code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def a__ ( snake_case ): """simple docstring""" return np.dot(__lowerCamelCase , __lowerCamelCase ) class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , *, _A : float = np.inf , _A : str = "linear" , _A : float = 0.0 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = regularization __SCREAMING_SNAKE_CASE : List[str] = gamma if kernel == "linear": __SCREAMING_SNAKE_CASE : Any = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __SCREAMING_SNAKE_CASE : Optional[int] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __SCREAMING_SNAKE_CASE : int = F'''Unknown kernel: {kernel}''' raise ValueError(_snake_case ) def UpperCAmelCase__ ( self : str , _A : ndarray , _A : ndarray ): """simple docstring""" return np.dot(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Dict , _A : ndarray , _A : ndarray ): """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def UpperCAmelCase__ ( self : Optional[Any] , _A : list[ndarray] , _A : ndarray ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = observations __SCREAMING_SNAKE_CASE : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (__SCREAMING_SNAKE_CASE ) : Optional[int] = np.shape(_snake_case ) def to_minimize(_A : ndarray ) -> float: __SCREAMING_SNAKE_CASE : List[Any] = 0 (__SCREAMING_SNAKE_CASE ) : Dict = np.shape(_snake_case ) for i in range(_snake_case ): for j in range(_snake_case ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = LinearConstraint(_snake_case , 0 , 0 ) __SCREAMING_SNAKE_CASE : Any = Bounds(0 , self.regularization ) __SCREAMING_SNAKE_CASE : Optional[int] = minimize( _snake_case , np.ones(_snake_case ) , bounds=_snake_case , constraints=[ly_contraint] ).x __SCREAMING_SNAKE_CASE : Union[str, Any] = l_star # calculating mean offset of separation plane to points __SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(_snake_case ): for j in range(_snake_case ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = s / n def UpperCAmelCase__ ( self : Optional[Any] , _A : ndarray ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _snake_case ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
303
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
0
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class A_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) lowerCamelCase__ : Dict =img lowerCamelCase__ : List[Any] =img.shape[1] lowerCamelCase__ : Optional[Any] =img.shape[0] lowerCamelCase__ : List[Any] =dst_width lowerCamelCase__ : Any =dst_height lowerCamelCase__ : Union[str, Any] =self.src_w / self.dst_w lowerCamelCase__ : str =self.src_h / self.dst_h lowerCamelCase__ : Any =( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): lowerCamelCase__ : Optional[int] =self.img[self.get_y(_snake_case )][self.get_x(_snake_case )] def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :int ): """simple docstring""" return int(self.ratio_x * x ) def UpperCAmelCase__ ( self :Optional[int] , lowerCamelCase_ :int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowerCAmelCase , lowerCAmelCase = 8_00, 6_00 lowerCAmelCase = imread("""image_data/lena.jpg""", 1) lowerCAmelCase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
126
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase ( __lowerCamelCase : int ): # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase : Tuple , __lowerCamelCase : int ) -> bool: snake_case : Union[str, Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple = 0.0 , __lowerCamelCase : Dict = 1.0 , ): return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Any = 0.0 , __lowerCamelCase : List[str] = 1.0 ): def identity_function(__lowerCamelCase : Optional[Any] ) -> float: return x snake_case : List[Any] = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : Dict = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def UpperCamelCase ( __lowerCamelCase : List[str] ): def function_to_integrate(__lowerCamelCase : List[Any] ) -> float: return sqrt(4.0 - x * x ) snake_case : int = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
59
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = {'vocab_file': 'sentencepiece.bpe.model'} _A = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } _A = { 'facebook/xglm-564M': 2048, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = ["input_ids", "attention_mask"] def __init__( self , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_ = None , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __UpperCamelCase =7 __UpperCamelCase =[f'<madeupword{i}>' for i in range(self.num_madeup_words )] __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __UpperCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) __UpperCamelCase =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCamelCase =1 # Mimic fairseq token-to-id alignment for the first 4 token __UpperCamelCase ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __UpperCamelCase =len(self.sp_model ) __UpperCamelCase ={f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) __UpperCamelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None __UpperCamelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , A_ ) -> Any: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a __UpperCamelCase =[self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _a ( self ) -> Tuple: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _a ( self ) -> Optional[Any]: __UpperCamelCase ={self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(_snake_case , out_type=_snake_case ) def _a ( self , A_ ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase =self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a ( self , A_ ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self , A_ ) -> Union[str, Any]: __UpperCamelCase =''''''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def _a ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(_snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase =os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
62
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowercase__ : int = None lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowercase__ : Tuple = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowercase__ : Any = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } lowercase__ : str = """▁""" class UpperCamelCase__ ( A_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = AlbertTokenizer def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Optional[int]="[CLS]" , SCREAMING_SNAKE_CASE_ : List[Any]="[SEP]" , SCREAMING_SNAKE_CASE_ : Tuple="<unk>" , SCREAMING_SNAKE_CASE_ : int="[SEP]" , SCREAMING_SNAKE_CASE_ : List[Any]="<pad>" , SCREAMING_SNAKE_CASE_ : Optional[int]="[CLS]" , SCREAMING_SNAKE_CASE_ : int="[MASK]" , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ): lowerCAmelCase_ : List[str] = ( AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case , normalized=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token ) super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , **_snake_case , ) lowerCAmelCase_ : Optional[int] = do_lower_case lowerCAmelCase_ : str = remove_space lowerCAmelCase_ : Dict = keep_accents lowerCAmelCase_ : List[str] = vocab_file lowerCAmelCase_ : str = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): lowerCAmelCase_ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ : List[Any] = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) return (out_vocab_file,)
