) a = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __magic_name__ ( A : Optional[int], A : Dict ): '''simple docstring''' with open(A ) as f: a = f.read(1 ) a = start_node a = [] a = start_node a = 0 while visiting not in first_solution: a = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(A ) and k[0] not in first_solution: a = k[1] a = k[0] first_solution.append(A ) a = distance_of_first_solution + int(A ) a = best_node first_solution.append(A ) a = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 a = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def __magic_name__ ( A : Tuple, A : List[str] ): '''simple docstring''' a = [] for n in solution[1:-1]: a = solution.index(A ) for kn in solution[1:-1]: a = solution.index(A ) if n == kn: continue a = copy.deepcopy(A ) a = kn a = n a = 0 for k in _tmp[:-1]: a = _tmp[_tmp.index(A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: a = distance + int(i[1] ) _tmp.append(A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) a = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __magic_name__ ( A : Any, A : List[str], A : Optional[int], A : Dict, A : List[Any] ): '''simple docstring''' a = 1 a = first_solution a = [] a = distance_of_first_solution a = solution while count <= iters: a = find_neighborhood(A, A ) a = 0 a = neighborhood[index_of_best_solution] a = len(A ) - 1 a = False while not found: a = 0 while i < len(A ): if best_solution[i] != solution[i]: a = best_solution[i] a = solution[i] break a = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) a = True a = best_solution[:-1] a = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: a = cost a = solution else: a = index_of_best_solution + 1 a = neighborhood[index_of_best_solution] if len(A ) >= size: tabu_list.pop(0 ) a = count + 1 return best_solution_ever, best_cost def __magic_name__ ( A : Optional[Any]=None ): '''simple docstring''' a = generate_neighbours(args.File ) a , a = generate_first_solution( args.File, A ) a , a = tabu_search( A, A, A, args.Iterations, args.Size, ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
107
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase ): """simple docstring""" a : str =["transformers", "torch", "note_seq"] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["transformers", "torch", "note_seq"] )
108
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A: List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : List[str] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = size if size is not None else {"""shortest_edge""": 256} UpperCAmelCase : int = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) UpperCAmelCase : Optional[int] = do_resize UpperCAmelCase : int = size UpperCAmelCase : Any = resample UpperCAmelCase : Dict = do_center_crop UpperCAmelCase : Dict = crop_size UpperCAmelCase : Tuple = do_rescale UpperCAmelCase : Optional[Any] = rescale_factor UpperCAmelCase : Any = do_normalize UpperCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : int = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase : Tuple = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size["""shortest_edge"""] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: '''simple docstring''' return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : str = size if size is not None else self.size UpperCAmelCase : Union[str, Any] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = resample if resample is not None else self.resample UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : str = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : int = image_std if image_std is not None else self.image_std UpperCAmelCase : List[Any] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : Optional[Any] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCAmelCase : Any = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCAmelCase : Dict = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCAmelCase : List[Any] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCAmelCase : str = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase : Optional[Any] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase : str = {"""pixel_values""": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Any = target_sizes.numpy() UpperCAmelCase : Tuple = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : List[Any] = logits.argmax(dim=1 ) UpperCAmelCase : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
109
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , UpperCamelCase : Any , UpperCamelCase : Optional[Any]=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Optional[Any]=18 , UpperCamelCase : Tuple=30 , UpperCamelCase : Optional[Any]=400 , UpperCamelCase : Any=True , UpperCamelCase : List[Any]=None , UpperCamelCase : Tuple=True , UpperCamelCase : Tuple=None , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=[0.48145466, 0.4578275, 0.40821073] , UpperCamelCase : int=[0.26862954, 0.26130258, 0.27577711] , UpperCamelCase : List[Any]=True , ): '''simple docstring''' __UpperCAmelCase : List[Any] = size if size is not None else {'''height''': 224, '''width''': 224} __UpperCAmelCase : Any = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __UpperCAmelCase : int = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : str = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : List[str] = do_resize __UpperCAmelCase : Union[str, Any] = size __UpperCAmelCase : Dict = do_center_crop __UpperCAmelCase : Tuple = crop_size __UpperCAmelCase : Dict = do_normalize __UpperCAmelCase : List[Any] = image_mean __UpperCAmelCase : Optional[Any] = image_std __UpperCAmelCase : List[Any] = do_convert_rgb def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Dict=False , UpperCamelCase : Optional[Any]=False , UpperCamelCase : List[str]=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __UpperCAmelCase : Any = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: __UpperCAmelCase : List[str] = [] for i in range(self.batch_size ): __UpperCAmelCase : int = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __UpperCAmelCase : Tuple = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] if torchify: __UpperCAmelCase : Optional[Any] = [torch.from_numpy(__A ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __a = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : str = ChineseCLIPImageProcessingTester(self , do_center_crop=__A ) @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) self.assertTrue(hasattr(__A , """do_center_crop""" ) ) self.assertTrue(hasattr(__A , """center_crop""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_convert_rgb""" ) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __UpperCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : int = self.image_processor_tester.prepare_inputs(equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __UpperCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase : Union[str, Any] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase : str = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __a = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__A ) __UpperCAmelCase : List[str] = 3 @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) self.assertTrue(hasattr(__A , """do_center_crop""" ) ) self.assertTrue(hasattr(__A , """center_crop""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_convert_rgb""" ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase : Dict = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
115
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
100
