code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Tuple=None , ) ->Any: '''simple docstring''' lowerCamelCase__: Any =parent lowerCamelCase__: int =13 lowerCamelCase__: List[str] =7 lowerCamelCase__: int =True lowerCamelCase__: int =True lowerCamelCase__: Tuple =True lowerCamelCase__: List[str] =True lowerCamelCase__: Any =99 lowerCamelCase__: List[Any] =32 lowerCamelCase__: Union[str, Any] =2 lowerCamelCase__: List[str] =4 lowerCamelCase__: Optional[Any] =37 lowerCamelCase__: Any ="gelu" lowerCamelCase__: int =0.1 lowerCamelCase__: List[str] =0.1 lowerCamelCase__: str =512 lowerCamelCase__: Tuple =16 lowerCamelCase__: Optional[int] =2 lowerCamelCase__: List[Any] =0.02 lowerCamelCase__: str =3 lowerCamelCase__: int =4 lowerCamelCase__: int =None def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: Optional[Any] =None if self.use_input_mask: lowerCamelCase__: Tuple =random_attention_mask([self.batch_size, self.seq_length]) lowerCamelCase__: Optional[Any] =None if self.use_token_type_ids: lowerCamelCase__: Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCamelCase__: Dict =None lowerCamelCase__: Optional[Any] =None lowerCamelCase__: str =None if self.use_labels: lowerCamelCase__: Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCamelCase__: str =ids_tensor([self.batch_size] , self.num_choices) lowerCamelCase__: List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =TFRoFormerModel(config=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase__: List[Any] =[input_ids, input_mask] lowerCamelCase__: Dict =model(UpperCAmelCase_) lowerCamelCase__: str =model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =True lowerCamelCase__: int =TFRoFormerForCausalLM(config=UpperCAmelCase_) lowerCamelCase__: Optional[int] ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__: Any =model(UpperCAmelCase_)["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape) , [self.batch_size, self.seq_length, self.vocab_size]) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase_) lowerCamelCase__: Tuple ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.num_labels lowerCamelCase__: Tuple =TFRoFormerForSequenceClassification(config=UpperCAmelCase_) lowerCamelCase__: List[Any] ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__: Tuple =model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.num_choices lowerCamelCase__: List[Any] =TFRoFormerForMultipleChoice(config=UpperCAmelCase_) lowerCamelCase__: List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1)) lowerCamelCase__: List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1)) lowerCamelCase__: int =tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1)) lowerCamelCase__: List[Any] ={ "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCamelCase__: Tuple =model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.num_labels lowerCamelCase__: Optional[int] =TFRoFormerForTokenClassification(config=UpperCAmelCase_) lowerCamelCase__: Dict ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->str: '''simple docstring''' lowerCamelCase__: Dict =TFRoFormerForQuestionAnswering(config=UpperCAmelCase_) lowerCamelCase__: Optional[int] ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): int =config_and_inputs lowerCamelCase__: Optional[Any] ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowercase_ = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int) ->str: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' lowerCamelCase__: int =TFRoFormerModelTester(self) lowerCamelCase__: Any =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Dict =TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base") self.assertIsNotNone(UpperCAmelCase_) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") lowerCamelCase__: Union[str, Any] =tf.constant([[0, 1, 2, 3, 4, 5]]) lowerCamelCase__: int =model(UpperCAmelCase_)[0] # TODO Replace vocab size lowerCamelCase__: str =50_000 lowerCamelCase__: int =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_) print(output[:, :3, :3]) # TODO Replace values below with what was printed above. lowerCamelCase__: List[Any] =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ]) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 1E-4 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =tf.constant([[4, 10]]) lowerCamelCase__: Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6) lowerCamelCase__: Dict =emba(input_ids.shape) lowerCamelCase__: Dict =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]]) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance) def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' lowerCamelCase__: Dict =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ]) lowerCamelCase__: List[str] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512) emba([2, 16, 512]) lowerCamelCase__: str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 1E-4 def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100 lowerCamelCase__: Tuple =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100 lowerCamelCase__: Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64) lowerCamelCase__: int =embed_positions([2, 16, 768])[None, None, :, :] lowerCamelCase__ , lowerCamelCase__: int =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ]) lowerCamelCase__: Union[str, Any] =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ]) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance)
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( __a = "AAPL" ) -> str: """simple docstring""" lowerCamelCase__: int =F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" lowerCamelCase__: List[str] =BeautifulSoup(requests.get(__a ).text , "html.parser" ) lowerCamelCase__: str ="My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ProphetNetTokenizer lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' super().setUp() lowerCamelCase__: Union[str, Any] =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : int) ->Tuple: '''simple docstring''' lowerCamelCase__: int ="UNwant\u00E9d,running" lowerCamelCase__: Optional[Any] ="unwanted, running" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.tokenizer_class(self.vocab_file) lowerCamelCase__: Tuple =tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [9, 6, 7, 12, 10, 11]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"]) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: int =BasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: int =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase__: Any ={} for i, token in enumerate(UpperCAmelCase_): lowerCamelCase__: str =i lowerCamelCase__: Union[str, Any] =WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"]) @require_torch def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: int =self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased") lowerCamelCase__: int =["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__: Any =[1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] lowerCamelCase__: Optional[Any] =tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors="pt") self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: int =list(batch.input_ids.numpy()[0]) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased") lowerCamelCase__: str =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) lowerCamelCase__: int =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "gpt_neox_japanese" def __init__(self : Dict , UpperCAmelCase_ : List[Any]=32_000 , UpperCAmelCase_ : str=2_560 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Any=1.00 , UpperCAmelCase_ : List[Any]=10_000 , UpperCAmelCase_ : int=2_048 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : str=1E-5 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Any=31_996 , UpperCAmelCase_ : Optional[int]=31_999 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.0 , **UpperCAmelCase_ : Optional[int] , ) ->Union[str, Any]: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: int =vocab_size lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: Tuple =hidden_size lowerCamelCase__: List[str] =num_hidden_layers lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: str =intermediate_multiple_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =rotary_pct lowerCamelCase__: Union[str, Any] =rotary_emb_base lowerCamelCase__: Any =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: Any =use_cache lowerCamelCase__: Any =attention_dropout lowerCamelCase__: Union[str, Any] =hidden_dropout
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : str=5 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : str=10 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Dict="divided_space_time" , UpperCAmelCase_ : Optional[int]=None , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Any =image_size lowerCamelCase__: int =num_channels lowerCamelCase__: Optional[Any] =patch_size lowerCamelCase__: Optional[int] =num_frames lowerCamelCase__: int =is_training lowerCamelCase__: List[str] =use_labels lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: str =num_hidden_layers lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: List[str] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[str] =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[Any] =attention_type lowerCamelCase__: Tuple =initializer_range lowerCamelCase__: Optional[int] =scope lowerCamelCase__: Union[str, Any] =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowerCamelCase__: Union[str, Any] =(image_size // patch_size) ** 2 lowerCamelCase__: Dict =(num_frames) * self.num_patches_per_frame + 1 def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' lowerCamelCase__: int =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Tuple =None if self.use_labels: lowerCamelCase__: List[Any] =ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__: Any =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowerCamelCase__: List[Any] =self.num_labels return config def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: Any =TimesformerModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TimesformerForVideoClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Optional[int] =model(UpperCAmelCase_) # verify the logits shape lowerCamelCase__: int =torch.Size((self.batch_size, self.num_labels)) self.parent.assertEqual(result.logits.shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[Any] =config_and_inputs lowerCamelCase__: Any ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase_ = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: str =TimesformerModelTester(self) lowerCamelCase__: List[str] =ConfigTester( self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Any=False) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =copy.deepcopy(UpperCAmelCase_) if return_labels: if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: str =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Any =model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowerCamelCase__: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) lowerCamelCase__: Optional[int] =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Any =[*signature.parameters.keys()] lowerCamelCase__: Any =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Union[str, Any] =TimesformerModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' if not self.has_attentions: pass else: lowerCamelCase__ , lowerCamelCase__: Any =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__: Tuple =True for model_class in self.all_model_classes: lowerCamelCase__: List[str] =self.model_tester.seq_length lowerCamelCase__: Union[str, Any] =self.model_tester.num_frames lowerCamelCase__: List[Any] =True lowerCamelCase__: str =False lowerCamelCase__: List[Any] =True lowerCamelCase__: Union[str, Any] =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: int =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: str =outputs.attentions self.assertEqual(len(UpperCAmelCase_) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__: List[Any] =True lowerCamelCase__: str =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: str =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =outputs.attentions self.assertEqual(len(UpperCAmelCase_) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowerCamelCase__: str =len(UpperCAmelCase_) # Check attention is always last and order is fine lowerCamelCase__: Dict =True lowerCamelCase__: Union[str, Any] =True lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: Optional[Any] =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) self.assertEqual(out_len + 1 , len(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =outputs.attentions self.assertEqual(len(UpperCAmelCase_) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str): lowerCamelCase__: str =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: Tuple =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: Union[str, Any] =outputs.hidden_states lowerCamelCase__: Optional[Any] =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__: List[str] =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: str =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: List[str] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def lowerCAmelCase_ ( ) -> int: """simple docstring""" lowerCamelCase__: List[str] =hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCamelCase__: List[str] =np.load(__a ) return list(__a ) @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400").to( UpperCAmelCase_) lowerCamelCase__: Dict =self.default_image_processor lowerCamelCase__: List[Any] =prepare_video() lowerCamelCase__: Optional[Any] =image_processor(video[:8] , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: int =model(**UpperCAmelCase_) # verify the logits lowerCamelCase__: List[str] =torch.Size((1, 400)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =torch.tensor([-0.3016, -0.7713, -0.4205]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4))
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
import fire from utils import calculate_rouge, save_json def lowerCAmelCase_ ( __a , __a , __a=None , **__a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Any =[x.strip() for x in open(__a ).readlines()] lowerCamelCase__: Dict =[x.strip() for x in open(__a ).readlines()][: len(__a )] lowerCamelCase__: str =calculate_rouge(__a , __a , **__a ) if save_path is not None: save_json(__a , __a , indent=__a ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = "Hello, World!" __A = "en_XX" def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =Path("data_bin" ) lowerCamelCase__: List[Any] =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__a ).parent ) , checkpoint_file=Path(__a ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__a ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__a ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__a ) lowerCamelCase__: List[str] =xmod.model.encoder.sentence_encoder lowerCamelCase__: Tuple =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase__: int =xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , __a ) lowerCamelCase__: Optional[int] =XmodForSequenceClassification(__a ) if classification_head else XmodForMaskedLM(__a ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase__: List[str] =xmod_sent_encoder.embed_tokens.weight lowerCamelCase__: str =xmod_sent_encoder.embed_positions.weight lowerCamelCase__: str =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase__: str =xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase__: List[Any] =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase__: List[Any] =model.roberta.encoder.layer[i] lowerCamelCase__: int =xmod_sent_encoder.layers[i] # self attention lowerCamelCase__: Any =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) lowerCamelCase__: Optional[Any] =xmod_layer.self_attn.q_proj.weight lowerCamelCase__: Dict =xmod_layer.self_attn.q_proj.bias lowerCamelCase__: Any =xmod_layer.self_attn.k_proj.weight lowerCamelCase__: str =xmod_layer.self_attn.k_proj.bias lowerCamelCase__: Any =xmod_layer.self_attn.v_proj.weight lowerCamelCase__: int =xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase__: Optional[int] =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) lowerCamelCase__: Any =xmod_layer.self_attn.out_proj.weight lowerCamelCase__: Union[str, Any] =xmod_layer.self_attn.out_proj.bias lowerCamelCase__: List[Any] =xmod_layer.self_attn_layer_norm.weight lowerCamelCase__: Any =xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase__: Tuple =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) lowerCamelCase__: int =xmod_layer.fca.weight lowerCamelCase__: Optional[Any] =xmod_layer.fca.bias # output lowerCamelCase__: Optional[Any] =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) lowerCamelCase__: Dict =xmod_layer.fca.weight lowerCamelCase__: Any =xmod_layer.fca.bias lowerCamelCase__: Union[str, Any] =xmod_layer.final_layer_norm.weight lowerCamelCase__: List[str] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase__: Any =xmod_layer.adapter_layer_norm.weight lowerCamelCase__: Optional[Any] =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase__: Optional[int] =bert_output.adapter_modules[lang_code] lowerCamelCase__: str =xmod_layer.adapter_modules[lang_code] lowerCamelCase__: Optional[int] =from_adapter.fca.weight lowerCamelCase__: Dict =from_adapter.fca.bias lowerCamelCase__: Tuple =from_adapter.fca.weight lowerCamelCase__: List[Any] =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase__: Optional[Any] =xmod_sent_encoder.layer_norm.weight lowerCamelCase__: Optional[int] =xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase__: Optional[int] =xmod.model.classification_heads["mnli"].dense.weight lowerCamelCase__: List[str] =xmod.model.classification_heads["mnli"].dense.bias lowerCamelCase__: List[Any] =xmod.model.classification_heads["mnli"].out_proj.weight lowerCamelCase__: List[Any] =xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head lowerCamelCase__: int =xmod.model.encoder.lm_head.dense.weight lowerCamelCase__: Union[str, Any] =xmod.model.encoder.lm_head.dense.bias lowerCamelCase__: int =xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase__: Any =xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase__: Tuple =xmod.model.encoder.lm_head.weight lowerCamelCase__: Tuple =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase__: Optional[int] =xmod.encode(__a ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__a ) lowerCamelCase__: str =model(__a )[0] if classification_head: lowerCamelCase__: Dict =xmod.model.classification_heads["mnli"](xmod.extract_features(__a ) ) else: lowerCamelCase__: Any =xmod.model(__a , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase__: Dict =torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase__: Optional[int] =torch.allclose(__a , __a , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__a ).mkdir(parents=__a , exist_ok=__a ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __A = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