224
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
0
'''simple docstring''' from __future__ import annotations import pandas as pd def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Tuple ) -> list[int]: __A : Union[str, Any] = [0] * no_of_processes __A : Dict = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__lowerCamelCase ): __A : int = burst_time[i] __A : Dict = 0 __A : Optional[int] = 0 __A : Tuple = 9_99_99_99_99 __A : List[str] = 0 __A : List[str] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__lowerCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __A : Tuple = remaining_time[j] __A : List[Any] = j __A : Optional[int] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __A : int = remaining_time[short] if minm == 0: __A : List[Any] = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 __A : List[Any] = False # Find finish time of current process __A : str = increment_time + 1 # Calculate waiting time __A : Optional[Any] = finish_time - arrival_time[short] __A : Dict = finar - burst_time[short] if waiting_time[short] < 0: __A : List[str] = 0 # Increment time increment_time += 1 return waiting_time def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] ) -> list[int]: __A : Optional[int] = [0] * no_of_processes for i in range(__lowerCamelCase ): __A : int = burst_time[i] + waiting_time[i] return turn_around_time def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] ) -> None: __A : Union[str, Any] = 0 __A : Tuple = 0 for i in range(__lowerCamelCase ): __A : Optional[int] = total_waiting_time + waiting_time[i] __A : Tuple = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') lowercase__ : Any = int(input()) lowercase__ : Union[str, Any] = [0] * no_of_processes lowercase__ : Any = [0] * no_of_processes lowercase__ : Union[str, Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) lowercase__ , lowercase__ : Union[str, Any] = map(int, input().split()) lowercase__ : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase__ : List[str] = burst_time lowercase__ : Optional[Any] = no_of_processes lowercase__ : int = waiting_time lowercase__ : int = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowercase__ : Union[str, Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
190
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowercase ( A_ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = PriorTransformer __lowerCAmelCase = "hidden_states" @property def _lowerCamelCase ( self ): __a : Dict = 4 __a : List[Any] = 8 __a : Any = 7 __a : int = floats_tensor((batch_size, embedding_dim) ).to(_snake_case ) __a : Any = floats_tensor((batch_size, embedding_dim) ).to(_snake_case ) __a : int = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowerCamelCase ( self , _UpperCAmelCase=0 ): torch.manual_seed(_snake_case ) __a : Optional[Any] = 4 __a : Optional[int] = 8 __a : Any = 7 __a : str = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) __a : List[Any] = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) __a : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _lowerCamelCase ( self ): return (4, 8) @property def _lowerCamelCase ( self ): return (4, 8) def _lowerCamelCase ( self ): __a : Tuple = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } __a : Any = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self ): __a : Tuple = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a : Optional[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _lowerCamelCase ( self ): __a : Any = self.prepare_init_args_and_inputs_for_common() __a : List[str] = self.model_class(**_snake_case ) __a : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : int = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , _snake_case ) def _lowerCamelCase ( self ): __a : Any = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) __a : Dict = model.to(_snake_case ) if hasattr(_snake_case , '''set_default_attn_processor''' ): model.set_default_attn_processor() __a : Dict = self.get_dummy_seed_input() with torch.no_grad(): __a : Optional[int] = model(**_snake_case )[0] __a : str = output[0, :5].flatten().cpu() print(_snake_case ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __a : Optional[Any] = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1e-2 ) ) @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self , _UpperCAmelCase=1 , _UpperCAmelCase=768 , _UpperCAmelCase=77 , _UpperCAmelCase=0 ): torch.manual_seed(_snake_case ) __a : Tuple = batch_size __a : List[str] = embedding_dim __a : Tuple = num_embeddings __a : int = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) __a : str = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) __a : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(_snake_case ) __a : List[str] = self.get_dummy_seed_input(seed=_snake_case ) with torch.no_grad(): __a : List[str] = model(**_snake_case )[0] assert list(sample.shape ) == [1, 768] __a : List[str] = sample[0, :8].flatten().cpu() print(_snake_case ) __a : Optional[Any] = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1e-3 )
160
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : Tuple ): super().tearDown() gc.collect() def __magic_name__ ( self : List[str] ): UpperCAmelCase : Dict = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''', from_pt=_snake_case, dtype=jnp.bfloataa ) UpperCAmelCase : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=_snake_case, from_pt=_snake_case, dtype=jnp.bfloataa ) UpperCAmelCase : Union[str, Any] = controlnet_params UpperCAmelCase : Optional[Any] = '''bird''' UpperCAmelCase : str = jax.device_count() UpperCAmelCase : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) UpperCAmelCase : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCAmelCase : str = jax.random.PRNGKey(0 ) UpperCAmelCase : Dict = jax.random.split(_snake_case, jax.device_count() ) UpperCAmelCase : Any = replicate(_snake_case ) UpperCAmelCase : List[str] = shard(_snake_case ) UpperCAmelCase : Dict = shard(_snake_case ) UpperCAmelCase : Optional[Any] = pipe( prompt_ids=_snake_case, image=_snake_case, params=_snake_case, prng_seed=_snake_case, num_inference_steps=5_0, jit=_snake_case, ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) UpperCAmelCase : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase : Optional[int] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCAmelCase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase : Any = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __magic_name__ ( self : List[Any] ): UpperCAmelCase : int = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''', from_pt=_snake_case, dtype=jnp.bfloataa ) UpperCAmelCase : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=_snake_case, from_pt=_snake_case, dtype=jnp.bfloataa ) UpperCAmelCase : Optional[Any] = controlnet_params UpperCAmelCase : Optional[Any] = '''Chef in the kitchen''' UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[str] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) UpperCAmelCase : Tuple = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[int] = jax.random.split(_snake_case, jax.device_count() ) UpperCAmelCase : Any = replicate(_snake_case ) UpperCAmelCase : Optional[int] = shard(_snake_case ) UpperCAmelCase : List[str] = shard(_snake_case ) UpperCAmelCase : str = pipe( prompt_ids=_snake_case, image=_snake_case, params=_snake_case, prng_seed=_snake_case, num_inference_steps=5_0, jit=_snake_case, ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) UpperCAmelCase : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase : Dict = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCAmelCase : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase : Tuple = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