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase = 25_6047 UpperCamelCase = 25_6145 @require_sentencepiece @require_tokenizers class snake_case_ ( lowerCamelCase__ ,unittest.TestCase ): __A : int = NllbTokenizer __A : Optional[Any] = NllbTokenizerFast __A : Any = True __A : Union[str, Any] = True __A : Optional[int] = {} def __UpperCamelCase ( self : Any ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowercase__ : Optional[Any] = NllbTokenizer(__A , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Optional[Any] ) -> int: lowercase__ : Dict = NllbTokenizer(__A , keep_accents=__A ) lowercase__ : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase__ : Tuple = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ : Any = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __UpperCamelCase ( self : str ) -> Tuple: lowercase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__A , **__A ) lowercase__ : int = self.tokenizer_class.from_pretrained(__A , **__A ) lowercase__ : str = tempfile.mkdtemp() lowercase__ : Optional[Any] = tokenizer_r.save_pretrained(__A ) lowercase__ : Dict = tokenizer_p.save_pretrained(__A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowercase__ : List[Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__A , __A ) # Checks everything loads correctly in the same way lowercase__ : Optional[Any] = tokenizer_r.from_pretrained(__A ) lowercase__ : int = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) # Save tokenizer rust, legacy_format=True lowercase__ : int = tempfile.mkdtemp() lowercase__ : List[Any] = tokenizer_r.save_pretrained(__A , legacy_format=__A ) lowercase__ : Union[str, Any] = tokenizer_p.save_pretrained(__A ) # Checks it save with the same files self.assertSequenceEqual(__A , __A ) # Checks everything loads correctly in the same way lowercase__ : Optional[int] = tokenizer_r.from_pretrained(__A ) lowercase__ : List[Any] = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) # Save tokenizer rust, legacy_format=False lowercase__ : Optional[Any] = tempfile.mkdtemp() lowercase__ : Tuple = tokenizer_r.save_pretrained(__A , legacy_format=__A ) lowercase__ : str = tokenizer_p.save_pretrained(__A ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase__ : Any = tokenizer_r.from_pretrained(__A ) lowercase__ : Dict = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: if not self.test_seqaseq: return lowercase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. lowercase__ : Dict = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowercase__ : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowercase__ : int = tokenizer.prepare_seqaseq_batch( src_texts=__A , tgt_texts=__A , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowercase__ : Tuple = tokenizer.prepare_seqaseq_batch( __A , tgt_texts=__A , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowercase__ : Union[str, Any] = tokenizer.prepare_seqaseq_batch( src_texts=__A , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , __A ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: pass def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : Any = [AddedToken("<special>" , lstrip=__A )] lowercase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A ) lowercase__ : Dict = tokenizer_r.encode("Hey this is a <special> token" ) lowercase__ : Any = tokenizer_r.encode("<special>" , add_special_tokens=__A )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A , ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A ) lowercase__ : Union[str, Any] = tokenizer_p.encode("Hey this is a <special> token" ) lowercase__ : Union[str, Any] = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class snake_case_ ( unittest.TestCase ): __A : Tuple = "facebook/nllb-200-distilled-600M" __A : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __A : Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __A : Union[str, Any] = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def __UpperCamelCase ( cls : Optional[int] ) -> int: lowercase__ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) lowercase__ : Tuple = 1 return cls def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def __UpperCamelCase ( self : List[Any] ) -> Dict: lowercase__ : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __A ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: self.assertIn(__A , self.tokenizer.all_special_ids ) # fmt: off lowercase__ : Any = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on lowercase__ : Union[str, Any] = self.tokenizer.decode(__A , skip_special_tokens=__A ) lowercase__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__A ) self.assertEqual(__A , __A ) self.assertNotIn(self.tokenizer.eos_token , __A ) def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Optional[int] = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __A ) lowercase__ : Optional[Any] = 10 lowercase__ : int = self.tokenizer(__A , max_length=__A , truncation=__A ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __A ) self.assertEqual(len(__A ) , __A ) def __UpperCamelCase ( self : List[str] ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def __UpperCamelCase ( self : Dict ) -> str: lowercase__ : Dict = tempfile.mkdtemp() lowercase__ : str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__A ) lowercase__ : Any = NllbTokenizer.from_pretrained(__A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __A ) @require_torch def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__A , truncation=__A , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase__ : Union[str, Any] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(__A , __A ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowercase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __A ) self.assertEqual(__A , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : Optional[Any] = self.tokenizer(self.src_text , padding=__A , truncation=__A , max_length=3 , return_tensors="pt" ) lowercase__ : Union[str, Any] = self.tokenizer( text_target=self.tgt_text , padding=__A , truncation=__A , max_length=10 , return_tensors="pt" ) lowercase__ : Tuple = targets['''input_ids'''] lowercase__ : List[Any] = shift_tokens_right( __A , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Any: lowercase__ : Dict = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(__A ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Tuple: lowercase__ : Tuple = True lowercase__ : int = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) lowercase__ : int = False lowercase__ : Optional[int] = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
87
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Tuple = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ["DeiTFeatureExtractor"] UpperCAmelCase_ : List[Any] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
200
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __snake_case ( lowerCamelCase__ ): @staticmethod @abstractmethod def lowerCamelCase_ ( lowercase) -> Any: '''simple docstring''' raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' raise NotImplementedError()
290
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
"""simple docstring""" import csv import tweepy # Twitter API credentials _A = "" _A = "" _A = "" _A = "" def a__ ( lowerCAmelCase ) -> None: # authorize twitter, initialize tweepy UpperCAmelCase__ : List[str] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase__ : int = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase__ : int = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one UpperCAmelCase__ : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase__ : Any = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one UpperCAmelCase__ : Tuple = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase__ : Optional[int] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , """w""" ) as f: UpperCAmelCase__ : int = csv.writer(lowerCAmelCase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