import numpy as np def lowerCAmelCase_ ( __a ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_ ( __a ) -> np.array: """simple docstring""" return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =pa.array(TypedSequence([1, 2, 3])) self.assertEqual(arr.type , pa.intaa()) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: str =pa.array(TypedSequence([1, 2, 3]) , type=pa.intaa()) def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: str =pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool") , type=Value("int64"))) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =pa.array(TypedSequence([1, 2, 3] , type=Value("int32"))) self.assertEqual(arr.type , pa.intaa()) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid)): lowerCamelCase__: Tuple =pa.array(TypedSequence(["foo", "bar"] , type=Value("int64"))) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32"))) self.assertEqual(arr.type , pa.intaa()) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64"))) self.assertEqual(arr.type , pa.string()) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64"))) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64")) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid)): lowerCamelCase__: Tuple =pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64"))) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64"))) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64")) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64"))) self.assertEqual(arr.type , pa.string()) @require_pil def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[str]: '''simple docstring''' import PIL.Image lowerCamelCase__: Any =PIL.Image.fromarray(np.arange(10 , dtype=np.uinta).reshape(2 , 5)) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=UpperCAmelCase_) as mock_cast_to_python_objects: lowerCamelCase__: Optional[int] =pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image())) lowerCamelCase__ , lowerCamelCase__: Dict =mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , UpperCAmelCase_) self.assertFalse(kwargs["optimize_list_casting"]) def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: Dict =pa.BufferReader(__a ) if isinstance(__a , pa.Buffer ) else pa.memory_map(__a ) lowerCamelCase__: Union[str, Any] =pa.ipc.open_stream(__a ) lowerCamelCase__: pa.Table =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: List[Any] =pa.BufferOutputStream() lowerCamelCase__: List[Any] =pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCamelCase__ , lowerCamelCase__: int =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase__: Union[str, Any] ={"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" lowerCamelCase__: Union[str, Any] =pa.BufferOutputStream() lowerCamelCase__: List[str] =Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=__a , features=__a ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) lowerCamelCase__ , lowerCamelCase__: Any =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCamelCase__: Union[str, Any] =pa.BufferReader(output.getvalue() ) lowerCamelCase__: Dict =pa.ipc.open_stream(__a ) lowerCamelCase__: pa.Table =f.read_all() lowerCamelCase__: str =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__a ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Tuple =pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Any =pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) lowerCamelCase__ , lowerCamelCase__: int =writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: List[Any] =pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) lowerCamelCase__ , lowerCamelCase__: str =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowerCAmelCase_ ( __a , __a ) -> Dict: """simple docstring""" lowerCamelCase__: Tuple =pa.BufferOutputStream() lowerCamelCase__: List[Any] =pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) lowerCamelCase__ , lowerCamelCase__: List[str] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase__: Optional[int] ={"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowerCAmelCase_ ( __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Dict =pa.BufferOutputStream() lowerCamelCase__: Union[str, Any] =pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) lowerCamelCase__ , lowerCamelCase__: Any =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase__: List[str] ={"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: Tuple =pa.BufferOutputStream() lowerCamelCase__: Any =pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase__: int ={"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__: List[str] ={"col_1": pa.string(), "col_2": pa.intaa()} lowerCamelCase__: Tuple =os.path.join(__a , "test.arrow" ) with ArrowWriter(path=__a , schema=pa.schema(__a ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) lowerCamelCase__ , lowerCamelCase__: Optional[int] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(__a , 1 ) def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" if pa.types.is_list(__a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" if isinstance(lst[0] , __a ): change_first_primitive_element_in_list(lst[0] , __a ) else: lowerCamelCase__: Tuple =value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCAmelCase_ ( __a , __a , __a ) -> str: """simple docstring""" lowerCamelCase__: List[Any] =pa.array(TypedSequence(__a , optimized_int_type=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Optional[Any] =pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCamelCase__: Any =copy.deepcopy(__a ) lowerCamelCase__: Any =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__a , __a ) lowerCamelCase__: Optional[Any] =pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: str =str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=__a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: str ="mock://dataset-train.arrow" with ArrowWriter(path=__a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCamelCase__ , lowerCamelCase__: str =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__a ) def lowerCAmelCase_ ( ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =pa.BufferOutputStream() with ParquetWriter(stream=__a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCamelCase__ , lowerCamelCase__: Optional[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCamelCase__: Tuple =pa.BufferReader(output.getvalue() ) lowerCamelCase__: pa.Table =pq.read_table(__a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" import PIL.Image lowerCamelCase__: Tuple =str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__a , format="png" ) lowerCamelCase__: Union[str, Any] =pa.BufferOutputStream() with ParquetWriter( stream=__a , features=Features({"image": Image()} ) , embed_local_files=__a ) as writer: writer.write({"image": image_path} ) writer.finalize() lowerCamelCase__: Any =pa.BufferReader(output.getvalue() ) lowerCamelCase__: pa.Table =pq.read_table(__a ) lowerCamelCase__: Tuple =pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , __a ) with open(__a , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__: Union[str, Any] =pa.schema([pa.field("col_1" , pa.string() , nullable=__a )] ) lowerCamelCase__: Dict =pa.BufferOutputStream() with ArrowWriter(stream=__a ) as writer: writer._build_writer(inferred_schema=__a ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
from __future__ import annotations def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" lowerCamelCase__: List[Any] =len(__a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __a , __a , ) def lowerCAmelCase_ ( __a ) -> None: """simple docstring""" lowerCamelCase__: list[list[str]] =[] depth_first_search([] , [] , [] , __a , __a ) # Print all the boards for board in boards: for column in board: print(__a ) print("" ) print(len(__a ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int]) ->Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int) ->str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any) ->List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str]) ->List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any]) ->List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple) ->List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int) ->Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]) ->List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str) ->str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any]) ->Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict) ->Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict) ->int: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int) ->Any: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->int: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"])
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
from __future__ import annotations def lowerCAmelCase_ ( __a , __a , __a , ) -> tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
from __future__ import annotations def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" return len(set(__a ) ) == len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
from __future__ import annotations from typing import TypedDict class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def lowerCAmelCase_ ( __a ) -> list[str]: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__a ) )] def lowerCAmelCase_ ( __a ) -> BWTTransformDict: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) lowerCamelCase__: int =all_rotations(__a ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowerCamelCase__: BWTTransformDict ={ "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__a ), } return response def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: lowerCamelCase__: Tuple =int(__a ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__a ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) lowerCamelCase__: List[str] =[""] * len(__a ) for _ in range(len(__a ) ): for i in range(len(__a ) ): lowerCamelCase__: List[str] =bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __A = "Provide a string that I will generate its BWT transform: " __A = input(entry_msg).strip() __A = bwt_transform(s) print( f'Burrows Wheeler transform for string \'{s}\' results ' f'in \'{result["bwt_string"]}\'' ) __A = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' f'we get original string \'{original_string}\'' )
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = StableDiffusionXLImgaImgPipeline lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowercase_ = PipelineTesterMixin.required_optional_params - {"latents"} lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Tuple =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase_ , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase__: Tuple =EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0) lowerCamelCase__: Tuple =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) lowerCamelCase__: Union[str, Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=32 , ) lowerCamelCase__: Optional[Any] =CLIPTextModel(UpperCAmelCase_) lowerCamelCase__: List[str] =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =CLIPTextModelWithProjection(UpperCAmelCase_) lowerCamelCase__: Optional[int] =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=UpperCAmelCase_) lowerCamelCase__: int ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=0) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) lowerCamelCase__: Any =image / 2 + 0.5 if str(UpperCAmelCase_).startswith("mps"): lowerCamelCase__: str =torch.manual_seed(UpperCAmelCase_) else: lowerCamelCase__: List[str] =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: Any ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: str ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: List[str] =self.get_dummy_components() lowerCamelCase__: Union[str, Any] =StableDiffusionXLImgaImgPipeline(**UpperCAmelCase_) lowerCamelCase__: Dict =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Dict =self.get_dummy_inputs(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =sd_pipe(**UpperCAmelCase_).images lowerCamelCase__: int =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__: List[Any] =np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.get_dummy_components() lowerCamelCase__: Dict =StableDiffusionXLImgaImgPipeline(**UpperCAmelCase_) lowerCamelCase__: str =sd_pipe.to(UpperCAmelCase_) lowerCamelCase__: List[Any] =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) # forward without prompt embeds lowerCamelCase__: int =self.get_dummy_inputs(UpperCAmelCase_) lowerCamelCase__: List[Any] =3 * ["this is a negative prompt"] lowerCamelCase__: Tuple =negative_prompt lowerCamelCase__: int =3 * [inputs["prompt"]] lowerCamelCase__: Tuple =sd_pipe(**UpperCAmelCase_) lowerCamelCase__: Tuple =output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase__: Union[str, Any] =self.get_dummy_inputs(UpperCAmelCase_) lowerCamelCase__: Dict =3 * ["this is a negative prompt"] lowerCamelCase__: Any =3 * [inputs.pop("prompt")] ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): Tuple =sd_pipe.encode_prompt(UpperCAmelCase_ , negative_prompt=UpperCAmelCase_) lowerCamelCase__: int =sd_pipe( **UpperCAmelCase_ , prompt_embeds=UpperCAmelCase_ , negative_prompt_embeds=UpperCAmelCase_ , pooled_prompt_embeds=UpperCAmelCase_ , negative_pooled_prompt_embeds=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]="cpu" , UpperCAmelCase_ : Optional[int]=torch.floataa , UpperCAmelCase_ : Any=0) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =np.random.RandomState(UpperCAmelCase_).standard_normal((1, 4, 64, 64)) lowerCamelCase__: Union[str, Any] =torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_) lowerCamelCase__: Any ={ "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: int =self.get_inputs(UpperCAmelCase_) lowerCamelCase__: str =pipe(**UpperCAmelCase_).images lowerCamelCase__: Tuple =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase__: int =np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506]) assert np.abs(image_slice - expected_slice).max() < 7E-3
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"text": Value("string" )} ) lowercase_ = Features({} ) lowercase_ = "text" @property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
import doctest from collections import deque import numpy as np class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Any) ->None: '''simple docstring''' lowerCamelCase__: Tuple =[2, 1, 2, -1] lowerCamelCase__: List[Any] =[1, 2, 3, 4] def SCREAMING_SNAKE_CASE_ (self : Tuple) ->list[float]: '''simple docstring''' lowerCamelCase__: Dict =len(self.first_signal) lowerCamelCase__: Union[str, Any] =len(self.second_signal) lowerCamelCase__: int =max(UpperCAmelCase_ , UpperCAmelCase_) # create a zero matrix of max_length x max_length lowerCamelCase__: List[Any] =[[0] * max_length for i in range(UpperCAmelCase_)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCAmelCase_): lowerCamelCase__: List[str] =deque(self.second_signal) rotated_signal.rotate(UpperCAmelCase_) for j, item in enumerate(UpperCAmelCase_): matrix[i][j] += item # multiply the matrix with the first signal lowerCamelCase__: Optional[int] =np.matmul(np.transpose(UpperCAmelCase_) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(UpperCAmelCase_ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model"} __A = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Any="<s>" , UpperCAmelCase_ : Dict="</s>" , UpperCAmelCase_ : Dict="<unk>" , UpperCAmelCase_ : Union[str, Any]="<sep>" , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : Tuple="<cls>" , UpperCAmelCase_ : Any="<mask>" , UpperCAmelCase_ : Optional[int]=["<eop>", "<eod>"] , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Optional[Any] , ) ->None: '''simple docstring''' lowerCamelCase__: str =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =3 lowerCamelCase__: Dict =do_lower_case lowerCamelCase__: Any =remove_space lowerCamelCase__: int =keep_accents lowerCamelCase__: List[str] =vocab_file lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase_) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation.") lowerCamelCase__: Optional[Any] =jieba lowerCamelCase__: Union[str, Any] =str.maketrans(" \n" , "\u2582\u2583") @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' return len(self.sp_model) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Dict ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.__dict__.copy() lowerCamelCase__: str =None return state def __setstate__(self : str , UpperCAmelCase_ : Tuple) ->int: '''simple docstring''' lowerCamelCase__: List[str] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: str ={} lowerCamelCase__: List[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' if self.remove_space: lowerCamelCase__: Union[str, Any] =" ".join(inputs.strip().split()) else: lowerCamelCase__: int =inputs lowerCamelCase__: Any =outputs.replace("``" , "\"").replace("''" , "\"") if not self.keep_accents: lowerCamelCase__: Optional[Any] =unicodedata.normalize("NFKD" , UpperCAmelCase_) lowerCamelCase__: Optional[int] ="".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_)]) if self.do_lower_case: lowerCamelCase__: Optional[Any] =outputs.lower() return outputs def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =self.preprocess_text(UpperCAmelCase_) lowerCamelCase__: str =self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[] for piece in pieces: if len(UpperCAmelCase_) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): lowerCamelCase__: Dict =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: lowerCamelCase__: Tuple =cur_pieces[1:] else: lowerCamelCase__: Any =cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(UpperCAmelCase_) else: new_pieces.append(UpperCAmelCase_) return new_pieces def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Tuple) ->Tuple: '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]) ->List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: List[str] =[self.sep_token_id] lowerCamelCase__: Optional[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] return ([0] * len(UpperCAmelCase_)) + [1, 1] def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.sep_token_id] lowerCamelCase__: Any =[2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: List[Any] =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' lowerCamelCase__: Any =super()._decode(*UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Dict =text.replace(" " , "").replace("\u2582" , " ").replace("\u2583" , "\n") return text
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__(self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 50_257 , UpperCAmelCase_ : int = 1_024 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "gelu_new" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 1E-5 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , ) ->str: '''simple docstring''' super().__init__() lowerCamelCase__: List[str] =prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""") lowerCamelCase__: List[str] =prefix_inner_dim lowerCamelCase__: Union[str, Any] =prefix_hidden_dim lowerCamelCase__: Tuple =( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase__: Any =( nn.Linear(self.prefix_hidden_dim , UpperCAmelCase_) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase__: Dict =GPTaConfig( vocab_size=UpperCAmelCase_ , n_positions=UpperCAmelCase_ , n_embd=UpperCAmelCase_ , n_layer=UpperCAmelCase_ , n_head=UpperCAmelCase_ , n_inner=UpperCAmelCase_ , activation_function=UpperCAmelCase_ , resid_pdrop=UpperCAmelCase_ , embd_pdrop=UpperCAmelCase_ , attn_pdrop=UpperCAmelCase_ , layer_norm_epsilon=UpperCAmelCase_ , initializer_range=UpperCAmelCase_ , scale_attn_weights=UpperCAmelCase_ , use_cache=UpperCAmelCase_ , scale_attn_by_inverse_layer_idx=UpperCAmelCase_ , reorder_and_upcast_attn=UpperCAmelCase_ , ) lowerCamelCase__: int =GPTaLMHeadModel(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =self.transformer.transformer.wte(UpperCAmelCase_) lowerCamelCase__: List[str] =self.encode_prefix(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.decode_prefix(UpperCAmelCase_) lowerCamelCase__: List[str] =torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: lowerCamelCase__: List[Any] =self.get_dummy_token(input_ids.shape[0] , input_ids.device) lowerCamelCase__: List[Any] =torch.cat((dummy_token, input_ids) , dim=1) lowerCamelCase__: Tuple =self.transformer(inputs_embeds=UpperCAmelCase_ , labels=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.device) ->torch.Tensor: '''simple docstring''' return torch.zeros(UpperCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Any) ->Any: '''simple docstring''' return self.encode_prefix(UpperCAmelCase_) @torch.no_grad() def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =torch.split(UpperCAmelCase_ , 1 , dim=0) lowerCamelCase__: Dict =[] lowerCamelCase__: List[Any] =[] for feature in features: lowerCamelCase__: Tuple =self.decode_prefix(feature.to(UpperCAmelCase_)) # back to the clip feature # Only support beam search for now lowerCamelCase__ , lowerCamelCase__: Tuple =self.generate_beam( input_embeds=UpperCAmelCase_ , device=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) lowerCamelCase__: Union[str, Any] =torch.stack(UpperCAmelCase_) lowerCamelCase__: List[Any] =torch.stack(UpperCAmelCase_) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int = 5 , UpperCAmelCase_ : int = 67 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[int] = None , ) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[str] =eos_token_id lowerCamelCase__: str =None lowerCamelCase__: Optional[Any] =None lowerCamelCase__: Any =torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.int) lowerCamelCase__: Any =torch.zeros(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.bool) if input_embeds is not None: lowerCamelCase__: Union[str, Any] =input_embeds else: lowerCamelCase__: Optional[int] =self.transformer.transformer.wte(UpperCAmelCase_) for i in range(UpperCAmelCase_): lowerCamelCase__: Dict =self.transformer(inputs_embeds=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =outputs.logits lowerCamelCase__: Dict =logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCamelCase__: Dict =logits.softmax(-1).log() if scores is None: lowerCamelCase__ , lowerCamelCase__: str =logits.topk(UpperCAmelCase_ , -1) lowerCamelCase__: List[str] =generated.expand(UpperCAmelCase_ , *generated.shape[1:]) lowerCamelCase__ , lowerCamelCase__: List[str] =next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: lowerCamelCase__: Optional[int] =next_tokens else: lowerCamelCase__: Optional[Any] =tokens.expand(UpperCAmelCase_ , *tokens.shape[1:]) lowerCamelCase__: List[str] =torch.cat((tokens, next_tokens) , dim=1) else: lowerCamelCase__: Any =-float(np.inf) lowerCamelCase__: Optional[Any] =0 lowerCamelCase__: Optional[int] =scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCamelCase__: int =scores_sum / seq_lengths[:, None] lowerCamelCase__ , lowerCamelCase__: Any =scores_sum_average.view(-1).topk(UpperCAmelCase_ , -1) lowerCamelCase__: List[Any] =next_tokens // scores_sum.shape[1] lowerCamelCase__: str =seq_lengths[next_tokens_source] lowerCamelCase__: Optional[int] =next_tokens % scores_sum.shape[1] lowerCamelCase__: Optional[Any] =next_tokens.unsqueeze(1) lowerCamelCase__: Dict =tokens[next_tokens_source] lowerCamelCase__: Union[str, Any] =torch.cat((tokens, next_tokens) , dim=1) lowerCamelCase__: List[Any] =generated[next_tokens_source] lowerCamelCase__: List[str] =scores_sum_average * seq_lengths lowerCamelCase__: Tuple =is_stopped[next_tokens_source] lowerCamelCase__: Dict =self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) lowerCamelCase__: List[str] =torch.cat((generated, next_token_embed) , dim=1) lowerCamelCase__: List[Any] =is_stopped + next_tokens.eq(UpperCAmelCase_).squeeze() if is_stopped.all(): break lowerCamelCase__: Dict =scores / seq_lengths lowerCamelCase__: Dict =scores.argsort(descending=UpperCAmelCase_) # tokens tensors are already padded to max_seq_length lowerCamelCase__: Tuple =[tokens[i] for i in order] lowerCamelCase__: List[Any] =torch.stack(UpperCAmelCase_ , dim=0) lowerCamelCase__: Optional[Any] =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