336
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } __A = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } __A = "</w>" __A = "@@ " def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase: Any = set() __lowerCAmelCase: Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase: Any = char return pairs # Speech2Text2 has no max input length __A = {"facebook/s2t-wav2vec2-large-en-de": 1024} class snake_case ( A_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str="<s>" , UpperCamelCase__ : List[Any]="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : str=False , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : Tuple , )-> int: '''simple docstring''' super().__init__( unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , do_lower_case=_snake_case , **_snake_case , ) __lowerCAmelCase: Optional[int] = do_lower_case with open(_snake_case , encoding="utf-8") as vocab_handle: __lowerCAmelCase: List[str] = json.load(_snake_case) __lowerCAmelCase: Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"No merges files provided. {self.__class__.__name__} can only be used for decoding.") __lowerCAmelCase: Union[str, Any] = None __lowerCAmelCase: int = None else: with open(_snake_case , encoding="utf-8") as merges_handle: __lowerCAmelCase: Tuple = merges_handle.read().split("\n")[:-1] __lowerCAmelCase: Optional[int] = [tuple(merge.split()[:2]) for merge in merges] __lowerCAmelCase: Tuple = dict(zip(_snake_case , range(len(_snake_case)))) __lowerCAmelCase: Any = {} @property def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' return len(self.decoder) def lowercase_ ( self : Dict)-> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __lowerCAmelCase: List[str] = get_pairs(_snake_case) if not pairs: return token while True: __lowerCAmelCase: List[str] = min(_snake_case , key=lambda UpperCamelCase__: self.bpe_ranks.get(_snake_case , float("inf"))) if bigram not in self.bpe_ranks: break __lowerCAmelCase: Tuple = bigram __lowerCAmelCase: int = [] __lowerCAmelCase: int = 0 while i < len(_snake_case): try: __lowerCAmelCase: Any = word.index(_snake_case , _snake_case) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __lowerCAmelCase: Tuple = j if word[i] == first and i < len(_snake_case) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __lowerCAmelCase: List[Any] = tuple(_snake_case) __lowerCAmelCase: Dict = new_word if len(_snake_case) == 1: break else: __lowerCAmelCase: List[Any] = get_pairs(_snake_case) __lowerCAmelCase: Optional[Any] = ''' '''.join(_snake_case) if word == "\n " + BPE_TOKEN_MERGES: __lowerCAmelCase: Union[str, Any] = '''\n''' + BPE_TOKEN_MERGES if word.endswith(_snake_case): __lowerCAmelCase: Optional[int] = word.replace(_snake_case , "") __lowerCAmelCase: Union[str, Any] = word.replace(" " , _snake_case) __lowerCAmelCase: Optional[Any] = word return word def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Dict)-> Optional[int]: '''simple docstring''' if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: __lowerCAmelCase: Tuple = text.lower() __lowerCAmelCase: Optional[Any] = text.split() __lowerCAmelCase: Dict = [] for token in text: if token: split_tokens.extend(list(self.bpe(_snake_case).split(" "))) return split_tokens def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : str)-> int: '''simple docstring''' return self.encoder.get(_snake_case , self.encoder.get(self.unk_token)) def lowercase_ ( self : Dict , UpperCamelCase__ : int)-> str: '''simple docstring''' __lowerCAmelCase: List[Any] = self.decoder.get(_snake_case , self.unk_token) return result def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : List[str])-> str: '''simple docstring''' __lowerCAmelCase: Optional[int] = ''' '''.join(_snake_case) # make sure @@ tokens are concatenated __lowerCAmelCase: Tuple = ''''''.join(string.split(_snake_case)) return string def lowercase_ ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __lowerCAmelCase: str = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) __lowerCAmelCase: int = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(_snake_case , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case) + "\n") __lowerCAmelCase: List[str] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_snake_case , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") __lowerCAmelCase: Tuple = token_index writer.write(" ".join(_snake_case) + "\n") index += 1 return (vocab_file, merges_file)
217
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
0
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __lowercase : int = logging.get_logger(__name__) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None ): return field(default_factory=lambda: default , metadata=__lowerCamelCase ) @dataclass class __UpperCamelCase : A_ = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) A_ = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) A_ = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) A_ = field( default=A_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) A_ = field( default=A_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) A_ = field( default=A_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) A_ = field(default=A_ , metadata={"help": "Use FP16 to accelerate inference."} ) A_ = field(default=A_ , metadata={"help": "Benchmark training of model"} ) A_ = field(default=A_ , metadata={"help": "Verbose memory tracing"} ) A_ = field( default=A_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) A_ = field( default=A_ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) A_ = field(default=A_ , metadata={"help": "Trace memory line by line"} ) A_ = field(default=A_ , metadata={"help": "Save result to a CSV file"} ) A_ = field(default=A_ , metadata={"help": "Save all print statements in a log file"} ) A_ = field(default=A_ , metadata={"help": "Whether to print environment information"} ) A_ = field( default=A_ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) A_ = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv."} , ) A_ = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) A_ = field( default=f"""train_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) A_ = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) A_ = field( default=f"""env_info_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving environment information."} , ) A_ = field( default=f"""log_{round(time() )}.csv""" , metadata={"help": "Log filename used if print statements are saved in log."} , ) A_ = field(default=3 , metadata={"help": "Times an experiment will be run."} ) A_ = field( default=A_ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , _snake_case , ) def __UpperCAmelCase ( self ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __UpperCAmelCase ( self ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def __UpperCAmelCase ( self ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