171
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = "pytorch_model.bin" @dataclasses.dataclass class A : __snake_case = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) __snake_case = dataclasses.field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class A : __snake_case = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) __snake_case = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) __snake_case = dataclasses.field( default=lowerCamelCase__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) __snake_case = dataclasses.field( default=lowerCamelCase__ , metadata={'help': 'The name of the task to train on.'} , ) __snake_case = dataclasses.field( default=lowerCamelCase__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class A : __snake_case = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) __snake_case = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) __snake_case = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]' } , ) __snake_case = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __snake_case = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) __snake_case = dataclasses.field( default=lowerCamelCase__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) __snake_case = dataclasses.field( default=lowerCamelCase__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) __snake_case = dataclasses.field( default=lowerCamelCase__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) __snake_case = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) __snake_case = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __snake_case = dataclasses.field( default=lowerCamelCase__ , metadata={'help': 'Random seed for initialization.'} , ) def __UpperCamelCase ( _A , _A , _A , _A , _A , _A ): lowerCAmelCase_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: lowerCAmelCase_ = dataset.filter(lambda _A : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowerCAmelCase_ = int(eval_result * len(_A ) ) print(_A ) lowerCAmelCase_ = dataset.sort('''probability''' , reverse=_A ) lowerCAmelCase_ = dataset.select(range(_A ) ) lowerCAmelCase_ = dataset.remove_columns(['''label''', '''probability'''] ) lowerCAmelCase_ = dataset.rename_column('''prediction''' , '''label''' ) lowerCAmelCase_ = dataset.map(lambda _A : {"label": idalabel[example["label"]]} ) lowerCAmelCase_ = dataset.shuffle(seed=args.seed ) lowerCAmelCase_ = os.path.join(_A , f"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(_A , index=_A ) else: dataset.to_json(_A ) def __UpperCamelCase ( _A , _A , _A , _A , **_A ): lowerCAmelCase_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowerCAmelCase_ = STModelArguments(model_name_or_path=_A ) lowerCAmelCase_ = STDataArguments(train_file=_A , infer_file=_A ) lowerCAmelCase_ = STTrainingArguments(output_dir=_A ) lowerCAmelCase_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_A ).items(): setattr(_A , _A , _A ) for key, value in kwargs.items(): if hasattr(_A , _A ): setattr(_A , _A , _A ) # Sanity checks lowerCAmelCase_ = {} lowerCAmelCase_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowerCAmelCase_ = args.train_file lowerCAmelCase_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowerCAmelCase_ = args.eval_file for key in data_files: lowerCAmelCase_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: lowerCAmelCase_ = extension else: assert extension == args.data_file_extension, f"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), f"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) lowerCAmelCase_ = f"{args.output_dir}/self-train_iter-{{}}".format lowerCAmelCase_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_A ) os.makedirs(_A , exist_ok=_A ) accelerator.wait_for_everyone() lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = 0 lowerCAmelCase_ = False # Show the progress bar lowerCAmelCase_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): lowerCAmelCase_ = data_dir_format(_A ) assert os.path.exists(_A ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowerCAmelCase_ = os.path.join(_A , '''stage-1''' ) lowerCAmelCase_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_A , _A ): arguments_dict.update({key: value} ) lowerCAmelCase_ = os.path.join(_A , '''best-checkpoint''' , _A ) if os.path.exists(_A ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , _A , _A , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , _A ) finetune(**_A ) accelerator.wait_for_everyone() assert os.path.exists(_A ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , _A ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowerCAmelCase_ = os.path.join(_A , '''best-checkpoint''' ) lowerCAmelCase_ = os.path.join(_A , '''stage-2''' ) # Update arguments_dict lowerCAmelCase_ = model_path lowerCAmelCase_ = data_files['''train'''] lowerCAmelCase_ = current_output_dir lowerCAmelCase_ = os.path.join(_A , '''best-checkpoint''' , _A ) if os.path.exists(_A ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , _A , _A , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , _A ) finetune(**_A ) accelerator.wait_for_everyone() assert os.path.exists(_A ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , _A ) lowerCAmelCase_ = iteration lowerCAmelCase_ = data_dir_format(iteration + 1 ) lowerCAmelCase_ = AutoConfig.from_pretrained(os.path.join(_A , '''best-checkpoint''' ) ) lowerCAmelCase_ = config.idalabel lowerCAmelCase_ = os.path.join(_A , '''eval_results_best-checkpoint.json''' ) lowerCAmelCase_ = os.path.join(_A , '''test_results_best-checkpoint.json''' ) assert os.path.exists(_A ) with open(_A , '''r''' ) as f: lowerCAmelCase_ = float(json.load(_A )[args.eval_metric] ) lowerCAmelCase_ = os.path.join(_A , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(_A ) # Loading the dataset from local csv or json files. lowerCAmelCase_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] lowerCAmelCase_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(_A , exist_ok=_A ) shutil.copy(_A , os.path.join(_A , f"eval_results_iter-{iteration}.json" ) ) if os.path.exists(_A ): shutil.copy(_A , os.path.join(_A , f"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(_A , _A , _A , _A , _A , _A ) accelerator.wait_for_everyone() lowerCAmelCase_ = os.path.join(_A , f"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: lowerCAmelCase_ = eval_result if best_iteration is None: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result lowerCAmelCase_ = 0 else: if new_eval_result == best_eval_result: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowerCAmelCase_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , _A ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , _A ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_A , f"eval_results_iter-{iteration}.json" ) , os.path.join(_A , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , _A ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_A , f"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(_A , '''eval_results_best-iteration.json''' ) , )
278
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
0
from math import factorial __snake_case = {str(digit): factorial(digit) for digit in range(1_0)} def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowercase ) ) def _A ( _lowercase = 60 , _lowercase = 1_00_00_00 ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ) or not isinstance(_lowercase , _lowercase ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length __UpperCamelCase = 0 # the cached sizes of the previous chains __UpperCamelCase = {} for start_chain_element in range(1 , _lowercase ): # The temporary set will contain the elements of the chain __UpperCamelCase = set() __UpperCamelCase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __UpperCamelCase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowercase ) chain_set_length += 1 __UpperCamelCase = digit_factorial_sum(_lowercase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __UpperCamelCase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution()}""")