def lowerCAmelCase_ ( __a = 50 ) -> int: """simple docstring""" lowerCamelCase__: List[str] =[1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["input_features", "attention_mask"] def __init__(self : List[Any] , UpperCAmelCase_ : Dict=80 , UpperCAmelCase_ : Optional[Any]=16_000 , UpperCAmelCase_ : str=80 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=True , **UpperCAmelCase_ : List[str] , ) ->Optional[Any]: '''simple docstring''' super().__init__(feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Dict =num_mel_bins lowerCamelCase__: int =do_ceptral_normalize lowerCamelCase__: int =normalize_means lowerCamelCase__: Optional[Any] =normalize_vars lowerCamelCase__: Optional[int] =True def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : np.ndarray , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: Optional[Any] =waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCamelCase__: Tuple =torch.from_numpy(UpperCAmelCase_).unsqueeze(0) lowerCamelCase__: Any =ta_kaldi.fbank(UpperCAmelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : float = 0.0 , ) ->np.ndarray: '''simple docstring''' if normalize_means: lowerCamelCase__: Tuple =x[:input_length].mean(axis=0) lowerCamelCase__: List[Any] =np.subtract(UpperCAmelCase_ , UpperCAmelCase_) if normalize_vars: lowerCamelCase__: int =x[:input_length].std(axis=0) lowerCamelCase__: List[str] =np.divide(UpperCAmelCase_ , UpperCAmelCase_) if input_length < x.shape[0]: lowerCamelCase__: List[Any] =padding_value # make sure array is in float32 lowerCamelCase__: List[str] =x.astype(np.floataa) return x def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : Optional[np.ndarray] = None) ->List[np.ndarray]: '''simple docstring''' lowerCamelCase__: Tuple =attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase_ , UpperCAmelCase_ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(UpperCAmelCase_ , UpperCAmelCase_) ] def __call__(self : str , UpperCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : List[str] , ) ->BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") lowerCamelCase__: Optional[Any] =isinstance(UpperCAmelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") lowerCamelCase__: int =is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCamelCase__: str =[np.asarray(UpperCAmelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray): lowerCamelCase__: str =np.asarray(UpperCAmelCase_ , dtype=np.floataa) elif isinstance(UpperCAmelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowerCamelCase__: Union[str, Any] =raw_speech.astype(np.floataa) # always return batch if not is_batched: lowerCamelCase__: List[str] =[raw_speech] # extract fbank features lowerCamelCase__: str =[self._extract_fbank_features(UpperCAmelCase_) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase__: Any =BatchFeature({"input_features": features}) lowerCamelCase__: Union[str, Any] =self.pad( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) # make sure list is in array format lowerCamelCase__: Optional[Any] =padded_inputs.get("input_features") if isinstance(input_features[0] , UpperCAmelCase_): lowerCamelCase__: Tuple =[np.asarray(UpperCAmelCase_ , dtype=np.floataa) for feature in input_features] lowerCamelCase__: Union[str, Any] =padded_inputs.get("attention_mask") if attention_mask is not None: lowerCamelCase__: Optional[int] =[np.asarray(UpperCAmelCase_ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase__: Any =( np.array(UpperCAmelCase_ , dtype=np.intaa) if self._get_padding_strategies(UpperCAmelCase_ , max_length=UpperCAmelCase_) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase__: Any =self.normalize( padded_inputs["input_features"] , attention_mask=UpperCAmelCase_) if return_tensors is not None: lowerCamelCase__: str =padded_inputs.convert_to_tensors(UpperCAmelCase_) return padded_inputs
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
def lowerCAmelCase_ ( __a , __a , __a ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__a ) ) def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool: """simple docstring""" if index == len(__a ): return True # Recursive Step for i in range(__a ): if valid_coloring(graph[index] , __a , __a ): # Color current vertex lowerCamelCase__: int =i # Validate coloring if util_color(__a , __a , __a , index + 1 ): return True # Backtrack lowerCamelCase__: List[Any] =-1 return False def lowerCAmelCase_ ( __a , __a ) -> list[int]: """simple docstring""" lowerCamelCase__: Dict =[-1] * len(__a ) if util_color(__a , __a , __a , 0 ): return colored_vertices return []
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =cached_file(UpperCAmelCase_ , UpperCAmelCase_) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase_)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase_ , UpperCAmelCase_))) with open(os.path.join(UpperCAmelCase_ , "refs" , "main")) as f: lowerCamelCase__: List[Any] =f.read() self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "snapshots" , UpperCAmelCase_ , UpperCAmelCase_)) self.assertTrue(os.path.isfile(UpperCAmelCase_)) # File is cached at the same place the second time. lowerCamelCase__: Optional[Any] =cached_file(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) # Using a specific revision to test the full commit hash. lowerCamelCase__: str =cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="9b8c223") self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "snapshots" , UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid model identifier"): lowerCamelCase__: List[Any] =cached_file("tiny-random-bert" , UpperCAmelCase_) with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid git identifier"): lowerCamelCase__: List[str] =cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="aaaa") with self.assertRaisesRegex(UpperCAmelCase_ , "does not appear to have a file named"): lowerCamelCase__: Optional[Any] =cached_file(UpperCAmelCase_ , "conf") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , "does not appear to have a file named"): lowerCamelCase__: Dict =cached_file(UpperCAmelCase_ , "conf") with open(os.path.join(UpperCAmelCase_ , "refs" , "main")) as f: lowerCamelCase__: List[str] =f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , ".no_exist" , UpperCAmelCase_ , "conf"))) lowerCamelCase__: Union[str, Any] =cached_file(UpperCAmelCase_ , "conf" , _raise_exceptions_for_missing_entries=UpperCAmelCase_) self.assertIsNone(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =cached_file(UpperCAmelCase_ , "conf" , local_files_only=UpperCAmelCase_ , _raise_exceptions_for_missing_entries=UpperCAmelCase_) self.assertIsNone(UpperCAmelCase_) lowerCamelCase__: List[Any] =mock.Mock() lowerCamelCase__: int =500 lowerCamelCase__: Union[str, Any] ={} lowerCamelCase__: Any =HTTPError lowerCamelCase__: List[Any] ={} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_) as mock_head: lowerCamelCase__: int =cached_file(UpperCAmelCase_ , "conf" , _raise_exceptions_for_connection_errors=UpperCAmelCase_) self.assertIsNone(UpperCAmelCase_) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_)) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_)) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt")) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid model identifier"): get_file_from_repo("bert-base-case" , UpperCAmelCase_) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid git identifier"): get_file_from_repo("bert-base-cased" , UpperCAmelCase_ , revision="ahaha") lowerCamelCase__: List[str] =get_file_from_repo("bert-base-cased" , UpperCAmelCase_) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase__: List[str] =json.loads(open(UpperCAmelCase_ , "r").read()) self.assertEqual(config["hidden_size"] , 768) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__: List[Any] =Path(UpperCAmelCase_) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase_ , "a.txt") , str(UpperCAmelCase_)) self.assertIsNone(get_file_from_repo(UpperCAmelCase_ , "b.txt"))
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCAmelCase_ ( ) -> tuple[list[int], int]: """simple docstring""" lowerCamelCase__: List[Any] =[randint(-1000 , 1000 ) for i in range(10 )] lowerCamelCase__: str =randint(-5000 , 5000 ) return (arr, r) __A = make_dataset() def lowerCAmelCase_ ( __a , __a ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(__a , 3 ): if sum(__a ) == target: return tuple(sorted(__a ) ) return (0, 0, 0) def lowerCAmelCase_ ( __a , __a ) -> tuple[int, int, int]: """simple docstring""" arr.sort() lowerCamelCase__: int =len(__a ) for i in range(n - 1 ): lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCAmelCase_ ( ) -> tuple[float, float]: """simple docstring""" lowerCamelCase__: Optional[Any] ="\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" lowerCamelCase__: Any ="\ntriplet_sum1(*dataset)\n" lowerCamelCase__: Optional[Any] ="\ntriplet_sum2(*dataset)\n" lowerCamelCase__: int =repeat(setup=__a , stmt=__a , repeat=5 , number=10000 ) lowerCamelCase__: Optional[int] =repeat(setup=__a , stmt=__a , repeat=5 , number=10000 ) return (min(__a ), min(__a )) if __name__ == "__main__": from doctest import testmod testmod() __A = solution_times() print(f'The time for naive implementation is {times[0]}.') print(f'The time for optimized implementation is {times[1]}.')
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = XLNetTokenizer lowercase_ = XLNetTokenizerFast lowercase_ = True lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__: Optional[Any] =XLNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: Any ="<s>" lowerCamelCase__: Optional[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<unk>") self.assertEqual(vocab_keys[1] , "<s>") self.assertEqual(vocab_keys[-1] , "<eod>") self.assertEqual(len(UpperCAmelCase_) , 1_006) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000) def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: Dict =XLNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_) lowerCamelCase__: List[str] =tokenizer.tokenize("This is a test") self.assertListEqual(UpperCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [285, 46, 10, 170, 382]) lowerCamelCase__: List[Any] =tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase__: Dict =tokenizer.convert_tokens_to_ids(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) lowerCamelCase__: List[Any] =tokenizer.convert_ids_to_tokens(UpperCAmelCase_) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]: '''simple docstring''' lowerCamelCase__: int =XLNetTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["▁he", "ll", "o"]) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =XLNetTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_) lowerCamelCase__: Any =tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str: '''simple docstring''' lowerCamelCase__: Dict =XLNetTokenizer.from_pretrained("xlnet-base-cased") lowerCamelCase__: Tuple =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] ={"input_ids": [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Optional[int] =hf_hub_url(repo_id=__a , path=__a , revision=__a ) assert url == F"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(__a )}"""
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "canine" def __init__(self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Any=3_072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=16_384 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : List[Any]=1E-1_2 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Optional[int]=0xE000 , UpperCAmelCase_ : List[str]=0xE001 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[Any]=8 , UpperCAmelCase_ : Dict=16_384 , UpperCAmelCase_ : Any=128 , **UpperCAmelCase_ : Optional[int] , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str =max_position_embeddings lowerCamelCase__: str =hidden_size lowerCamelCase__: Any =num_hidden_layers lowerCamelCase__: Optional[int] =num_attention_heads lowerCamelCase__: Optional[int] =intermediate_size lowerCamelCase__: Union[str, Any] =hidden_act lowerCamelCase__: List[str] =hidden_dropout_prob lowerCamelCase__: Any =attention_probs_dropout_prob lowerCamelCase__: Tuple =initializer_range lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: Dict =layer_norm_eps # Character config: lowerCamelCase__: str =downsampling_rate lowerCamelCase__: Optional[int] =upsampling_kernel_size lowerCamelCase__: Union[str, Any] =num_hash_functions lowerCamelCase__: List[str] =num_hash_buckets lowerCamelCase__: List[Any] =local_transformer_stride
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
def lowerCAmelCase_ ( __a = 10**12 ) -> int: """simple docstring""" lowerCamelCase__: str =1 lowerCamelCase__: List[str] =0 lowerCamelCase__: Optional[int] =1 lowerCamelCase__: List[Any] =1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'{solution() = }')
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
from math import sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: int =0 lowerCamelCase__: int =0 lowerCamelCase__: int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__a , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __A = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] ={} state_dict.pop("pixel_mean" , __a ) state_dict.pop("pixel_std" , __a ) lowerCamelCase__: str =R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase__: int =key.replace(__a , __a ) if re.match(__a , __a ): lowerCamelCase__: Optional[Any] =int(re.match(__a , __a ).group(2 ) ) if layer_nb == 0: lowerCamelCase__: List[str] =key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: lowerCamelCase__: List[str] =key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: lowerCamelCase__: List[str] =key.replace("layers.2" , "proj_out" ) lowerCamelCase__: str =value lowerCamelCase__: Dict =model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def lowerCAmelCase_ ( __a , __a , __a , __a="ybelkada/segment-anything" ) -> List[Any]: """simple docstring""" lowerCamelCase__: str =hf_hub_download(__a , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: lowerCamelCase__: Optional[int] =SamConfig() elif "sam_vit_l" in model_name: lowerCamelCase__: str =SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCamelCase__: int =SamConfig( vision_config=__a , ) elif "sam_vit_h" in model_name: lowerCamelCase__: Optional[int] =SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCamelCase__: Dict =SamConfig( vision_config=__a , ) lowerCamelCase__: int =torch.load(__a , map_location="cpu" ) lowerCamelCase__: int =replace_keys(__a ) lowerCamelCase__: Dict =SamImageProcessor() lowerCamelCase__: Union[str, Any] =SamProcessor(image_processor=__a ) lowerCamelCase__: Tuple =SamModel(__a ) hf_model.load_state_dict(__a ) lowerCamelCase__: Any =hf_model.to("cuda" ) lowerCamelCase__: Optional[Any] ="https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" lowerCamelCase__: str =Image.open(requests.get(__a , stream=__a ).raw ).convert("RGB" ) lowerCamelCase__: List[str] =[[[400, 650]]] lowerCamelCase__: Union[str, Any] =[[1]] lowerCamelCase__: Tuple =processor(images=np.array(__a ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): lowerCamelCase__: Any =hf_model(**__a ) lowerCamelCase__: Tuple =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 lowerCamelCase__: Tuple =processor( images=np.array(__a ) , input_points=__a , input_labels=__a , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): lowerCamelCase__: Optional[int] =hf_model(**__a ) lowerCamelCase__: Tuple =output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 lowerCamelCase__: Tuple =((75, 275, 1725, 850),) lowerCamelCase__: Any =processor(images=np.array(__a ) , input_boxes=__a , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): lowerCamelCase__: int =hf_model(**__a ) lowerCamelCase__: Optional[Any] =output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. lowerCamelCase__: str =[[[400, 650], [800, 650]]] lowerCamelCase__: Optional[int] =[[1, 1]] lowerCamelCase__: Any =processor( images=np.array(__a ) , input_points=__a , input_labels=__a , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): lowerCamelCase__: str =hf_model(**__a ) lowerCamelCase__: str =output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": __A = argparse.ArgumentParser() __A = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "sentencepiece.bpe.model"} __A = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __A = { "facebook/xglm-564M": 2048, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any="<s>" , UpperCAmelCase_ : Optional[int]="</s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : Union[str, Any]="<s>" , UpperCAmelCase_ : Any="<unk>" , UpperCAmelCase_ : str="<pad>" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : str , ) ->None: '''simple docstring''' lowerCamelCase__: Dict ={} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCamelCase__: Tuple =7 lowerCamelCase__: int =[F"""<madeupword{i}>""" for i in range(self.num_madeup_words)] lowerCamelCase__: str =kwargs.get("additional_special_tokens" , []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase__: Any =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: List[str] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase__: Union[str, Any] =1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase__: Union[str, Any] ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowerCamelCase__: Any =len(self.sp_model) lowerCamelCase__: Tuple ={F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(UpperCAmelCase_) lowerCamelCase__: int ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =self.__dict__.copy() lowerCamelCase__: str =None lowerCamelCase__: Any =self.sp_model.serialized_model_proto() return state def __setstate__(self : Any , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: int ={} lowerCamelCase__: str =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCamelCase__: Any =[self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: List[str] =[self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: Optional[int] =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[str]) ->Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' lowerCamelCase__: str ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Optional[int] =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,)
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->int: '''simple docstring''' raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' raise NotImplementedError()