27
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class UpperCAmelCase : def __init__( self : Dict , __snake_case : Dict , __snake_case : str=None , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : Dict="resnet50" , __snake_case : Dict=3 , __snake_case : Union[str, Any]=32 , __snake_case : int=3 , __snake_case : List[Any]=True , __snake_case : Optional[int]=True , ) -> Any: _lowerCAmelCase = parent _lowerCAmelCase = out_indices if out_indices is not None else [4] _lowerCAmelCase = stage_names _lowerCAmelCase = out_features _lowerCAmelCase = backbone _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = is_training def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = self.get_config() return config, pixel_values def lowercase__ ( self : List[str] ) -> str: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self : str , __snake_case : Any , __snake_case : List[str] ) -> Any: _lowerCAmelCase = TimmBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(_snake_case ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class UpperCAmelCase ( A_ , A_ , A_ , unittest.TestCase ): _lowercase: Optional[Any] = (TimmBackbone,) if is_torch_available() else () _lowercase: List[Any] = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _lowercase: int = False _lowercase: List[str] = False _lowercase: Tuple = False _lowercase: int = False def lowercase__ ( self : Any ) -> int: _lowerCAmelCase = TimmBackboneModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: _lowerCAmelCase = '''resnet18''' _lowerCAmelCase = '''microsoft/resnet-18''' _lowerCAmelCase = AutoBackbone.from_pretrained(_snake_case , use_timm_backbone=_snake_case ) _lowerCAmelCase = AutoBackbone.from_pretrained(_snake_case ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _lowerCAmelCase = AutoBackbone.from_pretrained(_snake_case , use_timm_backbone=_snake_case , out_indices=[1, 2, 3] ) _lowerCAmelCase = AutoBackbone.from_pretrained(_snake_case , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn\'t support feed forward chunking""" ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip("""TimmBackbone doesn\'t have num_hidden_layers attribute""" ) def lowercase__ ( self : Union[str, Any] ) -> Dict: pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowercase__ ( self : str ) -> List[Any]: pass @unittest.skip("""TimmBackbone models doesn\'t have inputs_embeds""" ) def lowercase__ ( self : int ) -> Any: pass @unittest.skip("""TimmBackbone models doesn\'t have inputs_embeds""" ) def lowercase__ ( self : str ) -> List[Any]: pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowercase__ ( self : str ) -> int: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase__ ( self : Tuple ) -> Tuple: pass @unittest.skip("""model weights aren\'t tied in TimmBackbone.""" ) def lowercase__ ( self : Any ) -> int: pass @unittest.skip("""model weights aren\'t tied in TimmBackbone.""" ) def lowercase__ ( self : Optional[Any] ) -> Any: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase__ ( self : Optional[Any] ) -> Tuple: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase__ ( self : Union[str, Any] ) -> Any: pass @unittest.skip("""TimmBackbone doesn\'t have hidden size info in its configuration.""" ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip("""TimmBackbone doesn\'t support output_attentions.""" ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowercase__ ( self : int ) -> Optional[int]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : List[Any] ) -> int: pass def lowercase__ ( self : List[str] ) -> Optional[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def lowercase__ ( self : Any ) -> Optional[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality _lowerCAmelCase = self.all_model_classes[0] _lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) _lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case ) _lowerCAmelCase = model(**_snake_case ) _lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models _lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_snake_case ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(**_snake_case ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowerCAmelCase = copy.deepcopy(_snake_case ) _lowerCAmelCase = None _lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(**_snake_case ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _lowerCAmelCase = copy.deepcopy(_snake_case ) _lowerCAmelCase = False _lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(**_snake_case )
70
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __UpperCamelCase ( A_ ): """simple docstring""" lowerCAmelCase_ = "blip_2_vision_model" def __init__( self : Optional[Any] , _A : Union[str, Any]=1408 , _A : List[str]=6144 , _A : Optional[Any]=39 , _A : Dict=16 , _A : int=224 , _A : str=14 , _A : Tuple="gelu" , _A : Optional[int]=0.0_00_01 , _A : Any=0.0 , _A : List[str]=1e-10 , _A : Optional[int]=True , **_A : List[str] , ): """simple docstring""" super().__init__(**_snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : str = patch_size __SCREAMING_SNAKE_CASE : List[str] = image_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout __SCREAMING_SNAKE_CASE : Any = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : str = qkv_bias @classmethod def UpperCAmelCase__ ( cls : List[str] , _A : Union[str, os.PathLike] , **_A : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) __SCREAMING_SNAKE_CASE : Dict = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __SCREAMING_SNAKE_CASE : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case , **_snake_case ) class __UpperCamelCase ( A_ ): """simple docstring""" lowerCAmelCase_ = "blip_2_qformer" def __init__( self : List[str] , _A : int=3_0522 , _A : str=768 , _A : List[str]=12 , _A : List[str]=12 , _A : Union[str, Any]=3072 , _A : Optional[int]="gelu" , _A : List[Any]=0.1 , _A : int=0.1 , _A : Optional[Any]=512 , _A : Optional[int]=0.02 , _A : List[Any]=1e-12 , _A : Union[str, Any]=0 , _A : Tuple="absolute" , _A : Dict=2 , _A : Union[str, Any]=1408 , **_A : int , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : str = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : str = position_embedding_type __SCREAMING_SNAKE_CASE : List[str] = cross_attention_frequency __SCREAMING_SNAKE_CASE : str = encoder_hidden_size @classmethod def UpperCAmelCase__ ( cls : Tuple , _A : Union[str, os.PathLike] , **_A : Union[str, Any] ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) __SCREAMING_SNAKE_CASE : Dict = cls.get_config_dict(_snake_case , **_snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __SCREAMING_SNAKE_CASE : Tuple = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case , **_snake_case ) class __UpperCamelCase ( A_ ): """simple docstring""" lowerCAmelCase_ = "blip-2" lowerCAmelCase_ = True def __init__( self : List[Any] , _A : str=None , _A : Tuple=None , _A : Optional[Any]=None , _A : List[Any]=32 , **_A : List[Any] ): """simple docstring""" super().