310
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 'mask2former' _SCREAMING_SNAKE_CASE = ['swin'] _SCREAMING_SNAKE_CASE = {'hidden_size': 'hidden_dim'} def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Dict] = None , _lowerCAmelCase : int = 2_5_6 , _lowerCAmelCase : int = 2_5_6 , _lowerCAmelCase : int = 2_5_6 , _lowerCAmelCase : int = 1_0_2_4 , _lowerCAmelCase : str = "relu" , _lowerCAmelCase : int = 6 , _lowerCAmelCase : int = 1_0 , _lowerCAmelCase : int = 8 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : int = 2_0_4_8 , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 2_5_5 , _lowerCAmelCase : int = 1_0_0 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 2.0 , _lowerCAmelCase : float = 5.0 , _lowerCAmelCase : float = 5.0 , _lowerCAmelCase : int = 1_2_5_4_4 , _lowerCAmelCase : float = 3.0 , _lowerCAmelCase : float = 0.75 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : bool = True , _lowerCAmelCase : List[int] = [4, 8, 1_6, 3_2] , _lowerCAmelCase : bool = None , **_lowerCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) snake_case_ = CONFIG_MAPPING['''swin''']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__A , __A ): snake_case_ = backbone_config.pop("model_type" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) snake_case_ = backbone_config snake_case_ = feature_size snake_case_ = mask_feature_size snake_case_ = hidden_dim snake_case_ = encoder_feedforward_dim snake_case_ = activation_function snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = num_attention_heads snake_case_ = dropout snake_case_ = dim_feedforward snake_case_ = pre_norm snake_case_ = enforce_input_projection snake_case_ = common_stride snake_case_ = ignore_value snake_case_ = num_queries snake_case_ = no_object_weight snake_case_ = class_weight snake_case_ = mask_weight snake_case_ = dice_weight snake_case_ = train_num_points snake_case_ = oversample_ratio snake_case_ = importance_sample_ratio snake_case_ = init_std snake_case_ = init_xavier_std snake_case_ = use_auxiliary_loss snake_case_ = feature_strides snake_case_ = output_auxiliary_logits snake_case_ = decoder_layers super().__init__(**__A ) @classmethod def lowerCAmelCase__ ( cls : str , _lowerCAmelCase : PretrainedConfig , **_lowerCAmelCase : Any ) -> List[str]: """simple docstring""" return cls( backbone_config=__A , **__A , ) def lowerCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
159
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
"""simple docstring""" from ....utils import logging _a = logging.get_logger(__name__) class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self : Tuple, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any=None, UpperCAmelCase__ : int=2_0_4_8 ): __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
17
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A : list[int] = [ord(letter) for letter in string.ascii_lowercase] A : set[int] = {ord(char) for char in VALID_CHARS} A : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase_ ( _A : list[int] , _A : tuple[int, ...] ): """simple docstring""" lowerCamelCase__ : str = "" lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for keychar, cipherchar in zip(cycle(_A ) , _A ): lowerCamelCase__ : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_A ) return decoded def lowercase_ ( _A : list[int] ): """simple docstring""" lowerCamelCase__ : list[str] = [] for key in product(_A , repeat=3 ): lowerCamelCase__ : int = try_key(_A , _A ) if encoded is not None: possibles.append(_A ) return possibles def lowercase_ ( _A : list[str] , _A : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase_ ( _A : str = "p059_cipher.txt" ): """simple docstring""" lowerCamelCase__ : list[int] lowerCamelCase__ : list[str] lowerCamelCase__ : str lowerCamelCase__ : str lowerCamelCase__ : str = Path(_A ).parent.joinpath(_A ).read_text(encoding="utf-8" ) lowerCamelCase__ : int = [int(_A ) for number in data.strip().split("," )] lowerCamelCase__ : Dict = filter_valid_chars(_A ) for common_word in COMMON_WORDS: lowerCamelCase__ : Tuple = filter_common_word(_A , _A ) if len(_A ) == 1: break lowerCamelCase__ : List[Any] = possibles[0] return sum(ord(_A ) for char in decoded_text ) if __name__ == "__main__": print(f'{solution() = }')
184
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
"""simple docstring""" from collections import defaultdict def lowerCamelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' __UpperCAmelCase : Any = 1 __UpperCAmelCase : Dict = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def lowerCamelCase ( ) -> Tuple: '''simple docstring''' dfs(1 ) if __name__ == "__main__": UpperCAmelCase : Dict = 10, 9 UpperCAmelCase : Union[str, Any] = defaultdict(list) UpperCAmelCase : dict[int, bool] = {} UpperCAmelCase : list[int] = [] UpperCAmelCase : Dict = 0 UpperCAmelCase : Dict = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
115
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
"""simple docstring""" from math import ceil def _lowerCAmelCase ( UpperCamelCase_ = 1001 ): __SCREAMING_SNAKE_CASE = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __SCREAMING_SNAKE_CASE = 2 * i + 1 __SCREAMING_SNAKE_CASE = 2 * i __SCREAMING_SNAKE_CASE = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __magic_name__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
100
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
0
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int): return [sentence[i : i + ngram_size] for i in range(len(_lowerCamelCase) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
87
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _SCREAMING_SNAKE_CASE : List[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _SCREAMING_SNAKE_CASE : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _SCREAMING_SNAKE_CASE : List[Any] = j return prefix_result def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
200
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
0
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __snake_case : def __init__( self , lowercase , ) -> Any: '''simple docstring''' a__: Optional[Any] = parent a__: Optional[int] = 13 a__: Dict = 7 a__: Union[str, Any] = 30 a__: Any = self.seq_length + self.mem_len a__: List[Any] = 15 a__: Any = True a__: int = True a__: List[str] = 99 a__: Optional[Any] = [10, 50, 80] a__: Optional[int] = 32 a__: Optional[int] = 32 a__: List[Any] = 4 a__: Optional[Any] = 8 a__: Tuple = 1_28 a__: Dict = 2 a__: List[str] = 2 a__: Tuple = None a__: Dict = 1 a__: List[Any] = 0 a__: List[Any] = 3 a__: List[Any] = self.vocab_size - 1 a__: Dict = 0.01 def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__: List[Any] = None if self.use_labels: a__: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__: Optional[Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' random.seed(self.seed) tf.random.set_seed(self.seed) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__: Tuple = TFTransfoXLModel(__A) a__: Optional[int] = model(__A).to_tuple() a__: List[str] = {'''input_ids''': input_ids_a, '''mems''': mems_a} a__: Optional[int] = model(__A).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__: List[str] = TFTransfoXLLMHeadModel(__A) a__: int = model(__A).to_tuple() a__: int = {'''input_ids''': input_ids_a, '''labels''': lm_labels} a__: Optional[int] = model(__A).to_tuple() a__: List[Any] = model([input_ids_a, mems_a]).to_tuple() a__: Optional[Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} a__: Any = model(__A).