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] =parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to the HuggingFace Datasets folder.") train_parser.set_defaults(func=UpperCAmelCase_) def __init__(self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , *UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: str =get_logger("datasets-cli/converting") lowerCamelCase__: Tuple =tfds_path lowerCamelCase__: Union[str, Any] =datasets_directory def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' if os.path.isdir(self._tfds_path): lowerCamelCase__: Dict =os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): lowerCamelCase__: Any =os.path.dirname(self._tfds_path) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path.") lowerCamelCase__: Any =os.path.abspath(self._datasets_directory) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""") lowerCamelCase__: List[str] =[] lowerCamelCase__: Optional[int] =[] lowerCamelCase__: int ={} if os.path.isdir(self._tfds_path): lowerCamelCase__: Tuple =os.listdir(UpperCAmelCase_) else: lowerCamelCase__: int =[os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""") lowerCamelCase__: Tuple =os.path.join(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_) if not os.path.isfile(UpperCAmelCase_) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file") continue with open(UpperCAmelCase_ , encoding="utf-8") as f: lowerCamelCase__: Union[str, Any] =f.readlines() lowerCamelCase__: int =[] lowerCamelCase__: Any =False lowerCamelCase__: int =False lowerCamelCase__: int =[] for line in lines: lowerCamelCase__: List[Any] =line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowerCamelCase__: List[Any] ="import datasets\n" elif "import tensorflow" in out_line: # order is important here lowerCamelCase__: Union[str, Any] ="" continue elif "from absl import logging" in out_line: lowerCamelCase__: Tuple ="from datasets import logging\n" elif "getLogger" in out_line: lowerCamelCase__: List[str] =out_line.replace("getLogger" , "get_logger") elif any(expression in out_line for expression in TO_HIGHLIGHT): lowerCamelCase__: str =True lowerCamelCase__: List[Any] =list(filter(lambda UpperCAmelCase_: e in out_line , UpperCAmelCase_)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCAmelCase_) + "\n") out_lines.append(UpperCAmelCase_) out_lines.append(UpperCAmelCase_) continue else: for pattern, replacement in TO_CONVERT: lowerCamelCase__: Dict =re.sub(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowerCamelCase__: Any =re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , UpperCAmelCase_) tfds_imports.extend(imp.strip() for imp in match.group(1).split(",")) lowerCamelCase__: Any ="from . import " + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowerCamelCase__: Optional[int] =True out_lines.append(UpperCAmelCase_) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowerCamelCase__: Tuple =f_name.replace(".py" , "") lowerCamelCase__: Optional[int] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) self._logger.info(F"""Adding directory {output_dir}""") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(UpperCAmelCase_) if needs_manual_update: with_manual_update.append(UpperCAmelCase_) with open(UpperCAmelCase_ , "w" , encoding="utf-8") as f: f.writelines(UpperCAmelCase_) self._logger.info(F"""Converted in {output_file}""") for utils_file in utils_files: try: lowerCamelCase__: Union[str, Any] =os.path.basename(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =imports_to_builder_map[f_name.replace(".py" , "")] self._logger.info(F"""Moving {dest_folder} to {utils_file}""") shutil.copy(UpperCAmelCase_ , UpperCAmelCase_) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""") if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""")
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } __A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): lowerCamelCase__: str =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: Tuple =getattr(__a , __a ).shape else: lowerCamelCase__: List[str] =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: List[Any] =value elif weight_type == "weight_g": lowerCamelCase__: Tuple =value elif weight_type == "weight_v": lowerCamelCase__: List[str] =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: str =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Tuple =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Any =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: Tuple =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: Optional[int] =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[Any] ="unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue lowerCamelCase__: str =True if "*" in mapped_key: lowerCamelCase__: List[str] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: Tuple =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: str ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Dict ="weight" else: lowerCamelCase__: Any =None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Any =full_name.split("conv_layers." )[-1] lowerCamelCase__: Tuple =name.split("." ) lowerCamelCase__: Any =int(items[0] ) lowerCamelCase__: Optional[int] =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Any =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCamelCase__: Optional[int] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: str =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> Optional[Any]: """simple docstring""" if config_path is not None: lowerCamelCase__: Dict =UniSpeechSatConfig.from_pretrained(__a ) else: lowerCamelCase__: Union[str, Any] =UniSpeechSatConfig() lowerCamelCase__: Any ="" if is_finetuned: lowerCamelCase__: Optional[int] =UniSpeechSatForCTC(__a ) else: lowerCamelCase__: Optional[int] =UniSpeechSatForPreTraining(__a ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowerCamelCase__: Optional[Any] =model[0].eval() recursively_load_weights(__a , __a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __A = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __A = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __A = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __A = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __A = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __a , __a ) -> Union[str, Any]: """simple docstring""" for tf_name, hf_name in patterns: lowerCamelCase__: Union[str, Any] =k.replace(__a , __a ) return k def lowerCAmelCase_ ( __a , __a ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" lowerCamelCase__: Tuple =BigBirdPegasusConfig(**__a ) lowerCamelCase__: Any =BigBirdPegasusForConditionalGeneration(__a ) lowerCamelCase__: List[str] =torch_model.state_dict() lowerCamelCase__: Any ={} # separating decoder weights lowerCamelCase__: Union[str, Any] ={k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} lowerCamelCase__: List[str] ={k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): lowerCamelCase__: Dict =[k.endswith(__a ) for ending in KEYS_TO_IGNORE] if any(__a ): continue lowerCamelCase__: List[Any] =DECODER_PATTERNS lowerCamelCase__: Union[str, Any] =rename_state_dict_key(__a , __a ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): lowerCamelCase__: Optional[Any] =v.T lowerCamelCase__: List[Any] =torch.from_numpy(__a ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): lowerCamelCase__: int =[k.endswith(__a ) for ending in KEYS_TO_IGNORE] if any(__a ): continue lowerCamelCase__: str =REMAINING_PATTERNS lowerCamelCase__: List[Any] =rename_state_dict_key(__a , __a ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): lowerCamelCase__: List[Any] =v.T lowerCamelCase__: Union[str, Any] =torch.from_numpy(__a ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" lowerCamelCase__: List[Any] =mapping["model.embed_positions.weight"] lowerCamelCase__: List[Any] =mapping.pop("model.embed_positions.weight" ) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =torch_model.load_state_dict(__a , strict=__a ) lowerCamelCase__: Tuple =[ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: List[str] =tf.train.list_variables(__a ) lowerCamelCase__: int ={} lowerCamelCase__: Tuple =["global_step"] for name, shape in tqdm(__a , desc="converting tf checkpoint to dict" ): lowerCamelCase__: List[Any] =any(pat in name for pat in ignore_name ) if skip_key: continue lowerCamelCase__: List[str] =tf.train.load_variable(__a , __a ) lowerCamelCase__: Tuple =array return tf_weights def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: str =get_tf_weights_as_numpy(__a ) lowerCamelCase__: str =convert_bigbird_pegasus(__a , __a ) torch_model.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __A = parser.parse_args() __A = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["image_processor"] lowercase_ = "SamImageProcessor" def __init__(self : Any , UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.image_processor lowerCamelCase__: str =-10 lowerCamelCase__: Tuple =self.image_processor.size["longest_edge"] def __call__(self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->BatchEncoding: '''simple docstring''' lowerCamelCase__: Any =self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # pop arguments that are not used in the foward but used nevertheless lowerCamelCase__: Tuple =encoding_image_processor["original_sizes"] if hasattr(UpperCAmelCase_ , "numpy"): # Checks if Torch or TF tensor lowerCamelCase__: Optional[Any] =original_sizes.numpy() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._check_and_preprocess_points( input_points=UpperCAmelCase_ , input_labels=UpperCAmelCase_ , input_boxes=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =self._normalize_and_convert( UpperCAmelCase_ , UpperCAmelCase_ , input_points=UpperCAmelCase_ , input_labels=UpperCAmelCase_ , input_boxes=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , ) return encoding_image_processor def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple="pt" , ) ->List[str]: '''simple docstring''' if input_points is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): lowerCamelCase__: int =[ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , original_sizes[0]) for point in input_points ] else: lowerCamelCase__: Tuple =[ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , UpperCAmelCase_) for point, original_size in zip(UpperCAmelCase_ , UpperCAmelCase_) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self._pad_points_and_labels(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.array(UpperCAmelCase_) if input_labels is not None: lowerCamelCase__: Tuple =np.array(UpperCAmelCase_) if input_boxes is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =[ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , original_sizes[0] , is_bounding_box=UpperCAmelCase_) for box in input_boxes ] else: lowerCamelCase__: List[Any] =[ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , UpperCAmelCase_ , is_bounding_box=UpperCAmelCase_) for box, original_size in zip(UpperCAmelCase_ , UpperCAmelCase_) ] lowerCamelCase__: Optional[int] =np.array(UpperCAmelCase_) if input_boxes is not None: if return_tensors == "pt": lowerCamelCase__: int =torch.from_numpy(UpperCAmelCase_) # boxes batch size of 1 by default lowerCamelCase__: int =input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowerCamelCase__: Tuple =tf.convert_to_tensor(UpperCAmelCase_) # boxes batch size of 1 by default lowerCamelCase__: Optional[int] =tf.expand_dims(UpperCAmelCase_ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes}) if input_points is not None: if return_tensors == "pt": lowerCamelCase__: Optional[Any] =torch.from_numpy(UpperCAmelCase_) # point batch size of 1 by default lowerCamelCase__: List[str] =input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowerCamelCase__: Tuple =tf.convert_to_tensor(UpperCAmelCase_) # point batch size of 1 by default lowerCamelCase__: Union[str, Any] =tf.expand_dims(UpperCAmelCase_ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({"input_points": input_points}) if input_labels is not None: if return_tensors == "pt": lowerCamelCase__: Optional[int] =torch.from_numpy(UpperCAmelCase_) # point batch size of 1 by default lowerCamelCase__: Dict =input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowerCamelCase__: Union[str, Any] =tf.convert_to_tensor(UpperCAmelCase_) # point batch size of 1 by default lowerCamelCase__: Optional[int] =tf.expand_dims(UpperCAmelCase_ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels}) return encoding_image_processor def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: int =max([point.shape[0] for point in input_points]) lowerCamelCase__: Optional[int] =[] for i, point in enumerate(UpperCAmelCase_): if point.shape[0] != expected_nb_points: lowerCamelCase__: int =np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowerCamelCase__: Dict =np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =processed_input_points return input_points, input_labels def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=False) ->np.ndarray: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str =original_size lowerCamelCase__ , lowerCamelCase__: str =self.image_processor._get_preprocess_shape(UpperCAmelCase_ , longest_edge=UpperCAmelCase_) lowerCamelCase__: Optional[int] =deepcopy(UpperCAmelCase_).astype(UpperCAmelCase_) if is_bounding_box: lowerCamelCase__: Optional[int] =coords.reshape(-1 , 2 , 2) lowerCamelCase__: Any =coords[..., 0] * (new_w / old_w) lowerCamelCase__: Any =coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCamelCase__: str =coords.reshape(-1 , 4) return coords def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=None , ) ->Optional[Any]: '''simple docstring''' if input_points is not None: if hasattr(UpperCAmelCase_ , "numpy"): # Checks for TF or Torch tensor lowerCamelCase__: List[str] =input_points.numpy().tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or not isinstance(input_points[0] , UpperCAmelCase_): raise ValueError("Input points must be a list of list of floating points.") lowerCamelCase__: Dict =[np.array(UpperCAmelCase_) for input_point in input_points] else: lowerCamelCase__: List[str] =None if input_labels is not None: if hasattr(UpperCAmelCase_ , "numpy"): lowerCamelCase__: str =input_labels.numpy().tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or not isinstance(input_labels[0] , UpperCAmelCase_): raise ValueError("Input labels must be a list of list integers.") lowerCamelCase__: Tuple =[np.array(UpperCAmelCase_) for label in input_labels] else: lowerCamelCase__: Optional[Any] =None if input_boxes is not None: if hasattr(UpperCAmelCase_ , "numpy"): lowerCamelCase__: str =input_boxes.numpy().tolist() if ( not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or not isinstance(input_boxes[0] , UpperCAmelCase_) or not isinstance(input_boxes[0][0] , UpperCAmelCase_) ): raise ValueError("Input boxes must be a list of list of list of floating points.") lowerCamelCase__: int =[np.array(UpperCAmelCase_).astype(np.floataa) for box in input_boxes] else: lowerCamelCase__: Any =None return input_points, input_labels, input_boxes @property def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.image_processor.model_input_names return list(dict.fromkeys(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str) ->Tuple: '''simple docstring''' return self.image_processor.post_process_masks(*UpperCAmelCase_ , **UpperCAmelCase_)
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
def lowerCAmelCase_ ( __a = 10**9 ) -> int: """simple docstring""" lowerCamelCase__: str =1 lowerCamelCase__: Optional[int] =2 lowerCamelCase__: List[str] =0 lowerCamelCase__: Dict =0 lowerCamelCase__: Any =0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCamelCase__: Optional[Any] =2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'{solution() = }')
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A = logging.get_logger(__name__) __A = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "deberta-v2" def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=128_100 , UpperCAmelCase_ : Optional[int]=1_536 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : int=24 , UpperCAmelCase_ : Dict=6_144 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : List[Any]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=-1 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : List[str]="gelu" , **UpperCAmelCase_ : Optional[int] , ) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =num_hidden_layers lowerCamelCase__: Dict =num_attention_heads lowerCamelCase__: Tuple =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: int =hidden_dropout_prob lowerCamelCase__: Optional[Any] =attention_probs_dropout_prob lowerCamelCase__: List[Any] =max_position_embeddings lowerCamelCase__: Union[str, Any] =type_vocab_size lowerCamelCase__: List[Any] =initializer_range lowerCamelCase__: List[Any] =relative_attention lowerCamelCase__: List[str] =max_relative_positions lowerCamelCase__: str =pad_token_id lowerCamelCase__: Optional[Any] =position_biased_input # Backwards compatibility if type(UpperCAmelCase_) == str: lowerCamelCase__: Any =[x.strip() for x in pos_att_type.lower().split("|")] lowerCamelCase__: Tuple =pos_att_type lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: Tuple =layer_norm_eps lowerCamelCase__: Union[str, Any] =kwargs.get("pooler_hidden_size" , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =pooler_dropout lowerCamelCase__: Union[str, Any] =pooler_hidden_act class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__: Tuple ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__: Dict ={0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' return 12 def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ) ->Mapping[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __A = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __A = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCAmelCase_ ( __a , __a ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(__a ) - np.asarray(__a )) ** 2 ) ) def lowerCAmelCase_ ( __a , __a ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(__a , __a ) ) ** (1 / 2) if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: """simple docstring""" from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) benchmark()
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase_ ( __a , __a = "cpu" , __a = None ) -> None: """simple docstring""" lowerCamelCase__: int =torch.load(__a , map_location=__a ) for k, v in tqdm(state_dict.items() ): if not isinstance(__a , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) lowerCamelCase__: Union[str, Any] =v.half() if save_path is None: # overwrite src_path lowerCamelCase__: List[str] =src_path torch.save(__a , __a ) if __name__ == "__main__": fire.Fire(convert)
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
__A = "Input must be a string of 8 numbers plus letter" __A = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if not isinstance(__a , __a ): lowerCamelCase__: Union[str, Any] =F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) lowerCamelCase__: Any =spanish_id.replace("-" , "" ).upper() if len(__a ) != 9: raise ValueError(__a ) try: lowerCamelCase__: Any =int(spanish_id_clean[0:8] ) lowerCamelCase__: Dict =spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
from __future__ import annotations __A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" lowerCamelCase__: List[str] =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__a ) ) ] # the reference grid lowerCamelCase__: Optional[int] =1 lowerCamelCase__: int =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__a ) ) ] # the action grid lowerCamelCase__: Dict =init[0] lowerCamelCase__: Dict =init[1] lowerCamelCase__: List[str] =0 lowerCamelCase__: int =g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__: Optional[int] =[[f, g, x, y]] lowerCamelCase__: Tuple =False # flag that is set when search is complete lowerCamelCase__: Union[str, Any] =False # flag set if we can't find expand while not found and not resign: if len(__a ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__: int =cell.pop() lowerCamelCase__: List[str] =next_cell[2] lowerCamelCase__: List[Any] =next_cell[3] lowerCamelCase__: Dict =next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__: Union[str, Any] =True else: for i in range(len(__a ) ): # to try out different valid actions lowerCamelCase__: Any =x + DIRECTIONS[i][0] lowerCamelCase__: List[Any] =y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__: Optional[int] =g + cost lowerCamelCase__: Optional[int] =ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__: int =1 lowerCamelCase__: Any =i lowerCamelCase__: Tuple =[] lowerCamelCase__: Any =goal[0] lowerCamelCase__: Union[str, Any] =goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__: Any =x - DIRECTIONS[action[x][y]][0] lowerCamelCase__: int =y - DIRECTIONS[action[x][y]][1] lowerCamelCase__: Any =xa lowerCamelCase__: int =ya invpath.append([x, y] ) lowerCamelCase__: str =[] for i in range(len(__a ) ): path.append(invpath[len(__a ) - 1 - i] ) return path, action if __name__ == "__main__": __A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __A = [0, 0] # all coordinates are given in format [y,x] __A = [len(grid) - 1, len(grid[0]) - 1] __A = 1 # the cost map which pushes the path closer to the goal __A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __A = 99 __A , __A = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" if len(__a ) != len(__a ): raise ValueError("String lengths must match!" ) lowerCamelCase__: Dict =0 for chara, chara in zip(__a , __a ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