__init__(**_snake_case ) if vision_config is None: __SCREAMING_SNAKE_CASE : Optional[Any] = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __SCREAMING_SNAKE_CASE : Optional[Any] = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __SCREAMING_SNAKE_CASE : Optional[Any] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __SCREAMING_SNAKE_CASE : List[str] = BlipaVisionConfig(**_snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BlipaQFormerConfig(**_snake_case ) __SCREAMING_SNAKE_CASE : Tuple = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING[text_model_type](**_snake_case ) __SCREAMING_SNAKE_CASE : int = self.text_config.tie_word_embeddings __SCREAMING_SNAKE_CASE : Any = self.text_config.is_encoder_decoder __SCREAMING_SNAKE_CASE : Union[str, Any] = num_query_tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_config.hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __SCREAMING_SNAKE_CASE : List[str] = 1.0 __SCREAMING_SNAKE_CASE : Any = 0.02 @classmethod def UpperCAmelCase__ ( cls : Tuple , _A : BlipaVisionConfig , _A : BlipaQFormerConfig , _A : PretrainedConfig , **_A : int , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_snake_case , ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : int = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE : Dict = self.qformer_config.to_dict() __SCREAMING_SNAKE_CASE : List[str] = self.text_config.to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = self.__class__.model_type return output
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] lowerCAmelCase = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names} lowerCAmelCase = {f"""funnel-transformer/{name}""": {"""do_lower_case""": True} for name in _model_names} class A_ ( A_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = FunnelTokenizer SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = 2 def __init__( self :Optional[int] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Optional[int]="<unk>" , lowerCamelCase_ :Dict="<sep>" , lowerCamelCase_ :Any="<pad>" , lowerCamelCase_ :str="<cls>" , lowerCamelCase_ :Optional[Any]="<mask>" , lowerCamelCase_ :int="<s>" , lowerCamelCase_ :Dict="</s>" , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=None , lowerCamelCase_ :str="##" , **lowerCamelCase_ :Optional[Any] , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , clean_text=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , wordpieces_prefix=_snake_case , **_snake_case , ) lowerCamelCase__ : Union[str, Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCamelCase__ : List[str] =getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCamelCase__ : List[str] =do_lower_case lowerCamelCase__ : Any =strip_accents lowerCamelCase__ : Union[str, Any] =tokenize_chinese_chars lowerCamelCase__ : Union[str, Any] =normalizer_class(**_snake_case ) lowerCamelCase__ : List[str] =do_lower_case def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=None ): """simple docstring""" lowerCamelCase__ : Any =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ): """simple docstring""" lowerCamelCase__ : Optional[int] =[self.sep_token_id] lowerCamelCase__ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ): """simple docstring""" lowerCamelCase__ : str =self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
126
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["torch", "torchsde"] def __init__(self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch", "torchsde"] ) @classmethod def _SCREAMING_SNAKE_CASE (cls : List[str] , *snake_case__ : int , **snake_case__ : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(cls , ["torch", "torchsde"] ) @classmethod def _SCREAMING_SNAKE_CASE (cls : List[Any] , *snake_case__ : List[Any] , **snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch", "torchsde"] )
59
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _A = ['bert-base-uncased', 'bert-base-cased'] _A = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class UpperCAmelCase__ ( tf.keras.Model ): """simple docstring""" def __init__( self , A_ ) -> List[str]: super().__init__() __UpperCamelCase =tokenizer __UpperCamelCase =AutoConfig.from_pretrained(_snake_case ) __UpperCamelCase =TFAutoModel.from_config(_snake_case ) def _a ( self , A_ ) -> Optional[Any]: __UpperCamelCase =self.tokenizer(_snake_case ) __UpperCamelCase =self.bert(**_snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> List[str]: super().setUp() __UpperCamelCase =[ BertTokenizer.from_pretrained(_snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __UpperCamelCase =[TFBertTokenizer.from_pretrained(_snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_snake_case , use_fast_bert_tokenizer=_snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCamelCase =[ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __UpperCamelCase =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _a ( self ) -> Dict: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCamelCase =tokenizer(_snake_case , return_tensors='tf' , padding='longest' ) __UpperCamelCase =tf_tokenizer(_snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _a ( self ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase =tf_tokenizer(self.paired_sentences ) __UpperCamelCase =tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _a ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase =tf.function(_snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCamelCase =tf.constant(_snake_case ) __UpperCamelCase =compiled_tokenizer(_snake_case ) __UpperCamelCase =tf_tokenizer(_snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _a ( self ) -> Any: for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase =ModelToSave(tokenizer=_snake_case ) __UpperCamelCase =tf.convert_to_tensor(self.test_sentences ) __UpperCamelCase =model(_snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCamelCase =Path(_snake_case ) / '''saved.model''' model.save(_snake_case ) __UpperCamelCase =tf.keras.models.load_model(_snake_case ) __UpperCamelCase =loaded_model(_snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
62
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowercase__ : Union[str, Any] = logging.get_logger(__name__) # General docstring lowercase__ : Any = """PoolFormerConfig""" # Base docstring lowercase__ : Optional[Any] = """sail/poolformer_s12""" lowercase__ : int = [1, 5_1_2, 7, 7] # Image classification docstring lowercase__ : Dict = """sail/poolformer_s12""" lowercase__ : str = """tabby, tabby cat""" lowercase__ : List[str] = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] = 0.0 , lowerCAmelCase__ : Tuple = False ) -> Optional[Any]: """simple docstring""" if drop_prob == 0.0 or not training: return input lowerCAmelCase_ : int = 1 - drop_prob lowerCAmelCase_ : List[str] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowerCAmelCase_ : Union[str, Any] = keep_prob + torch.rand(__lowerCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowerCAmelCase_ : int = input.div(__lowerCamelCase ) * random_tensor return output class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : Optional[float] = None ): super().__init__() lowerCAmelCase_ : Dict = drop_prob def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : torch.Tensor ): return drop_path(_snake_case , self.drop_prob , self.training ) def SCREAMING_SNAKE_CASE__ ( self : str ): return "p={}".format(self.drop_prob ) class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=None ): super().