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__: List[str] = TFTransfoXLForSequenceClassification(__A) a__: List[str] = model(__A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Union[str, Any] = self.prepare_config_and_inputs() (a__): List[Any] = config_and_inputs a__: Union[str, Any] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): a__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) a__ = () if is_tf_available() else () a__ = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented a__ = False a__ = False a__ = False a__ = False def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Any = TFTransfoXLModelTester(self) a__: Dict = ConfigTester(self , config_class=__A , d_embed=37) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self) -> int: '''simple docstring''' self.model_tester.set_seed() a__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__A) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' self.model_tester.set_seed() a__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__A) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__A) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a__: Dict = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a__: Optional[Any] = model_class(__A) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: a__: Optional[int] = model.get_output_embeddings() assert isinstance(__A , tf.keras.layers.Layer) a__: Dict = model.get_bias() assert name is None else: a__: Tuple = model.get_output_embeddings() assert x is None a__: str = model.get_bias() assert name is None def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' pass @slow def lowerCamelCase_ ( self) -> Any: '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Tuple = TFTransfoXLModel.from_pretrained(__A) self.assertIsNotNone(__A) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.') def lowerCamelCase_ ( self) -> Any: '''simple docstring''' pass @require_tf class __snake_case ( unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.') @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: str = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103') # fmt: off a__: Dict = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a__: Dict = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a__: Optional[Any] = model.generate(__A , max_length=2_00 , do_sample=__A) self.assertListEqual(output_ids[0].numpy().tolist() , __A)
290
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(lowerCAmelCase , 2 ) - pow(lowerCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowerCAmelCase , 2 ) - pow(lowerCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowerCAmelCase , 2 ) + pow(lowerCAmelCase , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
171
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ): UpperCAmelCase : Any = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_choices def __magic_name__ ( self : str ): UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : int ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Any = True UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
336
0
def __UpperCamelCase ( _A ): lowerCAmelCase_ = [[0 for _ in range(_A )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCAmelCase_ = 1 for n in range(m + 1 ): for k in range(1 , _A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _A = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: _A = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
278
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.txt"} _lowerCamelCase : List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase : List[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def a__ ( UpperCAmelCase : List[str] ) -> Any: with open(UpperCAmelCase , '''r''' ) as f: UpperCAmelCase : Dict = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ): super().__init__(**__A ) UpperCAmelCase : Tuple = load_vocab_file(__A ) UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Union[str, Any] = unk_token UpperCAmelCase : Optional[Any] = cls_token UpperCAmelCase : Optional[int] = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : List[str] = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __magic_name__ ( self : Tuple, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : List[Any], __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ): return text.split() def __magic_name__ ( self : Optional[int], __A : Dict=False ): return len(self._id_to_token ) def __magic_name__ ( self : int ): return {token: i for i, token in enumerate(self.all_tokens )} def __magic_name__ ( self : Tuple, __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: mask += [0] * len(__A ) + [1] return mask def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ): UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__A, '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __magic_name__ ( self : Dict ): return self.get_vocab_size(with_added_tokens=__A ) def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ): return super()._add_tokens(__A, special_tokens=__A )
336
0
def _A ( _lowercase ) -> list[list[float]]: """simple docstring""" __UpperCamelCase = [] for data in source_data: for i, el in enumerate(_lowercase ): if len(_lowercase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_lowercase ) ) return data_lists def _A ( _lowercase , _lowercase ) -> list[list[float]]: """simple docstring""" __UpperCamelCase = [] for dlist, weight in zip(_lowercase , _lowercase ): __UpperCamelCase = min(_lowercase ) __UpperCamelCase = max(_lowercase ) __UpperCamelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __UpperCamelCase = f'''Invalid weight of {weight:f} provided''' raise ValueError(_lowercase ) score_lists.append(_lowercase ) return score_lists def _A ( _lowercase ) -> list[float]: """simple docstring""" __UpperCamelCase = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_lowercase ): __UpperCamelCase = final_scores[j] + ele return final_scores def _A ( _lowercase , _lowercase ) -> list[list[float]]: """simple docstring""" __UpperCamelCase = get_data(_lowercase ) __UpperCamelCase = calculate_each_score(_lowercase , _lowercase ) __UpperCamelCase = generate_final_scores(_lowercase ) # append scores to source data for i, ele in enumerate(_lowercase ): source_data[i].append(_lowercase ) return source_data
310
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case_ = dict(zip(__A , range(len(__A ) ) ) ) snake_case_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) snake_case_ = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } snake_case_ = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__A , __A ) def lowerCAmelCase__ ( self : Optional[int] , **_lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__A ) def lowerCAmelCase__ ( self : Optional[int] , **_lowerCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__A ) def lowerCAmelCase__ ( self : Optional[Any] , **_lowerCAmelCase : List[Any] ) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__A ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" snake_case_ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = CLIPSegProcessor(tokenizer=__A , image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__A ) snake_case_ = CLIPSegProcessor(tokenizer=__A , image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __A ) self.assertIsInstance(processor_fast.tokenizer , __A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __A ) self.assertIsInstance(processor_fast.image_processor , __A ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case_ = self.get_image_processor(do_normalize=__A , padding_value=1.0 ) snake_case_ = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def lowerCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=__A , image_processor=__A ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(__A , return_tensors="np" ) snake_case_ = processor(images=__A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=__A , image_processor=__A ) snake_case_ = '''lower newer''' snake_case_ = processor(text=__A ) snake_case_ = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=__A , image_processor=__A ) snake_case_ = '''lower newer''' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def lowerCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=__A , image_processor=__A ) snake_case_ = self.prepare_image_inputs() snake_case_ = self.prepare_image_inputs() snake_case_ = processor(images=__A , visual_prompt=__A ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def lowerCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPSegProcessor(tokenizer=__A , image_processor=__A ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(__A ) snake_case_ = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A )