from __future__ import annotations import math from collections.abc import Callable def lowerCAmelCase_ ( __a , __a , __a , __a = 100 , ) -> float: """simple docstring""" lowerCamelCase__: List[str] =x_start lowerCamelCase__: List[str] =fnc(__a ) lowerCamelCase__: Union[str, Any] =0.0 for _ in range(__a ): # Approximates curve as a sequence of linear lines and sums their length lowerCamelCase__: int =(x_end - x_start) / steps + xa lowerCamelCase__: Tuple =fnc(__a ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCamelCase__: Optional[Any] =xa lowerCamelCase__: List[str] =fxa return length if __name__ == "__main__": def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") __A = 10 while i <= 10_0000: print(f'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCAmelCase_ ( __a , __a ) -> Dict: """simple docstring""" return (-y * np.log(__a ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =np.dot(__a , __a ) return np.sum(y * scores - np.log(1 + np.exp(__a ) ) ) def lowerCAmelCase_ ( __a , __a , __a , __a=70000 ) -> List[str]: """simple docstring""" lowerCamelCase__: Optional[Any] =np.zeros(x.shape[1] ) for iterations in range(__a ): lowerCamelCase__: Tuple =np.dot(__a , __a ) lowerCamelCase__: Union[str, Any] =sigmoid_function(__a ) lowerCamelCase__: Union[str, Any] =np.dot(x.T , h - y ) / y.size lowerCamelCase__: Optional[Any] =theta - alpha * gradient # updating the weights lowerCamelCase__: List[str] =np.dot(__a , __a ) lowerCamelCase__: List[str] =sigmoid_function(__a ) lowerCamelCase__: str =cost_function(__a , __a ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __A = datasets.load_iris() __A = iris.data[:, :2] __A = (iris.target != 0) * 1 __A = 0.1 __A = logistic_reg(alpha, x, y, max_iterations=7_0000) print("theta: ", theta) # printing the theta i.e our weights vector def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" return sigmoid_function( np.dot(__a , __a ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((__A) , (__A)) = (x[:, 0].min(), x[:, 0].max()) ((__A) , (__A)) = (x[:, 1].min(), x[:, 1].max()) ((__A) , (__A)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __A = np.c_[xxa.ravel(), xxa.ravel()] __A = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = GPTSanJapaneseTokenizer lowercase_ = False lowercase_ = {"do_clean_text": False, "add_prefix_space": False} def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase__: List[str] =["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on lowerCamelCase__: Dict ={"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 lowerCamelCase__: List[str] ={"unk_token": "<unk>"} lowerCamelCase__: int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) with open(self.emoji_file , "w") as emoji_writer: emoji_writer.write(json.dumps(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Any ="こんにちは、世界。 \nこんばんは、㔺界。😀" lowerCamelCase__: List[Any] ="こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.get_input_output_texts(UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_) return text, ids def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int: '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.get_tokenizer() # Testing tokenization lowerCamelCase__: int ="こんにちは、世界。 こんばんは、㔺界。" lowerCamelCase__: Optional[Any] =["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] lowerCamelCase__: Optional[Any] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # Testing conversion to ids without special tokens lowerCamelCase__: Optional[Any] =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase__: Tuple =tokenizer.convert_tokens_to_ids(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # Testing conversion to ids with special tokens lowerCamelCase__: Union[str, Any] =tokens + [tokenizer.unk_token] lowerCamelCase__: Optional[int] =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase__: Tuple =tokenizer.convert_tokens_to_ids(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.get_tokenizer() # Testing tokenization lowerCamelCase__: List[Any] ="こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" lowerCamelCase__: List[str] ="こんにちは、、、、世界。こんばんは、、、、世界。" lowerCamelCase__: Union[str, Any] =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer.decode(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") # Testing tokenization lowerCamelCase__: Any ="こんにちは、世界。" lowerCamelCase__: Tuple ="こんばんは、㔺界。😀" lowerCamelCase__: List[str] ="こんにちは、世界。こんばんは、世界。😀" lowerCamelCase__: Dict =tokenizer.encode(prefix_text + input_text) lowerCamelCase__: List[Any] =tokenizer.encode("" , prefix_text=prefix_text + input_text) lowerCamelCase__: List[str] =tokenizer.encode(UpperCAmelCase_ , prefix_text=UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer.decode(UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer.decode(UpperCAmelCase_) lowerCamelCase__: Any =tokenizer.decode(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] =self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") # Testing tokenization lowerCamelCase__: List[str] ="こんにちは、世界。" lowerCamelCase__: Dict ="こんばんは、㔺界。😀" lowerCamelCase__: List[str] =len(tokenizer.encode(UpperCAmelCase_)) - 2 lowerCamelCase__: int =len(tokenizer.encode(UpperCAmelCase_)) - 2 lowerCamelCase__: List[Any] =[1] + [0] * (len_prefix + len_text + 1) lowerCamelCase__: int =[1] * (len_prefix + len_text + 1) + [0] lowerCamelCase__: Union[str, Any] =[1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase__: Optional[int] =tokenizer(prefix_text + input_text).token_type_ids lowerCamelCase__: List[str] =tokenizer("" , prefix_text=prefix_text + input_text).token_type_ids lowerCamelCase__: List[Any] =tokenizer(UpperCAmelCase_ , prefix_text=UpperCAmelCase_).token_type_ids self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") lowerCamelCase__: List[Any] =tokenizer.encode("あンいワ") lowerCamelCase__: Optional[int] =tokenizer.encode("" , prefix_text="あンいワ") lowerCamelCase__: List[Any] =tokenizer.encode("いワ" , prefix_text="あン") self.assertEqual(tokenizer.decode(UpperCAmelCase_) , tokenizer.decode(UpperCAmelCase_)) self.assertEqual(tokenizer.decode(UpperCAmelCase_) , tokenizer.decode(UpperCAmelCase_)) self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(x_token_a[1] , x_token_a[-1]) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3]) # SEG token @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") lowerCamelCase__: List[Any] =[["武田信玄", "は、"], ["織田信長", "の配下の、"]] lowerCamelCase__: Union[str, Any] =tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.batch_encode_plus(UpperCAmelCase_ , padding=UpperCAmelCase_) # fmt: off lowerCamelCase__: Any =[[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] lowerCamelCase__: Optional[Any] =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase__: List[Any] =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCAmelCase_) self.assertListEqual(x_token.token_type_ids , UpperCAmelCase_) self.assertListEqual(x_token.attention_mask , UpperCAmelCase_) self.assertListEqual(x_token_a.input_ids , UpperCAmelCase_) self.assertListEqual(x_token_a.token_type_ids , UpperCAmelCase_) self.assertListEqual(x_token_a.attention_mask , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' pass
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __A = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DPTFeatureExtractor"] __A = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
from typing import Any def lowerCAmelCase_ ( __a ) -> list[Any]: """simple docstring""" if not input_list: return [] lowerCamelCase__: int =[input_list.count(__a ) for value in input_list] lowerCamelCase__: int =max(__a ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__a ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =tmp_path / "file.csv" lowerCamelCase__: Optional[int] =textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(__a , "w" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: str =tmp_path / "malformed_file.csv" lowerCamelCase__: List[Any] =textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(__a , "w" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def lowerCAmelCase_ ( __a , __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: Tuple =tmp_path / "csv_with_image.csv" lowerCamelCase__: str =textwrap.dedent( F"""\ image {image_file} """ ) with open(__a , "w" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: Tuple =tmp_path / "csv_with_label.csv" lowerCamelCase__: Optional[Any] =textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(__a , "w" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Dict =tmp_path / "csv_with_int_list.csv" lowerCamelCase__: str =textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(__a , "w" ) as f: f.write(__a ) return str(__a ) def lowerCAmelCase_ ( __a , __a , __a ) -> str: """simple docstring""" lowerCamelCase__: List[Any] =Csv() lowerCamelCase__: Union[str, Any] =csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__a , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(__a ) in record.message for record in caplog.records ) @require_pil def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" with open(__a , encoding="utf-8" ) as f: lowerCamelCase__: Optional[Any] =f.read().splitlines()[1] lowerCamelCase__: Any =Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) lowerCamelCase__: int =csv._generate_tables([[csv_file_with_image]] ) lowerCamelCase__: Tuple =pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() lowerCamelCase__: List[str] =pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" with open(__a , encoding="utf-8" ) as f: lowerCamelCase__: str =f.read().splitlines()[1:] lowerCamelCase__: Any =Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) lowerCamelCase__: Optional[int] =csv._generate_tables([[csv_file_with_label]] ) lowerCamelCase__: Dict =pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() lowerCamelCase__: Optional[int] =pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(__a ) for label in labels] def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: List[Any] =Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda __a : [int(__a ) for i in x.split()]} ) lowerCamelCase__: Tuple =csv._generate_tables([[csv_file_with_int_list]] ) lowerCamelCase__: Dict =pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) lowerCamelCase__: Any =pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if gpta_config_file == "": lowerCamelCase__: Optional[Any] =GPTaConfig() else: lowerCamelCase__: Optional[Any] =GPTaConfig.from_json_file(__a ) lowerCamelCase__: Any =GPTaModel(__a ) # Load weights from numpy load_tf_weights_in_gpta(__a , __a , __a ) # Save pytorch-model lowerCamelCase__: Any =pytorch_dump_folder_path + "/" + WEIGHTS_NAME lowerCamelCase__: Optional[Any] =pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , __a ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
import math def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if not isinstance(__a , __a ): lowerCamelCase__: str =F"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 1: lowerCamelCase__: List[str] =F"""Input value of [number={number}] must be > 0""" raise ValueError(__a ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCamelCase__: Optional[int] =int(math.log(number // 3 , 2 ) ) + 2 lowerCamelCase__: int =[3, 5] lowerCamelCase__: int =2 lowerCamelCase__: Tuple =3 for block in range(1 , __a ): for _ in range(__a ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __A = 0 try: __A = proth(number) except ValueError: print(f'ValueError: there is no {number}th Proth number') continue print(f'The {number}th Proth number: {value}')
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: str =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) lowerCamelCase__: Dict =get_activation("gelu") self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase_) , torch_builtin(UpperCAmelCase_))) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase_) , gelu_new(UpperCAmelCase_))) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: List[str] =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) lowerCamelCase__: str =get_activation("gelu") lowerCamelCase__: Union[str, Any] =get_activation("gelu_10") lowerCamelCase__: Dict =torch_builtin(UpperCAmelCase_) lowerCamelCase__: Any =geluaa(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(UpperCAmelCase_).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' get_activation("gelu") get_activation("gelu_10") get_activation("gelu_fast") get_activation("gelu_new") get_activation("gelu_python") get_activation("gelu_pytorch_tanh") get_activation("linear") get_activation("mish") get_activation("quick_gelu") get_activation("relu") get_activation("sigmoid") get_activation("silu") get_activation("swish") get_activation("tanh") with self.assertRaises(UpperCAmelCase_): get_activation("bogus") with self.assertRaises(UpperCAmelCase_): get_activation(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =get_activation("gelu") lowerCamelCase__: str =1 lowerCamelCase__: Union[str, Any] =get_activation("gelu") self.assertEqual(acta.a , 1) with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =acta.a
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import os def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: Union[str, Any] =len(grid[0] ) lowerCamelCase__: List[Any] =len(__a ) lowerCamelCase__: str =0 lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[int] =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__a ): for j in range(n_rows - 3 ): lowerCamelCase__: Any =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCamelCase__: List[Any] =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCamelCase__: List[Any] =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCamelCase__: List[Any] =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCamelCase__: List[Any] =max( __a , __a , __a , __a ) if max_product > largest: lowerCamelCase__: Union[str, Any] =max_product return largest def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =[] with open(os.path.dirname(__a ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCamelCase__: str =[[int(__a ) for i in grid[j]] for j in range(len(__a ) )] return largest_product(__a ) if __name__ == "__main__": print(solution())
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : Optional[int]=400 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=1 / 255 , UpperCAmelCase_ : Any=True , ) ->str: '''simple docstring''' lowerCamelCase__: int =size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} lowerCamelCase__: Tuple =parent lowerCamelCase__: Union[str, Any] =batch_size lowerCamelCase__: Tuple =num_channels lowerCamelCase__: int =min_resolution lowerCamelCase__: int =max_resolution lowerCamelCase__: Dict =do_resize lowerCamelCase__: List[Any] =size lowerCamelCase__: Any =do_normalize lowerCamelCase__: Optional[Any] =image_mean lowerCamelCase__: int =image_std lowerCamelCase__: Tuple =do_rescale lowerCamelCase__: int =rescale_factor lowerCamelCase__: int =do_pad def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=False) ->str: '''simple docstring''' if not batched: lowerCamelCase__: Any =image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image): lowerCamelCase__ , lowerCamelCase__: List[str] =image.size else: lowerCamelCase__ , lowerCamelCase__: List[Any] =image.shape[1], image.shape[2] if w < h: lowerCamelCase__: Any =int(self.size["shortest_edge"] * h / w) lowerCamelCase__: int =self.size["shortest_edge"] elif w > h: lowerCamelCase__: int =self.size["shortest_edge"] lowerCamelCase__: int =int(self.size["shortest_edge"] * w / h) else: lowerCamelCase__: Union[str, Any] =self.size["shortest_edge"] lowerCamelCase__: Any =self.size["shortest_edge"] else: lowerCamelCase__: Optional[int] =[] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__: List[Any] =self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) lowerCamelCase__: Tuple =max(UpperCAmelCase_ , key=lambda UpperCAmelCase_: item[0])[0] lowerCamelCase__: Union[str, Any] =max(UpperCAmelCase_ , key=lambda UpperCAmelCase_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = DetaImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =DetaImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_rescale")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_pad")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.image_processor_tester.get_expected_values(UpperCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__: List[str] =self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_) lowerCamelCase__: Dict =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: str =image_processing(image_inputs[0] , return_tensors="pt").pixel_values lowerCamelCase__ , lowerCamelCase__: List[Any] =self.image_processor_tester.get_expected_values(UpperCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__: Dict =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values lowerCamelCase__ , lowerCamelCase__: int =self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: str =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values lowerCamelCase__ , lowerCamelCase__: Optional[int] =self.image_processor_tester.get_expected_values(UpperCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: List[str] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r") as f: lowerCamelCase__: str =json.loads(f.read()) lowerCamelCase__: Optional[int] ={"image_id": 39_769, "annotations": target} # encode them lowerCamelCase__: List[str] =DetaImageProcessor() lowerCamelCase__: int =image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="pt") # verify pixel values lowerCamelCase__: Dict =torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase_) lowerCamelCase__: Dict =torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4)) # verify area lowerCamelCase__: int =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase_)) # verify boxes lowerCamelCase__: str =torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase_) lowerCamelCase__: str =torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase_ , atol=1E-3)) # verify image_id lowerCamelCase__: Optional[Any] =torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase_)) # verify is_crowd lowerCamelCase__: Dict =torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase_)) # verify class_labels lowerCamelCase__: int =torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase_)) # verify orig_size lowerCamelCase__: Union[str, Any] =torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase_)) # verify size lowerCamelCase__: Optional[int] =torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase_)) @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r") as f: lowerCamelCase__: List[Any] =json.loads(f.read()) lowerCamelCase__: Any ={"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} lowerCamelCase__: Dict =pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them lowerCamelCase__: Union[str, Any] =DetaImageProcessor(format="coco_panoptic") lowerCamelCase__: Union[str, Any] =image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="pt") # verify pixel values lowerCamelCase__: List[Any] =torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase_) lowerCamelCase__: Optional[int] =torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4)) # verify area lowerCamelCase__: Any =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase_)) # verify boxes lowerCamelCase__: List[str] =torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase_ , atol=1E-3)) # verify image_id lowerCamelCase__: Dict =torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase_)) # verify is_crowd lowerCamelCase__: Optional[int] =torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase_)) # verify class_labels lowerCamelCase__: Union[str, Any] =torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase_)) # verify masks lowerCamelCase__: int =822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase_) # verify orig_size lowerCamelCase__: List[Any] =torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase_)) # verify size lowerCamelCase__: int =torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase_))
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