__init__() lowerCAmelCase_ : List[str] = patch_size if isinstance(_snake_case , collections.abc.Iterable ) else (patch_size, patch_size) lowerCAmelCase_ : str = stride if isinstance(_snake_case , collections.abc.Iterable ) else (stride, stride) lowerCAmelCase_ : Union[str, Any] = padding if isinstance(_snake_case , collections.abc.Iterable ) else (padding, padding) lowerCAmelCase_ : int = nn.Convad(_snake_case , _snake_case , kernel_size=_snake_case , stride=_snake_case , padding=_snake_case ) lowerCAmelCase_ : int = norm_layer(_snake_case ) if norm_layer else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : List[Any] = self.projection(_snake_case ) lowerCAmelCase_ : Tuple = self.norm(_snake_case ) return embeddings class UpperCamelCase__ ( nn.GroupNorm ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Tuple ): super().__init__(1 , _snake_case , **_snake_case ) class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): super().__init__() lowerCAmelCase_ : Union[str, Any] = nn.AvgPoolad(_snake_case , stride=1 , padding=pool_size // 2 , count_include_pad=_snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ): return self.pool(_snake_case ) - hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ): super().__init__() lowerCAmelCase_ : Dict = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase_ : Any = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase_ : int = PoolFormerDropPath(_snake_case ) if isinstance(config.hidden_act , _snake_case ): lowerCAmelCase_ : List[Any] = ACTaFN[config.hidden_act] else: lowerCAmelCase_ : Dict = config.hidden_act def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase_ : Optional[int] = self.conva(_snake_case ) lowerCAmelCase_ : Any = self.act_fn(_snake_case ) lowerCAmelCase_ : Union[str, Any] = self.drop(_snake_case ) lowerCAmelCase_ : int = self.conva(_snake_case ) lowerCAmelCase_ : str = self.drop(_snake_case ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): super().__init__() lowerCAmelCase_ : List[Any] = PoolFormerPooling(_snake_case ) lowerCAmelCase_ : int = PoolFormerOutput(_snake_case , _snake_case , _snake_case , _snake_case ) lowerCAmelCase_ : str = PoolFormerGroupNorm(_snake_case ) lowerCAmelCase_ : Optional[Any] = PoolFormerGroupNorm(_snake_case ) # Useful for training neural nets lowerCAmelCase_ : Optional[Any] = PoolFormerDropPath(_snake_case ) if drop_path > 0.0 else nn.Identity() lowerCAmelCase_ : str = config.use_layer_scale if config.use_layer_scale: lowerCAmelCase_ : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((_snake_case) ) , requires_grad=_snake_case ) lowerCAmelCase_ : List[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_snake_case) ) , requires_grad=_snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ): if self.use_layer_scale: lowerCAmelCase_ : List[str] = self.pooling(self.before_norm(_snake_case ) ) lowerCAmelCase_ : Tuple = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowerCAmelCase_ : Any = hidden_states + self.drop_path(_snake_case ) lowerCAmelCase_ : int = () lowerCAmelCase_ : List[str] = self.output(self.after_norm(_snake_case ) ) lowerCAmelCase_ : Optional[int] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowerCAmelCase_ : Optional[int] = hidden_states + self.drop_path(_snake_case ) lowerCAmelCase_ : Optional[int] = (output,) + outputs return outputs else: lowerCAmelCase_ : Any = self.drop_path(self.pooling(self.before_norm(_snake_case ) ) ) # First residual connection lowerCAmelCase_ : Dict = pooling_output + hidden_states lowerCAmelCase_ : Tuple = () # Second residual connection inside the PoolFormerOutput block lowerCAmelCase_ : Union[str, Any] = self.drop_path(self.output(self.after_norm(_snake_case ) ) ) lowerCAmelCase_ : Optional[Any] = hidden_states + layer_output lowerCAmelCase_ : Dict = (output,) + outputs return outputs class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): super().__init__() lowerCAmelCase_ : Union[str, Any] = config # stochastic depth decay rule lowerCAmelCase_ : List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowerCAmelCase_ : Any = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowerCAmelCase_ : Optional[Any] = nn.ModuleList(_snake_case ) # Transformer blocks lowerCAmelCase_ : str = [] lowerCAmelCase_ : Any = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowerCAmelCase_ : int = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _snake_case , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_snake_case ) ) lowerCAmelCase_ : Tuple = nn.ModuleList(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ): lowerCAmelCase_ : List[str] = () if output_hidden_states else None lowerCAmelCase_ : Tuple = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowerCAmelCase_ : Dict = layers # Get patch embeddings from hidden_states lowerCAmelCase_ : str = embedding_layer(_snake_case ) # Send the embeddings through the blocks for _, blk in enumerate(_snake_case ): lowerCAmelCase_ : Any = blk(_snake_case ) lowerCAmelCase_ : Dict = layer_outputs[0] if output_hidden_states: lowerCAmelCase_ : Tuple = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case , hidden_states=_snake_case ) class UpperCamelCase__ ( A_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = PoolFormerConfig _SCREAMING_SNAKE_CASE = "poolformer" _SCREAMING_SNAKE_CASE = "pixel_values" _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ): if isinstance(_snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_snake_case , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ): if isinstance(_snake_case , _snake_case ): lowerCAmelCase_ : Optional[int] = value lowercase__ : str = R"""\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n""" lowercase__ : Tuple = R"""\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n""" @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""", A_, ) class UpperCamelCase__ ( A_ ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ): super().__init__(_snake_case ) lowerCAmelCase_ : List[Any] = config lowerCAmelCase_ : Optional[int] = PoolFormerEncoder(_snake_case ) # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE__ ( self : str ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ): lowerCAmelCase_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) lowerCAmelCase_ : Tuple = self.encoder( _snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , ) lowerCAmelCase_ : Optional[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_snake_case , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ): super().__init__() lowerCAmelCase_ : Dict = nn.Linear(config.hidden_size , config.hidden_size ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : List[Any] = self.dense(_snake_case ) return output @add_start_docstrings( """\n PoolFormer Model transformer with an image classification head on top\n """, A_, ) class UpperCamelCase__ ( A_ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int ): super().__init__(_snake_case ) lowerCAmelCase_ : Optional[Any] = config.num_labels lowerCAmelCase_ : Optional[Any] = PoolFormerModel(_snake_case ) # Final norm lowerCAmelCase_ : Tuple = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowerCAmelCase_ : Any = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ): lowerCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = self.poolformer( _snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , ) lowerCAmelCase_ : Dict = outputs[0] lowerCAmelCase_ : Optional[int] = self.classifier(self.norm(_snake_case ).mean([-2, -1] ) ) lowerCAmelCase_ : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ : int = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ : List[str] = '''single_label_classification''' else: lowerCAmelCase_ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase_ : List[Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase_ : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase_ : Tuple = loss_fct(_snake_case , _snake_case ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ : Any = CrossEntropyLoss() lowerCAmelCase_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ : str = BCEWithLogitsLoss() lowerCAmelCase_ : Dict = loss_fct(_snake_case , _snake_case ) if not return_dict: lowerCAmelCase_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states )