159
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowerCAmelCase ( lowerCamelCase__ ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = CpmAntTokenizer __UpperCAmelCase : Tuple = False def _lowercase ( self : Dict ): super().setUp() __lowercase = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __lowercase = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def _lowercase ( self : Any ): __lowercase = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) __lowercase = '''今天天气真好!''' __lowercase = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __lowercase = tokenizer.tokenize(__A ) self.assertListEqual(__A, __A ) __lowercase = '''今天天气真好!''' __lowercase = [tokenizer.bos_token] + tokens __lowercase = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), __A ) __lowercase = tokenizer.decode(__A ) self.assertEqual(__A, __A )
17
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _lowercase ( lowerCamelCase__): """simple docstring""" def __init__( self : str , __lowerCamelCase : str = "▁" , __lowerCamelCase : bool = True , __lowerCamelCase : Union[str, AddedToken] = "<unk>" , __lowerCamelCase : Union[str, AddedToken] = "</s>" , __lowerCamelCase : Union[str, AddedToken] = "<pad>" , ): '''simple docstring''' lowerCamelCase__ : Optional[int] = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } lowerCamelCase__ : int = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ : Optional[Any] = token_dict['''token'''] lowerCamelCase__ : Any = Tokenizer(Unigram() ) lowerCamelCase__ : Dict = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) lowerCamelCase__ : Dict = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__A , add_prefix_space=__A ), pre_tokenizers.Digits(individual_digits=__A ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ : Optional[Any] = decoders.Metaspace(replacement=__A , add_prefix_space=__A ) lowerCamelCase__ : Dict = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) lowerCamelCase__ : Optional[int] = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(__A , __A ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 8000 , __lowerCamelCase : bool = True , ): '''simple docstring''' lowerCamelCase__ : Any = trainers.UnigramTrainer( vocab_size=__A , special_tokens=self.special_tokens_list , show_progress=__A , ) if isinstance(__A , __A ): lowerCamelCase__ : str = [files] self._tokenizer.train(__A , trainer=__A ) self.add_unk_id() def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[Iterator[str], Iterator[Iterator[str]]] , __lowerCamelCase : int = 8000 , __lowerCamelCase : bool = True , ): '''simple docstring''' lowerCamelCase__ : str = trainers.UnigramTrainer( vocab_size=__A , special_tokens=self.special_tokens_list , show_progress=__A , ) self._tokenizer.train_from_iterator(__A , trainer=__A ) self.add_unk_id() def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ : int = self.special_tokens['''unk''']['''id'''] lowerCamelCase__ : Any = Tokenizer.from_str(json.dumps(__A ) )
184
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase ( ) -> tuple[list[int], int]: '''simple docstring''' __UpperCAmelCase : str = [randint(-1_0_0_0 , 1_0_0_0 ) for i in range(1_0 )] __UpperCAmelCase : Any = randint(-5_0_0_0 , 5_0_0_0 ) return (arr, r) UpperCAmelCase : Any = make_dataset() def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(_UpperCamelCase , 3 ): if sum(_UpperCamelCase ) == target: return tuple(sorted(_UpperCamelCase ) ) return (0, 0, 0) def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() __UpperCAmelCase : Tuple = len(_UpperCamelCase ) for i in range(n - 1 ): __UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase ( ) -> tuple[float, float]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' __UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' __UpperCAmelCase : Tuple = repeat(setup=_UpperCamelCase , stmt=_UpperCamelCase , repeat=5 , number=1_0_0_0_0 ) __UpperCAmelCase : str = repeat(setup=_UpperCamelCase , stmt=_UpperCamelCase , repeat=5 , number=1_0_0_0_0 ) return (min(_UpperCamelCase ), min(_UpperCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : int = solution_times() print(F"The time for naive implementation is {times[0]}.") print(F"The time for optimized implementation is {times[1]}.")
115
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A)
100
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
0
def lowercase_ ( ): return [list(range(1000 - i , -1000 - i , -1)) for i in range(1000)] UpperCamelCase = generate_large_matrix() UpperCamelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowercase_ ( _lowerCamelCase : list[list[int]]): assert all(row == sorted(_lowerCamelCase , reverse=_lowerCamelCase) for row in grid) assert all(list(_lowerCamelCase) == sorted(_lowerCamelCase , reverse=_lowerCamelCase) for col in zip(*_lowerCamelCase)) def lowercase_ ( _lowerCamelCase : list[int]): lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(_lowerCamelCase) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowercase__ : Any = (left + right) // 2 lowercase__ : List[str] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowercase__ : List[Any] = mid + 1 else: lowercase__ : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : list[list[int]]): lowercase__ : Dict = 0 lowercase__ : List[Any] = len(grid[0]) for i in range(len(_lowerCamelCase)): lowercase__ : Any = find_negative_index(grid[i][:bound]) total += bound return (len(_lowerCamelCase) * len(grid[0])) - total def lowercase_ ( _lowerCamelCase : list[list[int]]): return len([number for row in grid for number in row if number < 0]) def lowercase_ ( _lowerCamelCase : list[list[int]]): lowercase__ : Tuple = 0 for row in grid: for i, number in enumerate(_lowerCamelCase): if number < 0: total += len(_lowerCamelCase) - i break return total def lowercase_ ( ): from timeit import timeit print("Running benchmarks") lowercase__ : Union[str, Any] = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowercase__ : Any = timeit(f'''{func}(grid=grid)''' , setup=_lowerCamelCase , number=500) print(f'''{func}() took {time:0.4f} seconds''') if __name__ == "__main__": import doctest doctest.testmod() benchmark()
87
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
200