def lowerCAmelCase_ ( __a , __a ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __A = ["gpt2"] __A = "gpt2" if is_tf_available(): class _SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : List[Any]) ->Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase__: Optional[Any] =tokenizer lowerCamelCase__: List[Any] =AutoConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: Tuple =TFGPTaLMHeadModel.from_config(UpperCAmelCase_) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text"),)) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.tokenizer(UpperCAmelCase_) lowerCamelCase__: str =tokenized["input_ids"].to_tensor() lowerCamelCase__: Union[str, Any] =tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowerCamelCase__: Union[str, Any] =self.model(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)["logits"] return outputs @require_tf @require_keras_nlp class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' super().setUp() lowerCamelCase__: Tuple =[GPTaTokenizer.from_pretrained(UpperCAmelCase_) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowerCamelCase__: Union[str, Any] =[TFGPTaTokenizer.from_pretrained(UpperCAmelCase_) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) lowerCamelCase__: Union[str, Any] =[ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] lowerCamelCase__: Optional[Any] =list(zip(self.test_sentences , self.test_sentences[::-1])) def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: lowerCamelCase__: Any =tokenizer([test_inputs] , return_tensors="tf") lowerCamelCase__: List[Any] =tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowerCamelCase__: Tuple =python_outputs[key].numpy() lowerCamelCase__: Dict =tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(UpperCAmelCase_ , tf.intaa) == tf_outputs_values)) @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__: Union[str, Any] =tf.function(UpperCAmelCase_) for test_inputs in self.test_sentences: lowerCamelCase__: List[str] =tf.constant(UpperCAmelCase_) lowerCamelCase__: Any =compiled_tokenizer(UpperCAmelCase_) lowerCamelCase__: Optional[int] =tf_tokenizer(UpperCAmelCase_) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__: Any =ModelToSave(tokenizer=UpperCAmelCase_) lowerCamelCase__: List[Any] =tf.convert_to_tensor([self.test_sentences[0]]) lowerCamelCase__: Union[str, Any] =model.serving(UpperCAmelCase_) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase__: Optional[int] =Path(UpperCAmelCase_) / "saved.model" tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={"serving_default": model.serving}) lowerCamelCase__: str =tf.saved_model.load(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =loaded_model.signatures["serving_default"](UpperCAmelCase_)["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__: int =tf.convert_to_tensor([self.test_sentences[0]]) lowerCamelCase__: Optional[int] =tf_tokenizer(UpperCAmelCase_) # Build model with some sample inputs lowerCamelCase__: Union[str, Any] =tf_tokenizer.get_config() lowerCamelCase__: str =TFGPTaTokenizer.from_config(UpperCAmelCase_) lowerCamelCase__: Any =model_from_config(UpperCAmelCase_) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run lowerCamelCase__: List[Any] =123_123 for max_length in [3, 5, 1_024]: lowerCamelCase__: Tuple =tf.convert_to_tensor([self.test_sentences[0]]) lowerCamelCase__: List[str] =tf_tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_) lowerCamelCase__: List[Any] =out["input_ids"].numpy().shape[1] assert out_length == max_length
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
def lowerCAmelCase_ ( ) -> Any: """simple docstring""" lowerCamelCase__: Tuple =[] lowerCamelCase__: Tuple =1 while len(__a ) < 1e6: constant.append(str(__a ) ) i += 1 lowerCamelCase__: List[Any] ="".join(__a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __A = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "maskformer" lowercase_ = {"hidden_size": "mask_feature_size"} lowercase_ = ["resnet", "swin"] lowercase_ = ["detr"] def __init__(self : Optional[int] , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 20.0 , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Optional[Any] , ) ->str: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCamelCase__: Any =SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[str] =backbone_config.pop("model_type") lowerCamelCase__: int =CONFIG_MAPPING[backbone_model_type] lowerCamelCase__: List[Any] =config_class.from_dict(UpperCAmelCase_) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {",".join(self.backbones_supported)}""") if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCamelCase__: Tuple =DetrConfig() else: # verify that the decoder is supported lowerCamelCase__: Any =( decoder_config.pop("model_type") if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {",".join(self.decoders_supported)}""") if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =CONFIG_MAPPING[decoder_type] lowerCamelCase__: List[Any] =config_class.from_dict(UpperCAmelCase_) lowerCamelCase__: List[str] =backbone_config lowerCamelCase__: Dict =decoder_config # main feature dimension for the model lowerCamelCase__: Any =fpn_feature_size lowerCamelCase__: Optional[int] =mask_feature_size # initializer lowerCamelCase__: Union[str, Any] =init_std lowerCamelCase__: str =init_xavier_std # Hungarian matcher && loss lowerCamelCase__: Tuple =cross_entropy_weight lowerCamelCase__: Union[str, Any] =dice_weight lowerCamelCase__: List[str] =mask_weight lowerCamelCase__: List[str] =use_auxiliary_loss lowerCamelCase__: List[str] =no_object_weight lowerCamelCase__: Dict =output_auxiliary_logits lowerCamelCase__: Any =self.decoder_config.encoder_attention_heads lowerCamelCase__: List[Any] =self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase_) @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[str] , UpperCAmelCase_ : PretrainedConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' return cls( backbone_config=UpperCAmelCase_ , decoder_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict[str, any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =copy.deepcopy(self.__dict__) lowerCamelCase__: Any =self.backbone_config.to_dict() lowerCamelCase__: Any =self.decoder_config.to_dict() lowerCamelCase__: List[str] =self.__class__.model_type return output
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" lowerCamelCase__: str =os.path.abspath(__a ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model lowerCamelCase__: Any =tf.train.list_variables(__a ) lowerCamelCase__: Dict =[] lowerCamelCase__: List[Any] =[] lowerCamelCase__: Optional[int] =[] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowerCamelCase__: List[str] =full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' lowerCamelCase__: int =name[1:] # figure out how many levels deep the name is lowerCamelCase__: Optional[int] =0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(__a ) # read data lowerCamelCase__: List[Any] =tf.train.load_variable(__a , __a ) names.append("/".join(__a ) ) arrays.append(__a ) logger.info(F"""Read a total of {len(__a ):,} layers""" ) # Sanity check if len(set(__a ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(__a ) )})""" ) lowerCamelCase__: Optional[Any] =list(set(__a ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(__a , __a ): lowerCamelCase__: Tuple =full_name.split("/" ) lowerCamelCase__: Union[str, Any] =model lowerCamelCase__: Dict =[] for i, m_name in enumerate(__a ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): lowerCamelCase__: Optional[Any] =int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) lowerCamelCase__: Optional[Any] =getattr(__a , "embeddings" ) lowerCamelCase__: Union[str, Any] =getattr(__a , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) lowerCamelCase__: Any =getattr(__a , "encoder" ) lowerCamelCase__: str =getattr(__a , "layer" ) lowerCamelCase__: Optional[Any] =pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) lowerCamelCase__: Any =getattr(__a , "pooler" ) lowerCamelCase__: Tuple =getattr(__a , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) lowerCamelCase__: List[Any] =getattr(__a , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) lowerCamelCase__: List[str] =getattr(__a , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) lowerCamelCase__: str =getattr(__a , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) lowerCamelCase__: Dict =getattr(__a , "token_type_embeddings" ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append("weight" ) lowerCamelCase__: Optional[int] =getattr(__a , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) lowerCamelCase__: Any =getattr(__a , "attention" ) lowerCamelCase__: Tuple =getattr(__a , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) lowerCamelCase__: Optional[int] =getattr(__a , "attention" ) lowerCamelCase__: Any =getattr(__a , "output" ) lowerCamelCase__: Union[str, Any] =getattr(__a , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) lowerCamelCase__: List[str] =getattr(__a , "attention" ) lowerCamelCase__: Dict =getattr(__a , "output" ) lowerCamelCase__: str =getattr(__a , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) lowerCamelCase__: Optional[Any] =getattr(__a , "output" ) lowerCamelCase__: Tuple =getattr(__a , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) lowerCamelCase__: List[Any] =getattr(__a , "output" ) lowerCamelCase__: Optional[Any] =getattr(__a , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) lowerCamelCase__: List[Any] =getattr(__a , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) lowerCamelCase__: Tuple =getattr(__a , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) lowerCamelCase__: Any =getattr(__a , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) lowerCamelCase__: Union[str, Any] =getattr(__a , "intermediate" ) lowerCamelCase__: List[str] =getattr(__a , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) lowerCamelCase__: List[Any] =getattr(__a , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) lowerCamelCase__: Any =getattr(__a , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) lowerCamelCase__: Any =getattr(__a , "weight" ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary lowerCamelCase__: Dict =".".join(__a ) if re.match(R"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , __a ) or re.match( R"(\S+)\.attention\.output\.dense\.weight" , __a ): lowerCamelCase__: str =array.reshape(pointer.data.shape ) if "kernel" in full_name: lowerCamelCase__: Tuple =array.transpose() if pointer.shape == array.shape: lowerCamelCase__: Optional[int] =torch.from_numpy(__a ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def lowerCAmelCase_ ( __a , __a , __a ) -> Tuple: """simple docstring""" logger.info(F"""Loading model based on config from {config_path}...""" ) lowerCamelCase__: str =BertConfig.from_json_file(__a ) lowerCamelCase__: Union[str, Any] =BertModel(__a ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__a , __a , __a ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) __A = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
from __future__ import annotations from collections.abc import Iterator class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : int) ->None: '''simple docstring''' lowerCamelCase__: int =value lowerCamelCase__: Node | None =None lowerCamelCase__: Node | None =None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : Node) ->None: '''simple docstring''' lowerCamelCase__: Union[str, Any] =tree def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Node | None) ->int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__(self : int) ->Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = { "nielsr/canine-s": 2048, } # Unicode defines 1,114,112 total “codepoints” __A = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __A = 0 __A = 0xE000 __A = 0xE001 __A = 0xE002 __A = 0xE003 __A = 0xE004 # Maps special codepoints to human-readable names. __A = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __A = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : List[Any] , UpperCAmelCase_ : Any=chr(UpperCAmelCase_) , UpperCAmelCase_ : List[Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : Any=chr(UpperCAmelCase_) , UpperCAmelCase_ : List[Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : List[str]=chr(UpperCAmelCase_) , UpperCAmelCase_ : Dict=chr(UpperCAmelCase_) , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=2_048 , **UpperCAmelCase_ : Tuple , ) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token lowerCamelCase__: Tuple =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token lowerCamelCase__: Tuple =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token lowerCamelCase__: List[Any] =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token lowerCamelCase__: Any =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__: Dict =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , model_max_length=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. lowerCamelCase__: Dict[str, int] ={} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCamelCase__: Any =codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCamelCase__: Dict[int, str] ={ codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCamelCase__: Dict =UNICODE_VOCAB_SIZE lowerCamelCase__: Optional[Any] =len(self._special_codepoints) @property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' return self._unicode_vocab_size def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' return list(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str) ->int: '''simple docstring''' try: return ord(UpperCAmelCase_) except TypeError: raise ValueError(F"""invalid token: '{token}'""") def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : int) ->str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCAmelCase_) except TypeError: raise ValueError(F"""invalid id: {index}""") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' return "".join(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[self.sep_token_id] lowerCamelCase__: List[Any] =[self.cls_token_id] lowerCamelCase__: List[str] =cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) lowerCamelCase__: Any =[1] + ([0] * len(UpperCAmelCase_)) + [1] if token_ids_a is not None: result += ([0] * len(UpperCAmelCase_)) + [1] return result def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: str =[self.sep_token_id] lowerCamelCase__: int =[self.cls_token_id] lowerCamelCase__: List[str] =len(cls + token_ids_a + sep) * [0] if token_ids_a is not None: result += len(token_ids_a + sep) * [1] return result def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->str: '''simple docstring''' return ()
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
def lowerCAmelCase_ ( __a , __a ) -> list: """simple docstring""" lowerCamelCase__: int =word.split() def justify(__a , __a , __a ) -> str: lowerCamelCase__: Tuple =max_width - width lowerCamelCase__: str =len(__a ) if len(__a ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCamelCase__: List[Any] =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCamelCase__: str =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCamelCase__: str =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__a ): num_spaces_between_words_list[i] += 1 lowerCamelCase__: Union[str, Any] =[] for i in range(__a ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__a ) lowerCamelCase__: int =[] lowerCamelCase__: list[str] =[] lowerCamelCase__: Any =0 for word in words: if width + len(__a ) + len(__a ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__a ) width += len(__a ) else: # justify the line and add it to result answer.append(justify(__a , __a , __a ) ) # reset new line and new width lowerCamelCase__ , lowerCamelCase__: int =[word], len(__a ) lowerCamelCase__: str =max_width - width - len(__a ) answer.append(" ".join(__a ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
from PIL import Image def lowerCAmelCase_ ( __a ) -> Image: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: Tuple =image.size lowerCamelCase__: Optional[Any] =0 lowerCamelCase__: List[str] =image.load() for i in range(__a ): for j in range(__a ): lowerCamelCase__: Optional[Any] =pixels[j, i] mean += pixel mean //= width * height for j in range(__a ): for i in range(__a ): lowerCamelCase__: int =255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __A = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" return EnvironmentCommand() def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =parser.add_parser("env") download_parser.set_defaults(func=UpperCAmelCase_) download_parser.add_argument( "--accelerate-config_file" , default=UpperCAmelCase_ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=UpperCAmelCase_) def __init__(self : Union[str, Any] , UpperCAmelCase_ : str , *UpperCAmelCase_ : Union[str, Any]) ->None: '''simple docstring''' lowerCamelCase__: Union[str, Any] =accelerate_config_file def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[str] ="not installed" if is_safetensors_available(): import safetensors lowerCamelCase__: Optional[Any] =safetensors.__version__ elif importlib.util.find_spec("safetensors") is not None: import safetensors lowerCamelCase__: Optional[Any] =F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" lowerCamelCase__: Optional[Any] ="not installed" lowerCamelCase__: Any ="not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCamelCase__: Optional[int] =accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCAmelCase_): lowerCamelCase__: List[Any] =load_config_from_file(self._accelerate_config_file).to_dict() lowerCamelCase__: Optional[Any] =( "\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()]) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else F"""\t{accelerate_config}""" ) lowerCamelCase__: Optional[Any] ="not installed" lowerCamelCase__: str ="NA" if is_torch_available(): import torch lowerCamelCase__: str =torch.__version__ lowerCamelCase__: List[Any] =torch.cuda.is_available() lowerCamelCase__: List[str] ="not installed" lowerCamelCase__: Tuple ="NA" if is_tf_available(): import tensorflow as tf lowerCamelCase__: Tuple =tf.__version__ try: # deprecated in v2.1 lowerCamelCase__: List[Any] =tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCamelCase__: Union[str, Any] =bool(tf.config.list_physical_devices("GPU")) lowerCamelCase__: int ="not installed" lowerCamelCase__: Optional[int] ="not installed" lowerCamelCase__: List[Any] ="not installed" lowerCamelCase__: Any ="NA" if is_flax_available(): import flax import jax import jaxlib lowerCamelCase__: Optional[int] =flax.__version__ lowerCamelCase__: Tuple =jax.__version__ lowerCamelCase__: List[Any] =jaxlib.__version__ lowerCamelCase__: Dict =jax.lib.xla_bridge.get_backend().platform lowerCamelCase__: Union[str, Any] ={ "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": F"""{safetensors_version}""", "Accelerate version": F"""{accelerate_version}""", "Accelerate config": F"""{accelerate_config_str}""", "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": F"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": F"""{flax_version} ({jax_backend})""", "Jax version": F"""{jax_version}""", "JaxLib version": F"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n") print(self.format_dict(UpperCAmelCase_)) return info @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : str) ->Union[str, Any]: '''simple docstring''' return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()]) + "\n"
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
from __future__ import annotations def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: int =len(__a ) // 2 # choose the middle 3 elements lowerCamelCase__: int =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