224
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
0
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0): '''simple docstring''' __A : int = row, column __A : Any = [[default_value for c in range(_snake_case)] for r in range(_snake_case)] def __str__( self): '''simple docstring''' __A : List[str] = F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __A : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __A : str = max(_snake_case , len(str(_snake_case))) __A : Tuple = F'%{max_element_length}s' # Make string and return def single_line(_UpperCAmelCase) -> str: nonlocal string_format_identifier __A : Dict = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(_snake_case) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if not (isinstance(_snake_case , (list, tuple)) and len(_snake_case) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , _UpperCAmelCase): '''simple docstring''' assert self.validate_indicies(_snake_case) return self.array[loc[0]][loc[1]] def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' assert self.validate_indicies(_snake_case) __A : Any = value def __add__( self , _UpperCAmelCase): '''simple docstring''' assert isinstance(_snake_case , _snake_case) assert self.row == another.row and self.column == another.column # Add __A : List[Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): __A : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' __A : Dict = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): __A : List[str] = -self[r, c] return result def __sub__( self , _UpperCAmelCase): '''simple docstring''' return self + (-another) def __mul__( self , _UpperCAmelCase): '''simple docstring''' if isinstance(_snake_case , (int, float)): # Scalar multiplication __A : str = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): __A : Tuple = self[r, c] * another return result elif isinstance(_snake_case , _snake_case): # Matrix multiplication assert self.column == another.row __A : Any = Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: __A : Union[str, Any] = F'Unsupported type given for another ({type(_snake_case)})' raise TypeError(_snake_case) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): __A : Dict = self[r, c] return result def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' assert isinstance(_snake_case , _snake_case) and isinstance(_snake_case , _snake_case) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __A : Dict = v.transpose() __A : Union[str, Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _lowerCAmelCase ( ) -> None: # a^(-1) __A : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __A : List[Any] = 1 print(f'a^(-1) is {ainv}' ) # u, v __A : Tuple = Matrix(3 , 1 , 0 ) __A : Dict = 1, 2, -3 __A : List[Any] = Matrix(3 , 1 , 0 ) __A : str = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowerCamelCase , __lowerCamelCase )}' ) def _lowerCAmelCase ( ) -> None: import doctest doctest.testmod() testa()
190
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A = None A = logging.get_logger(__name__) A = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 A = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class __lowercase ( A_ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] __lowerCAmelCase = TaTokenizer __lowerCAmelCase = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=100 , _UpperCAmelCase=None , **_UpperCAmelCase , ): if extra_ids > 0 and additional_special_tokens is None: __a : Tuple = [f"""<extra_id_{i}>""" for i in range(_snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __a : List[Any] = len(set(filter(lambda _UpperCAmelCase : bool('''extra_id_''' in str(_snake_case ) ) , _snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _snake_case , tokenizer_file=_snake_case , eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , extra_ids=_snake_case , additional_special_tokens=_snake_case , **_snake_case , ) __a : List[Any] = vocab_file __a : int = False if not self.vocab_file else True __a : List[str] = extra_ids @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __a : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _snake_case , ) return max_model_length def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : Union[str, Any] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __a : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self ): return list( set(filter(lambda _UpperCAmelCase : bool(re.search(R'''<extra_id_\d+>''' , _snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self ): return [self.convert_tokens_to_ids(_snake_case ) for token in self.get_sentinel_tokens()]
160
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __UpperCAmelCase ( A_ , A_ ): UpperCamelCase = "focalnet" def __init__( self : Any, __A : Optional[int]=2_2_4, __A : Tuple=4, __A : Optional[Any]=3, __A : Optional[Any]=9_6, __A : List[Any]=False, __A : Optional[int]=[1_9_2, 3_8_4, 7_6_8, 7_6_8], __A : Optional[Any]=[2, 2, 6, 2], __A : Optional[int]=[2, 2, 2, 2], __A : List[str]=[3, 3, 3, 3], __A : List[str]="gelu", __A : Dict=4.0, __A : str=0.0, __A : Any=0.1, __A : Dict=False, __A : List[Any]=1E-4, __A : Dict=False, __A : Optional[int]=False, __A : Optional[Any]=False, __A : Dict=0.0_2, __A : Optional[int]=1E-5, __A : Optional[int]=3_2, __A : Any=None, __A : List[Any]=None, **__A : List[Any], ): super().__init__(**_snake_case ) UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : str = patch_size UpperCAmelCase : Optional[Any] = num_channels UpperCAmelCase : Dict = embed_dim UpperCAmelCase : List[str] = use_conv_embed UpperCAmelCase : Optional[Any] = hidden_sizes UpperCAmelCase : Dict = depths UpperCAmelCase : List[Any] = focal_levels UpperCAmelCase : Tuple = focal_windows UpperCAmelCase : str = hidden_act UpperCAmelCase : Tuple = mlp_ratio UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : str = drop_path_rate UpperCAmelCase : str = use_layerscale UpperCAmelCase : List[Any] = layerscale_value UpperCAmelCase : Optional[Any] = use_post_layernorm UpperCAmelCase : str = use_post_layernorm_in_modulation UpperCAmelCase : Dict = normalize_modulator UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = layer_norm_eps UpperCAmelCase : Any = encoder_stride UpperCAmelCase : int = ['''stem'''] + [F'''stage{idx}''' for idx in range(1, len(self.depths ) + 1 )] UpperCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=_snake_case, out_indices=_snake_case, stage_names=self.stage_names )
336