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class __snake_case ( lowerCamelCase__ ): a__ = """instructblip_vision_model""" def __init__( self , lowercase=14_08 , lowercase=61_44 , lowercase=39 , lowercase=16 , lowercase=2_24 , lowercase=14 , lowercase="gelu" , lowercase=1e-6 , lowercase=0.0 , lowercase=1e-10 , lowercase=True , **lowercase , ) -> List[str]: '''simple docstring''' super().__init__(**__A) a__: Union[str, Any] = hidden_size a__: Optional[Any] = intermediate_size a__: Any = num_hidden_layers a__: Any = num_attention_heads a__: str = patch_size a__: str = image_size a__: List[Any] = initializer_range a__: str = attention_dropout a__: List[Any] = layer_norm_eps a__: Any = hidden_act a__: List[str] = qkv_bias @classmethod def lowerCamelCase_ ( cls , lowercase , **lowercase) -> Dict: '''simple docstring''' cls._set_token_in_kwargs(__A) a__: Optional[int] = cls.get_config_dict(__A , **__A) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type') == "instructblip": a__: int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(__A , **__A) class __snake_case ( lowerCamelCase__ ): a__ = """instructblip_qformer""" def __init__( self , lowercase=3_05_22 , lowercase=7_68 , lowercase=12 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_12 , lowercase=0.02 , lowercase=1e-12 , lowercase=0 , lowercase="absolute" , lowercase=2 , lowercase=14_08 , **lowercase , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=__A , **__A) a__: List[Any] = vocab_size a__: int = hidden_size a__: List[str] = num_hidden_layers a__: Optional[Any] = num_attention_heads a__: Optional[int] = hidden_act a__: Dict = intermediate_size a__: Any = hidden_dropout_prob a__: Dict = attention_probs_dropout_prob a__: Union[str, Any] = max_position_embeddings a__: Optional[int] = initializer_range a__: List[Any] = layer_norm_eps a__: Any = position_embedding_type a__: Tuple = cross_attention_frequency a__: List[str] = encoder_hidden_size @classmethod def lowerCamelCase_ ( cls , lowercase , **lowercase) -> List[str]: '''simple docstring''' cls._set_token_in_kwargs(__A) a__: Optional[int] = cls.get_config_dict(__A , **__A) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type') == "instructblip": a__: Any = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(__A , **__A) class __snake_case ( lowerCamelCase__ ): a__ = """instructblip""" a__ = True def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase=32 , **lowercase) -> Tuple: '''simple docstring''' super().__init__(**__A) if vision_config is None: a__: Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.') if qformer_config is None: a__: Any = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.') if text_config is None: a__: List[str] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).') a__: Dict = InstructBlipVisionConfig(**__A) a__: List[str] = InstructBlipQFormerConfig(**__A) a__: List[str] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' a__: List[str] = CONFIG_MAPPING[text_model_type](**__A) a__: Tuple = self.text_config.tie_word_embeddings a__: Tuple = self.text_config.is_encoder_decoder a__: List[Any] = num_query_tokens a__: Any = self.vision_config.hidden_size a__: Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a__: Any = 1.0 a__: List[Any] = 0.02 @classmethod def lowerCamelCase_ ( cls , lowercase , lowercase , lowercase , **lowercase , ) -> Optional[Any]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Optional[int] = copy.deepcopy(self.__dict__) a__: Tuple = self.vision_config.to_dict() a__: str = self.qformer_config.to_dict() a__: Union[str, Any] = self.text_config.to_dict() a__: Any = self.__class__.model_type return output
290
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
"""simple docstring""" from __future__ import annotations _A = 1.6_021E-19 # units = C def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
171
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" with open(_lowercase ) as metadata_file: __UpperCamelCase = json.load(_lowercase ) __UpperCamelCase = LukeConfig(use_entity_aware_attention=_lowercase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __UpperCamelCase = torch.load(_lowercase , map_location='cpu' )['''module'''] # Load the entity vocab file __UpperCamelCase = load_original_entity_vocab(_lowercase ) # add an entry for [MASK2] __UpperCamelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __UpperCamelCase = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCamelCase = AddedToken('<ent>' , lstrip=_lowercase , rstrip=_lowercase ) __UpperCamelCase = AddedToken('<ent2>' , lstrip=_lowercase , rstrip=_lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , 'tokenizer_config.json' ) , 'r' ) as f: __UpperCamelCase = json.load(_lowercase ) __UpperCamelCase = '''MLukeTokenizer''' with open(os.path.join(_lowercase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(_lowercase , _lowercase ) __UpperCamelCase = MLukeTokenizer.from_pretrained(_lowercase ) # Initialize the embeddings of the special tokens __UpperCamelCase = tokenizer.convert_tokens_to_ids(['@'] )[0] __UpperCamelCase = tokenizer.convert_tokens_to_ids(['#'] )[0] __UpperCamelCase = state_dict['''embeddings.word_embeddings.weight'''] __UpperCamelCase = word_emb[ent_init_index].unsqueeze(0 ) __UpperCamelCase = word_emb[enta_init_index].unsqueeze(0 ) __UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __UpperCamelCase = state_dict[bias_name] __UpperCamelCase = decoder_bias[ent_init_index].unsqueeze(0 ) __UpperCamelCase = decoder_bias[enta_init_index].unsqueeze(0 ) __UpperCamelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCamelCase = f'''encoder.layer.{layer_index}.attention.self.''' __UpperCamelCase = state_dict[prefix + matrix_name] __UpperCamelCase = state_dict[prefix + matrix_name] __UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCamelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] __UpperCamelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) __UpperCamelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __UpperCamelCase = state_dict['''entity_predictions.bias'''] __UpperCamelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) __UpperCamelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) __UpperCamelCase = LukeForMaskedLM(config=_lowercase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) __UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): __UpperCamelCase = state_dict[key] else: __UpperCamelCase = state_dict[key] __UpperCamelCase = model.load_state_dict(_lowercase , strict=_lowercase ) if set(_lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(_lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __UpperCamelCase = MLukeTokenizer.from_pretrained(_lowercase , task='entity_classification' ) __UpperCamelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' __UpperCamelCase = (0, 9) __UpperCamelCase = tokenizer(_lowercase , entity_spans=[span] , return_tensors='pt' ) __UpperCamelCase = model(**_lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase = torch.Size((1, 33, 7_68) ) __UpperCamelCase = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase = torch.Size((1, 1, 7_68) ) __UpperCamelCase = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __UpperCamelCase = MLukeTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = '''Tokyo is the capital of <mask>.''' __UpperCamelCase = (24, 30) __UpperCamelCase = tokenizer(_lowercase , entity_spans=[span] , return_tensors='pt' ) __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = encoding['''input_ids'''][0].tolist() __UpperCamelCase = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) __UpperCamelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowercase ) __UpperCamelCase = outputs.entity_logits[0][0].argmax().item() __UpperCamelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(_lowercase ) ) model.save_pretrained(_lowercase ) def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] __UpperCamelCase = [json.loads(_lowercase ) for line in open(_lowercase )] __UpperCamelCase = {} for entry in data: __UpperCamelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __UpperCamelCase = entity_id break __UpperCamelCase = f'''{language}:{entity_name}''' __UpperCamelCase = entity_id return new_mapping if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE :int = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" SCREAMING_SNAKE_CASE :List[str] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" SCREAMING_SNAKE_CASE :Optional[Any] = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def _lowerCAmelCase ( lowerCAmelCase_ :List[str] )->Tuple: '''simple docstring''' def remove_articles(lowerCAmelCase_ :Dict ): snake_case_ = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(lowerCAmelCase_ , " " , lowerCAmelCase_ ) def white_space_fix(lowerCAmelCase_ :List[str] ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase_ :str ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase_ :Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase_ ) ) ) ) def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :str )->int: '''simple docstring''' return int(normalize_answer(lowerCAmelCase_ ) == normalize_answer(lowerCAmelCase_ ) ) def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Union[str, Any] )->List[Any]: '''simple docstring''' snake_case_ = [any(compute_exact(lowerCAmelCase_ , lowerCAmelCase_ ) for ref in refs ) for pred, refs in zip(lowerCAmelCase_ , lowerCAmelCase_ )] return (sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ )) * 100 def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Any , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Optional[int] )->List[str]: '''simple docstring''' snake_case_ = [rgram for rgrams in rgramslist for rgram in rgrams] snake_case_ = Counter(lowerCAmelCase_ ) snake_case_ = Counter(lowerCAmelCase_ ) snake_case_ = Counter() for sgram, scount in sgramcounter.items(): snake_case_ = scount * numref snake_case_ = Counter(lowerCAmelCase_ ) snake_case_ = Counter() for cgram, ccount in cgramcounter.items(): snake_case_ = ccount * numref # KEEP snake_case_ = sgramcounter_rep & cgramcounter_rep snake_case_ = keepgramcounter_rep & rgramcounter snake_case_ = sgramcounter_rep & rgramcounter snake_case_ = 0 snake_case_ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ = 1 snake_case_ = 1 if len(lowerCAmelCase_ ) > 0: snake_case_ = keeptmpscorea / len(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case_ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case_ = 0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case_ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case_ = sgramcounter_rep - cgramcounter_rep snake_case_ = delgramcounter_rep - rgramcounter snake_case_ = sgramcounter_rep - rgramcounter snake_case_ = 0 snake_case_ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ = 1 if len(lowerCAmelCase_ ) > 0: snake_case_ = deltmpscorea / len(lowerCAmelCase_ ) # ADDITION snake_case_ = set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) snake_case_ = set(lowerCAmelCase_ ) & set(lowerCAmelCase_ ) snake_case_ = set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) snake_case_ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ = 1 snake_case_ = 1 if len(lowerCAmelCase_ ) > 0: snake_case_ = addtmpscore / len(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: snake_case_ = addtmpscore / len(lowerCAmelCase_ ) snake_case_ = 0 if addscore_precision > 0 or addscore_recall > 0: snake_case_ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Optional[Any] )->Dict: '''simple docstring''' snake_case_ = len(lowerCAmelCase_ ) snake_case_ = ssent.split(" " ) snake_case_ = csent.split(" " ) snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] for rsent in rsents: snake_case_ = rsent.split(" " ) snake_case_ = [] snake_case_ = [] snake_case_ = [] ragramslist.append(lowerCAmelCase_ ) for i in range(0 , len(lowerCAmelCase_ ) - 1 ): if i < len(lowerCAmelCase_ ) - 1: snake_case_ = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 2: snake_case_ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 3: snake_case_ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(lowerCAmelCase_ ) ragramslist.append(lowerCAmelCase_ ) ragramslist.append(lowerCAmelCase_ ) ragramslist.append(lowerCAmelCase_ ) for i in range(0 , len(lowerCAmelCase_ ) - 1 ): if i < len(lowerCAmelCase_ ) - 1: snake_case_ = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 2: snake_case_ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 3: snake_case_ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(lowerCAmelCase_ ) for i in range(0 , len(lowerCAmelCase_ ) - 1 ): if i < len(lowerCAmelCase_ ) - 1: snake_case_ = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 2: snake_case_ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 3: snake_case_ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(lowerCAmelCase_ ) (snake_case_) = SARIngram(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) (snake_case_) = SARIngram(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) (snake_case_) = SARIngram(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) (snake_case_) = SARIngram(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case_ = sum([delascore, delascore, delascore, delascore] ) / 4 snake_case_ = sum([addascore, addascore, addascore, addascore] ) / 4 snake_case_ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _lowerCAmelCase ( lowerCAmelCase_ :Tuple , lowerCAmelCase_ :bool = True , lowerCAmelCase_ :str = "13a" , lowerCAmelCase_ :bool = True )->int: '''simple docstring''' if lowercase: snake_case_ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case_ = sacrebleu.metrics.bleu._get_tokenizer(lowerCAmelCase_ )()(lowerCAmelCase_ ) else: snake_case_ = sacrebleu.TOKENIZERS[tokenizer]()(lowerCAmelCase_ ) elif tokenizer == "moses": snake_case_ = sacremoses.MosesTokenizer().tokenize(lowerCAmelCase_ , return_str=lowerCAmelCase_ , escape=lowerCAmelCase_ ) elif tokenizer == "penn": snake_case_ = sacremoses.MosesTokenizer().penn_tokenize(lowerCAmelCase_ , return_str=lowerCAmelCase_ ) else: snake_case_ = sentence if not return_str: snake_case_ = normalized_sent.split() return normalized_sent def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] , lowerCAmelCase_ :int , lowerCAmelCase_ :Any )->List[Any]: '''simple docstring''' if not (len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) == len(lowerCAmelCase_ )): raise ValueError("Sources length must match predictions and references lengths." ) snake_case_ = 0 for src, pred, refs in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): sari_score += SARIsent(normalize(lowerCAmelCase_ ) , normalize(lowerCAmelCase_ ) , [normalize(lowerCAmelCase_ ) for sent in refs] ) snake_case_ = sari_score / len(lowerCAmelCase_ ) return 100 * sari_score def _lowerCAmelCase ( lowerCAmelCase_ :Tuple , lowerCAmelCase_ :Tuple , lowerCAmelCase_ :Union[str, Any]="exp" , lowerCAmelCase_ :Tuple=None , lowerCAmelCase_ :Union[str, Any]=False , lowerCAmelCase_ :str=False , lowerCAmelCase_ :List[Any]=False , )->Optional[Any]: '''simple docstring''' snake_case_ = len(references[0] ) if any(len(lowerCAmelCase_ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ = [[refs[i] for refs in references] for i in range(lowerCAmelCase_ )] snake_case_ = sacrebleu.corpus_bleu( lowerCAmelCase_ , lowerCAmelCase_ , smooth_method=lowerCAmelCase_ , smooth_value=lowerCAmelCase_ , force=lowerCAmelCase_ , lowercase=lowerCAmelCase_ , use_effective_order=lowerCAmelCase_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" snake_case_ = {} result.update({"sari": compute_sari(sources=__A , predictions=__A , references=__A )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=__A , references=__A )} ) result.update({"exact": compute_em(predictions=__A , references=__A )} ) return result
159
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0