from functools import lru_cache @lru_cache def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = StableDiffusionDiffEditPipeline lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} lowercase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ = frozenset([] ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Union[str, Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase_ , ) lowerCamelCase__: List[str] =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) lowerCamelCase__: Optional[Any] =DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_zero=UpperCAmelCase_ , ) torch.manual_seed(0) lowerCamelCase__: Optional[int] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) lowerCamelCase__: Dict =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase__: Dict =CLIPTextModel(UpperCAmelCase_) lowerCamelCase__: List[Any] =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: str ={ "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=0) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) lowerCamelCase__: Tuple =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) if str(UpperCAmelCase_).startswith("mps"): lowerCamelCase__: List[Any] =torch.manual_seed(UpperCAmelCase_) else: lowerCamelCase__: Optional[int] =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: List[Any] ={ "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=0) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCamelCase__: Optional[int] =Image.fromarray(np.uinta(UpperCAmelCase_)).convert("RGB") if str(UpperCAmelCase_).startswith("mps"): lowerCamelCase__: Union[str, Any] =torch.manual_seed(UpperCAmelCase_) else: lowerCamelCase__: Union[str, Any] =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: List[str] ={ "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=0) ->str: '''simple docstring''' lowerCamelCase__: Tuple =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) lowerCamelCase__: str =image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCamelCase__: Any =Image.fromarray(np.uinta(UpperCAmelCase_)).convert("RGB") if str(UpperCAmelCase_).startswith("mps"): lowerCamelCase__: Dict =torch.manual_seed(UpperCAmelCase_) else: lowerCamelCase__: int =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: Dict ={ "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' if not hasattr(self.pipeline_class , "_optional_components"): return lowerCamelCase__: Dict =self.get_dummy_components() lowerCamelCase__: Optional[Any] =self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) lowerCamelCase__: Union[str, Any] =self.get_dummy_inputs(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) lowerCamelCase__: int =self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCamelCase__: Optional[int] =self.get_dummy_inputs(UpperCAmelCase_) lowerCamelCase__: int =pipe_loaded(**UpperCAmelCase_)[0] lowerCamelCase__: int =np.abs(output - output_loaded).max() self.assertLess(UpperCAmelCase_ , 1E-4) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[str] ="cpu" lowerCamelCase__: List[Any] =self.get_dummy_components() lowerCamelCase__: int =self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.get_dummy_mask_inputs(UpperCAmelCase_) lowerCamelCase__: Dict =pipe.generate_mask(**UpperCAmelCase_) lowerCamelCase__: List[Any] =mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16)) lowerCamelCase__: int =np.array([0] * 9) lowerCamelCase__: Tuple =np.abs(mask_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCAmelCase_ , 1E-3) self.assertEqual(mask[0, -3, -4] , 0) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str ="cpu" lowerCamelCase__: Optional[Any] =self.get_dummy_components() lowerCamelCase__: Optional[Any] =self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Tuple =self.get_dummy_inversion_inputs(UpperCAmelCase_) lowerCamelCase__: List[Any] =pipe.invert(**UpperCAmelCase_).images lowerCamelCase__: Union[str, Any] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3)) lowerCamelCase__: int =np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCamelCase__: Optional[int] =np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCAmelCase_ , 1E-3) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3) def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' lowerCamelCase__: Any ="cpu" lowerCamelCase__: Any =self.get_dummy_components() lowerCamelCase__: List[Any] ={"beta_start": 0.0_0085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} lowerCamelCase__: List[Any] =DPMSolverMultistepScheduler(**UpperCAmelCase_) lowerCamelCase__: Any =DPMSolverMultistepInverseScheduler(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Dict =self.get_dummy_inversion_inputs(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =pipe.invert(**UpperCAmelCase_).images lowerCamelCase__: List[Any] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3)) lowerCamelCase__: Optional[int] =np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCamelCase__: int =np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCAmelCase_ , 1E-3) @require_torch_gpu @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int]) ->str: '''simple docstring''' lowerCamelCase__: Tuple =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png") lowerCamelCase__: Optional[int] =raw_image.convert("RGB").resize((768, 768)) lowerCamelCase__: Any =raw_image def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =torch.manual_seed(0) lowerCamelCase__: List[str] =StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa) lowerCamelCase__: int =DDIMScheduler.from_config(pipe.scheduler.config) lowerCamelCase__: int =DDIMInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Optional[Any] ="a bowl of fruit" lowerCamelCase__: List[str] ="a bowl of pears" lowerCamelCase__: Tuple =pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase_ , target_prompt=UpperCAmelCase_ , generator=UpperCAmelCase_ , ) lowerCamelCase__: Optional[Any] =pipe.invert( prompt=UpperCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase_).latents lowerCamelCase__: Optional[int] =pipe( prompt=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_latents=UpperCAmelCase_ , generator=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] lowerCamelCase__: int =( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png").resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5E-1 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: str =torch.manual_seed(0) lowerCamelCase__: Optional[Any] =StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa) lowerCamelCase__: Dict =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCamelCase__: List[str] =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Dict ="a bowl of fruit" lowerCamelCase__: Optional[Any] ="a bowl of pears" lowerCamelCase__: int =pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase_ , target_prompt=UpperCAmelCase_ , generator=UpperCAmelCase_ , ) lowerCamelCase__: List[str] =pipe.invert( prompt=UpperCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase_ , num_inference_steps=25 , ).latents lowerCamelCase__: List[Any] =pipe( prompt=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_latents=UpperCAmelCase_ , generator=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] lowerCamelCase__: List[Any] =( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png").resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5E-1
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
def lowerCAmelCase_ ( __a , __a ) -> tuple[float, float]: """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str =equationa lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =equationa # Calculate the determinants of the matrices lowerCamelCase__: Optional[int] =aa * ba - aa * ba lowerCamelCase__: List[Any] =ca * ba - ca * ba lowerCamelCase__: List[str] =aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowerCamelCase__: str =determinant_x / determinant lowerCamelCase__: List[Any] =determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : str=[10, 20, 30, 40] , UpperCAmelCase_ : Union[str, Any]=[1, 1, 2, 1] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]="relu" , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Tuple=None , ) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =parent lowerCamelCase__: List[Any] =batch_size lowerCamelCase__: int =image_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: List[Any] =embeddings_size lowerCamelCase__: Any =hidden_sizes lowerCamelCase__: List[Any] =depths lowerCamelCase__: List[Any] =is_training lowerCamelCase__: Tuple =use_labels lowerCamelCase__: Any =hidden_act lowerCamelCase__: int =num_labels lowerCamelCase__: List[str] =scope lowerCamelCase__: str =len(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Union[str, Any] =None if self.use_labels: lowerCamelCase__: Dict =ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__: Tuple =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: int =TFRegNetModel(config=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , training=UpperCAmelCase_) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.num_labels lowerCamelCase__: List[str] =TFRegNetForImageClassification(UpperCAmelCase_) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =config_and_inputs lowerCamelCase__: int ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowercase_ = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =TFRegNetModelTester(self) lowerCamelCase__: Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings") def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: str =model_class(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Dict =[*signature.parameters.keys()] lowerCamelCase__: Optional[int] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): lowerCamelCase__: List[str] =model_class(UpperCAmelCase_) lowerCamelCase__: List[str] =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) , training=UpperCAmelCase_) lowerCamelCase__: List[Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__: Optional[int] =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase__ , lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__: int =["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__: Any =layer_type lowerCamelCase__: str =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: str =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int]={}): lowerCamelCase__: int =model(UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_).to_tuple() def recursive_check(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]): if isinstance(UpperCAmelCase_ , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase_ , UpperCAmelCase_): recursive_check(UpperCAmelCase_ , UpperCAmelCase_) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCAmelCase_ , UpperCAmelCase_)) , msg=( "Tuple and dict output are not equal. Difference:" F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}""" ) , ) recursive_check(UpperCAmelCase_ , UpperCAmelCase_) for model_class in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: int =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) lowerCamelCase__: int =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {"output_hidden_states": True}) lowerCamelCase__: Union[str, Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {"output_hidden_states": True}) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Optional[Any] =TFRegNetModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) lowerCamelCase__: Union[str, Any] =self.default_image_processor lowerCamelCase__: Union[str, Any] =prepare_img() lowerCamelCase__: Any =image_processor(images=UpperCAmelCase_ , return_tensors="tf") # forward pass lowerCamelCase__: Tuple =model(**UpperCAmelCase_ , training=UpperCAmelCase_) # verify the logits lowerCamelCase__: List[str] =tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: int =tf.constant([-0.4180, -1.5051, -3.4836]) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4)
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
def lowerCAmelCase_ ( __a ) -> list[int]: """simple docstring""" lowerCamelCase__: List[str] =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: lowerCamelCase__ , lowerCamelCase__: Optional[Any] =numbers[j], numbers[i] return numbers if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =1 lowerCamelCase__: Optional[Any] =3 lowerCamelCase__: str =(32, 32) lowerCamelCase__: str =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: List[Any] =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Optional[int] =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Dict =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: str =self.dummy_cond_unet_upscale lowerCamelCase__: int =DDPMScheduler() lowerCamelCase__: str =DDIMScheduler(prediction_type="v_prediction") lowerCamelCase__: Any =self.dummy_vae lowerCamelCase__: List[Any] =self.dummy_text_encoder lowerCamelCase__: Any =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: Dict =self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCamelCase__: List[str] =Image.fromarray(np.uinta(UpperCAmelCase_)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk lowerCamelCase__: int =StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) lowerCamelCase__: List[Any] =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Optional[Any] ="A painting of a squirrel eating a burger" lowerCamelCase__: Tuple =torch.Generator(device=UpperCAmelCase_).manual_seed(0) lowerCamelCase__: Tuple =sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase__: int =output.images lowerCamelCase__: List[str] =torch.Generator(device=UpperCAmelCase_).manual_seed(0) lowerCamelCase__: List[str] =sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=UpperCAmelCase_ , )[0] lowerCamelCase__: Optional[int] =image[0, -3:, -3:, -1] lowerCamelCase__: int =image_from_tuple[0, -3:, -3:, -1] lowerCamelCase__: List[Any] =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase__: Dict =np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Dict ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: Any =self.dummy_cond_unet_upscale lowerCamelCase__: Optional[Any] =DDPMScheduler() lowerCamelCase__: Optional[int] =DDIMScheduler(prediction_type="v_prediction") lowerCamelCase__: List[str] =self.dummy_vae lowerCamelCase__: List[Any] =self.dummy_text_encoder lowerCamelCase__: str =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: int =self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCamelCase__: Any =Image.fromarray(np.uinta(UpperCAmelCase_)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk lowerCamelCase__: Dict =StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) lowerCamelCase__: List[Any] =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: List[str] ="A painting of a squirrel eating a burger" lowerCamelCase__: Optional[Any] =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase__: List[str] =output.images assert image.shape[0] == 2 lowerCamelCase__: Optional[int] =torch.Generator(device=UpperCAmelCase_).manual_seed(0) lowerCamelCase__: Optional[int] =sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase__: Union[str, Any] =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.dummy_cond_unet_upscale lowerCamelCase__: str =DDPMScheduler() lowerCamelCase__: Dict =DDIMScheduler(prediction_type="v_prediction") lowerCamelCase__: Optional[Any] =self.dummy_vae lowerCamelCase__: Dict =self.dummy_text_encoder lowerCamelCase__: str =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: Union[str, Any] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCamelCase__: List[Any] =Image.fromarray(np.uinta(UpperCAmelCase_)).convert("RGB").resize((64, 64)) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase__: List[str] =unet.half() lowerCamelCase__: List[Any] =text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase__: List[Any] =StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) lowerCamelCase__: Tuple =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: List[str] ="A painting of a squirrel eating a burger" lowerCamelCase__: Optional[Any] =torch.manual_seed(0) lowerCamelCase__: Union[str, Any] =sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="np" , ).images lowerCamelCase__: int =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") lowerCamelCase__: Union[str, Any] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy") lowerCamelCase__: List[Any] ="stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase__: Optional[Any] =StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) pipe.enable_attention_slicing() lowerCamelCase__: str ="a cat sitting on a park bench" lowerCamelCase__: Any =torch.manual_seed(0) lowerCamelCase__: Union[str, Any] =pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type="np" , ) lowerCamelCase__: Optional[int] =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") lowerCamelCase__: int =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy") lowerCamelCase__: Optional[int] ="stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase__: Dict =StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) pipe.enable_attention_slicing() lowerCamelCase__: Optional[Any] ="a cat sitting on a park bench" lowerCamelCase__: Optional[Any] =torch.manual_seed(0) lowerCamelCase__: List[Any] =pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type="np" , ) lowerCamelCase__: List[str] =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5E-1 def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__: Optional[Any] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") lowerCamelCase__: List[str] ="stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase__: int =StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() lowerCamelCase__: Optional[int] ="a cat sitting on a park bench" lowerCamelCase__: Tuple =torch.manual_seed(0) lowerCamelCase__: Any =pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , output_type="np" , ) lowerCamelCase__: Dict =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any]) ->None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_)
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[int]) ->Dict: '''simple docstring''' super().__init__() lowerCamelCase__: int =torchvision.models.resnetaaa(pretrained=UpperCAmelCase_) lowerCamelCase__: Optional[int] =list(model.children())[:-2] lowerCamelCase__: Optional[int] =nn.Sequential(*UpperCAmelCase_) lowerCamelCase__: Dict =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Dict) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.pool(self.model(UpperCAmelCase_)) lowerCamelCase__: str =torch.flatten(UpperCAmelCase_ , start_dim=2) lowerCamelCase__: int =out.transpose(1 , 2).contiguous() return out # BxNx2048 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' lowerCamelCase__: Dict =[json.loads(UpperCAmelCase_) for l in open(UpperCAmelCase_)] lowerCamelCase__: Tuple =os.path.dirname(UpperCAmelCase_) lowerCamelCase__: Any =tokenizer lowerCamelCase__: List[str] =labels lowerCamelCase__: int =len(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =max_seq_length lowerCamelCase__: str =transforms def __len__(self : List[Any]) ->Union[str, Any]: '''simple docstring''' return len(self.data) def __getitem__(self : Tuple , UpperCAmelCase_ : Dict) ->int: '''simple docstring''' lowerCamelCase__: Optional[int] =torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=UpperCAmelCase_)) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase__: Union[str, Any] =sentence[: self.max_seq_length] lowerCamelCase__: str =torch.zeros(self.n_classes) lowerCamelCase__: str =1 lowerCamelCase__: List[Any] =Image.open(os.path.join(self.data_dir , self.data[index]["img"])).convert("RGB") lowerCamelCase__: int =self.transforms(UpperCAmelCase_) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =Counter() for row in self.data: label_freqs.update(row["label"]) return label_freqs def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__: Tuple =[len(row["sentence"] ) for row in batch] lowerCamelCase__ , lowerCamelCase__: Optional[int] =len(__a ), max(__a ) lowerCamelCase__: List[str] =torch.zeros(__a , __a , dtype=torch.long ) lowerCamelCase__: Optional[int] =torch.zeros(__a , __a , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__a , __a ) ): lowerCamelCase__: Optional[int] =input_row["sentence"] lowerCamelCase__: Dict =1 lowerCamelCase__: List[str] =torch.stack([row["image"] for row in batch] ) lowerCamelCase__: Optional[int] =torch.stack([row["label"] for row in batch] ) lowerCamelCase__: List[str] =torch.stack([row["image_start_token"] for row in batch] ) lowerCamelCase__: List[Any] =torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCAmelCase_ ( ) -> int: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__(self : str , UpperCAmelCase_ : int = 65_536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ) ->Tuple: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =sample_size # time if time_embedding_type == "fourier": lowerCamelCase__: Optional[int] =GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_) lowerCamelCase__: int =2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__: str =Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =block_out_channels[0] if use_timestep_embedding: lowerCamelCase__: List[Any] =block_out_channels[0] * 4 lowerCamelCase__: Tuple =TimestepEmbedding( in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , ) lowerCamelCase__: List[str] =nn.ModuleList([]) lowerCamelCase__: List[str] =None lowerCamelCase__: List[str] =nn.ModuleList([]) lowerCamelCase__: str =None # down lowerCamelCase__: Optional[Any] =in_channels for i, down_block_type in enumerate(UpperCAmelCase_): lowerCamelCase__: Optional[Any] =output_channel lowerCamelCase__: List[str] =block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__: Optional[Any] =i == len(UpperCAmelCase_) - 1 lowerCamelCase__: int =get_down_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase_) # mid lowerCamelCase__: Any =get_mid_block( UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , ) # up lowerCamelCase__: Optional[Any] =list(reversed(UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__: Tuple =out_channels else: lowerCamelCase__: Optional[int] =block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_): lowerCamelCase__: int =output_channel lowerCamelCase__: str =( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_) - 1 else final_upsample_channels ) lowerCamelCase__: Union[str, Any] =i == len(UpperCAmelCase_) - 1 lowerCamelCase__: Any =get_up_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase_) lowerCamelCase__: Optional[int] =output_channel # out lowerCamelCase__: Optional[Any] =norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) lowerCamelCase__: Union[str, Any] =get_out_block( out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ) ->Union[UNetaDOutput, Tuple]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =timestep if not torch.is_tensor(UpperCAmelCase_): lowerCamelCase__: Any =torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(UpperCAmelCase_) and len(timesteps.shape) == 0: lowerCamelCase__: Optional[Any] =timesteps[None].to(sample.device) lowerCamelCase__: Union[str, Any] =self.time_proj(UpperCAmelCase_) if self.config.use_timestep_embedding: lowerCamelCase__: Dict =self.time_mlp(UpperCAmelCase_) else: lowerCamelCase__: Optional[Any] =timestep_embed[..., None] lowerCamelCase__: Union[str, Any] =timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) lowerCamelCase__: List[str] =timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down lowerCamelCase__: List[str] =() for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__: Any =downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__: int =self.mid_block(UpperCAmelCase_ , UpperCAmelCase_) # 4. up for i, upsample_block in enumerate(self.up_blocks): lowerCamelCase__: Union[str, Any] =down_block_res_samples[-1:] lowerCamelCase__: Optional[int] =down_block_res_samples[:-1] lowerCamelCase__: List[str] =upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_) # 5. post-process if self.out_block: lowerCamelCase__: List[Any] =self.out_block(UpperCAmelCase_ , UpperCAmelCase_) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_)
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "data2vec-vision" def __init__(self : Optional[Any] , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Optional[int]=3_072 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[str]=1E-1_2 , UpperCAmelCase_ : Optional[Any]=224 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=[3, 5, 7, 11] , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=0.4 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[Any]=255 , **UpperCAmelCase_ : str , ) ->Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: List[Any] =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Optional[int] =num_attention_heads lowerCamelCase__: Dict =intermediate_size lowerCamelCase__: Optional[Any] =hidden_act lowerCamelCase__: int =hidden_dropout_prob lowerCamelCase__: Dict =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =initializer_range lowerCamelCase__: Union[str, Any] =layer_norm_eps lowerCamelCase__: Optional[int] =image_size lowerCamelCase__: Optional[int] =patch_size lowerCamelCase__: str =num_channels lowerCamelCase__: Union[str, Any] =use_mask_token lowerCamelCase__: Optional[Any] =use_absolute_position_embeddings lowerCamelCase__: Optional[int] =use_relative_position_bias lowerCamelCase__: int =use_shared_relative_position_bias lowerCamelCase__: Optional[int] =layer_scale_init_value lowerCamelCase__: List[Any] =drop_path_rate lowerCamelCase__: int =use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase__: Optional[Any] =out_indices lowerCamelCase__: Tuple =pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase__: str =use_auxiliary_head lowerCamelCase__: Optional[int] =auxiliary_loss_weight lowerCamelCase__: Optional[Any] =auxiliary_channels lowerCamelCase__: Union[str, Any] =auxiliary_num_convs lowerCamelCase__: List[str] =auxiliary_concat_input lowerCamelCase__: int =semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE_ (self : int) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def SCREAMING_SNAKE_CASE_ (self : Any) ->float: '''simple docstring''' return 1E-4
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __A = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __A = 12_8022 __A = 12_8028 @require_sentencepiece class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = MaMaaaTokenizer lowercase_ = False lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: List[Any] =["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowerCamelCase__: Optional[Any] =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: int =Path(self.tmpdirname) save_json(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES["spm_file"]) lowerCamelCase__: List[Any] =MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Any) ->str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Any) ->Optional[Any]: '''simple docstring''' return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ="</s>" lowerCamelCase__: int =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.get_tokenizer() lowerCamelCase__: Dict =list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , "</s>") self.assertEqual(vocab_keys[1] , "<unk>") self.assertEqual(vocab_keys[-1] , "<s>") self.assertEqual(len(UpperCAmelCase_) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip("Skip this test while all models are still to be uploaded.") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.get_tokenizer() lowerCamelCase__: Any =tokenizer.tokenize("This is a test") self.assertListEqual(UpperCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [2, 3, 4, 5, 6] , ) lowerCamelCase__: List[Any] =tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(UpperCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"]) lowerCamelCase__: int =tokenizer.convert_tokens_to_string(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , "This is a test") @slow def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] ={"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = "facebook/m2m100_418M" lowercase_ = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] lowercase_ = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off lowercase_ = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: MaMaaaTokenizer =MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr") lowerCamelCase__: List[Any] =1 return cls def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar") , 128_006) self.assertEqual(self.tokenizer.get_lang_id("en") , 128_022) self.assertEqual(self.tokenizer.get_lang_id("ro") , 128_076) self.assertEqual(self.tokenizer.get_lang_id("mr") , 128_063) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.tokenizer.get_vocab() self.assertEqual(len(UpperCAmelCase_) , self.tokenizer.vocab_size) self.assertEqual(vocab["<unk>"] , 3) self.assertIn(self.tokenizer.get_lang_token("en") , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: str ="en" lowerCamelCase__: int =self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids) # fmt: off lowerCamelCase__: Dict =[FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on lowerCamelCase__: int =self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Dict =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: int =tempfile.mkdtemp() lowerCamelCase__: Any =self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCAmelCase_) lowerCamelCase__: Tuple =MaMaaaTokenizer.from_pretrained(UpperCAmelCase_) self.assertDictEqual(new_tok.lang_token_to_id , UpperCAmelCase_) @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="en" lowerCamelCase__: Any ="fr" lowerCamelCase__: Optional[Any] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors="pt") lowerCamelCase__: List[str] =shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: lowerCamelCase__: Any =batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple ="mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr")]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) lowerCamelCase__: List[Any] ="zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh")]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any ="mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr")]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) lowerCamelCase__: Tuple ="zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh")]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar") self.assertEqual( nested_simplify(UpperCAmelCase_) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
from __future__ import annotations def lowerCAmelCase_ ( __a , __a , __a ) -> tuple[float, list[float]]: """simple docstring""" lowerCamelCase__: Any =list(range(len(__a ) ) ) lowerCamelCase__: Optional[Any] =[v / w for v, w in zip(__a , __a )] index.sort(key=lambda __a : ratio[i] , reverse=__a ) lowerCamelCase__: float =0 lowerCamelCase__: list[float] =[0] * len(__a ) for i in index: if weight[i] <= capacity: lowerCamelCase__: Optional[int] =1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase__: Optional[int] =capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : Optional[int]=36 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : int=6 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=1_000 , ) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =parent lowerCamelCase__: Union[str, Any] =batch_size lowerCamelCase__: Dict =num_channels lowerCamelCase__: int =image_size lowerCamelCase__: List[Any] =patch_size lowerCamelCase__: Union[str, Any] =text_seq_length lowerCamelCase__: str =is_training lowerCamelCase__: Dict =use_input_mask lowerCamelCase__: Optional[Any] =use_token_type_ids lowerCamelCase__: List[str] =use_labels lowerCamelCase__: int =vocab_size lowerCamelCase__: Optional[Any] =hidden_size lowerCamelCase__: Tuple =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: Optional[int] =intermediate_size lowerCamelCase__: Union[str, Any] =hidden_act lowerCamelCase__: Union[str, Any] =hidden_dropout_prob lowerCamelCase__: Dict =attention_probs_dropout_prob lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =type_sequence_label_size lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: Optional[int] =coordinate_size lowerCamelCase__: Any =shape_size lowerCamelCase__: Optional[Any] =num_labels lowerCamelCase__: Optional[int] =num_choices lowerCamelCase__: int =scope lowerCamelCase__: str =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase__: str =text_seq_length lowerCamelCase__: List[Any] =(image_size // patch_size) ** 2 + 1 lowerCamelCase__: List[Any] =self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__: Dict =bbox[i, j, 3] lowerCamelCase__: Union[str, Any] =bbox[i, j, 1] lowerCamelCase__: str =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__: Tuple =bbox[i, j, 2] lowerCamelCase__: Any =bbox[i, j, 0] lowerCamelCase__: Optional[Any] =t lowerCamelCase__: str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Union[str, Any] =None if self.use_input_mask: lowerCamelCase__: Optional[int] =random_attention_mask([self.batch_size, self.text_seq_length]) lowerCamelCase__: Any =None if self.use_token_type_ids: lowerCamelCase__: Any =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) lowerCamelCase__: str =None lowerCamelCase__: List[Any] =None if self.use_labels: lowerCamelCase__: Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) lowerCamelCase__: str =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =LayoutLMvaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # text + image lowerCamelCase__: Optional[int] =model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_) lowerCamelCase__: Tuple =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: Any =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: int =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only lowerCamelCase__: str =model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only lowerCamelCase__: int =model(pixel_values=UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =self.num_labels lowerCamelCase__: Optional[Any] =LayoutLMvaForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: int =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.num_labels lowerCamelCase__: List[str] =LayoutLMvaForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Union[str, Any] =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Union[str, Any] =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): List[Any] =config_and_inputs lowerCamelCase__: List[str] ={ "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' return True def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: Union[str, Any] =LayoutLMvaModelTester(self) lowerCamelCase__: Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=False) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =copy.deepcopy(UpperCAmelCase_) if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] ={ k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(UpperCAmelCase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: Optional[int] =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in get_values(UpperCAmelCase_): lowerCamelCase__: int =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) lowerCamelCase__: int =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: lowerCamelCase__: Union[str, Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: lowerCamelCase__: int =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) return inputs_dict def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__: Union[str, Any] =type self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: int =LayoutLMvaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" lowerCamelCase__: str =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base").to(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.default_image_processor lowerCamelCase__: List[Any] =prepare_img() lowerCamelCase__: Union[str, Any] =image_processor(images=UpperCAmelCase_ , return_tensors="pt").pixel_values.to(UpperCAmelCase_) lowerCamelCase__: Any =torch.tensor([[1, 2]]) lowerCamelCase__: str =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass lowerCamelCase__: Tuple =model( input_ids=input_ids.to(UpperCAmelCase_) , bbox=bbox.to(UpperCAmelCase_) , pixel_values=pixel_values.to(UpperCAmelCase_) , ) # verify the logits lowerCamelCase__: str =torch.Size((1, 199, 768)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) lowerCamelCase__: Dict =torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1E-4))
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any) ->str: '''simple docstring''' lowerCamelCase__: Tuple =dataset lowerCamelCase__: List[str] =process lowerCamelCase__: Any =params def __len__(self : Optional[int]) ->Any: '''simple docstring''' return len(self.dataset) def __getitem__(self : Any , UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.dataset[i] lowerCamelCase__: int =self.process(UpperCAmelCase_ , **self.params) return processed class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]=None) ->Dict: '''simple docstring''' lowerCamelCase__: int =loader lowerCamelCase__: int =infer lowerCamelCase__: List[str] =params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowerCamelCase__: List[Any] =None lowerCamelCase__: Tuple =loader_batch_size # Internal bookkeeping lowerCamelCase__: Optional[int] =None lowerCamelCase__: List[Any] =None def __len__(self : Dict) ->Any: '''simple docstring''' return len(self.loader) def __iter__(self : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =iter(self.loader) return self def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice lowerCamelCase__: Any =self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowerCamelCase__: Optional[int] ={} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Convert ModelOutput to tuple first lowerCamelCase__: int =element.to_tuple() if isinstance(element[0] , torch.Tensor): lowerCamelCase__: Dict =tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): lowerCamelCase__: Union[str, Any] =tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): lowerCamelCase__: Any =tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): lowerCamelCase__: Union[str, Any] =tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around lowerCamelCase__: List[str] =None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCamelCase__: Optional[int] =element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCamelCase__: Dict =np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. lowerCamelCase__: List[str] =element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowerCamelCase__: Optional[int] =self._loader_batch_data.__class__(UpperCAmelCase_) self._loader_batch_index += 1 return result def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowerCamelCase__: int =next(self.iterator) lowerCamelCase__: List[str] =self.infer(UpperCAmelCase_ , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase_ , torch.Tensor): lowerCamelCase__: List[Any] =processed else: lowerCamelCase__: Optional[int] =list(processed.keys())[0] lowerCamelCase__: Dict =processed[key] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Optional[int] =len(UpperCAmelCase_) else: lowerCamelCase__: str =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCamelCase__: str =observed_batch_size # Setting internal index to unwrap the batch lowerCamelCase__: List[Any] =processed lowerCamelCase__: List[Any] =0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=None) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __iter__(self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =iter(self.loader) lowerCamelCase__: int =None return self def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' if self.subiterator is None: lowerCamelCase__: Dict =self.infer(next(self.iterator) , **self.params) try: # Try to return next item lowerCamelCase__: Any =next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowerCamelCase__: Optional[int] =self.infer(next(self.iterator) , **self.params) lowerCamelCase__: int =next(self.subiterator) return processed class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __iter__(self : Dict) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =iter(self.loader) return self def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =False lowerCamelCase__: str =[] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowerCamelCase__: List[str] =self.loader_batch_item() lowerCamelCase__: Union[str, Any] =item.pop("is_last") accumulator.append(UpperCAmelCase_) if is_last: return accumulator while not is_last: lowerCamelCase__: Optional[Any] =self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase_ , torch.Tensor): lowerCamelCase__: Optional[int] =processed else: lowerCamelCase__: List[str] =list(processed.keys())[0] lowerCamelCase__: Union[str, Any] =processed[key] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) else: lowerCamelCase__: Any =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCamelCase__: int =observed_batch_size lowerCamelCase__: Union[str, Any] =processed lowerCamelCase__: Dict =0 while self._loader_batch_index < self.loader_batch_size: lowerCamelCase__: Dict =self.loader_batch_item() lowerCamelCase__: Tuple =item.pop("is_last") accumulator.append(UpperCAmelCase_) if is_last: return accumulator else: lowerCamelCase__: int =processed lowerCamelCase__: int =item.pop("is_last") accumulator.append(UpperCAmelCase_) return accumulator class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =dataset lowerCamelCase__: int =key def __len__(self : List[Any]) ->List[str]: '''simple docstring''' return len(self.dataset) def __getitem__(self : Dict , UpperCAmelCase_ : str) ->Union[str, Any]: '''simple docstring''' return self.dataset[i][self.key] class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str , UpperCAmelCase_ : str) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] =dataset lowerCamelCase__: Union[str, Any] =keya lowerCamelCase__: str =keya def __len__(self : List[str]) ->int: '''simple docstring''' return len(self.dataset) def __getitem__(self : Optional[Any] , UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
from __future__ import annotations def lowerCAmelCase_ ( __a , __a , __a , __a ) -> list: """simple docstring""" lowerCamelCase__: Any =[] lowerCamelCase__ , lowerCamelCase__: Any =input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCamelCase__: str =result + left + right return input_list def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" if len(__a ) <= 1: return input_list lowerCamelCase__: Any =list(__a ) # iteration for two-way merging lowerCamelCase__: str =2 while p <= len(__a ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__a ) , __a ): lowerCamelCase__: Dict =i lowerCamelCase__: List[str] =i + p - 1 lowerCamelCase__: int =(low + high + 1) // 2 lowerCamelCase__: Optional[int] =merge(__a , __a , __a , __a ) # final merge of last two parts if p * 2 >= len(__a ): lowerCamelCase__: List[Any] =i lowerCamelCase__: Optional[int] =merge(__a , 0 , __a , len(__a ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() if user_input == "": __A = [] else: __A = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: lowerCamelCase__: Optional[int] =ksize + 1 lowerCamelCase__: Tuple =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__a ): for x in range(__a ): # distance from center lowerCamelCase__: Optional[int] =x - ksize // 2 lowerCamelCase__: str =y - ksize // 2 # degree to radiant lowerCamelCase__: str =theta / 180 * np.pi lowerCamelCase__: str =np.cos(_theta ) lowerCamelCase__: List[Any] =np.sin(_theta ) # get kernel x lowerCamelCase__: int =cos_theta * px + sin_theta * py # get kernel y lowerCamelCase__: Optional[int] =-sin_theta * px + cos_theta * py # fill kernel lowerCamelCase__: Tuple =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __A = imread("../image_data/lena.jpg") # turn image in gray scale value __A = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __A = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __A = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __A = out / out.max() * 255 __A = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
import datasets __A = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __A = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __A = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), }) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]) ->Union[str, Any]: '''simple docstring''' return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_)}
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1