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Tuple = ["sentencepiece"] def __init__( self : str , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Dict)-> int: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Dict = ["sentencepiece"] def __init__( self : str , *UpperCamelCase__ : Any , **UpperCamelCase__ : str)-> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : List[str] = ["sentencepiece"] def __init__( self : Any , *UpperCamelCase__ : Any , **UpperCamelCase__ : Optional[Any])-> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["sentencepiece"] def __init__( self : List[Any] , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any])-> Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : List[Any] = ["sentencepiece"] def __init__( self : Optional[Any] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : str)-> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Tuple = ["sentencepiece"] def __init__( self : int , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Any)-> Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = ["sentencepiece"] def __init__( self : Optional[int] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : Any)-> Optional[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Dict = ["sentencepiece"] def __init__( self : List[str] , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any])-> Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Tuple = ["sentencepiece"] def __init__( self : List[str] , *UpperCamelCase__ : str , **UpperCamelCase__ : int)-> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Dict = ["sentencepiece"] def __init__( self : int , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[Any])-> int: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["sentencepiece"] def __init__( self : Optional[Any] , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : int)-> Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : str = ["sentencepiece"] def __init__( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Optional[Any])-> List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : List[str] = ["sentencepiece"] def __init__( self : Optional[Any] , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict)-> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["sentencepiece"] def __init__( self : List[str] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : List[Any])-> Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Tuple = ["sentencepiece"] def __init__( self : Optional[Any] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Any)-> Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : int = ["sentencepiece"] def __init__( self : List[Any] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : Optional[Any])-> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : str = ["sentencepiece"] def __init__( self : str , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : int)-> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : str = ["sentencepiece"] def __init__( self : Dict , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any])-> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Tuple = ["sentencepiece"] def __init__( self : Union[str, Any] , *UpperCamelCase__ : str , **UpperCamelCase__ : List[Any])-> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = ["sentencepiece"] def __init__( self : Dict , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : Union[str, Any])-> str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Any = ["sentencepiece"] def __init__( self : Dict , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Optional[int])-> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : List[str] = ["sentencepiece"] def __init__( self : Union[str, Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : List[Any])-> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : int = ["sentencepiece"] def __init__( self : Union[str, Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : Union[str, Any])-> str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Any = ["sentencepiece"] def __init__( self : Dict , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[Any])-> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : str = ["sentencepiece"] def __init__( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : List[str])-> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Dict = ["sentencepiece"] def __init__( self : Optional[Any] , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Optional[int])-> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : str = ["sentencepiece"] def __init__( self : Optional[Any] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[str])-> str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Tuple = ["sentencepiece"] def __init__( self : Any , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Optional[Any])-> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = ["sentencepiece"] def __init__( self : List[Any] , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : str)-> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Tuple = ["sentencepiece"] def __init__( self : str , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any])-> List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class snake_case ( metaclass=A_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ["sentencepiece"] def __init__( self : List[Any] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : Union[str, Any])-> str: '''simple docstring''' requires_backends(self , ["sentencepiece"])
217
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') __lowercase : str = logging.getLogger(__name__) @dataclass class __UpperCamelCase : A_ = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) A_ = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) A_ = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A_ = field( default=A_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) A_ = field( default=A_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) A_ = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A_ = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) A_ = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) A_ = field( default=A_ , metadata={"help": "A csv or a json file containing the training data."} ) A_ = field( default=A_ , metadata={"help": "A csv or a json file containing the validation data."} ) A_ = field(default=A_ , metadata={"help": "A csv or a json file containing the test data."} ) def __UpperCAmelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a : List[str] = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a : Optional[int] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __UpperCamelCase : A_ = field( default=A_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A_ = field( default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A_ = field( default=A_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A_ = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) A_ = field( default=A_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) A_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A_ = field( default=A_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCamelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a : Optional[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a : Tuple = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) datasets.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __a : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a : Any = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a : str = data_args.train_file.split('.' )[-1] __a : Tuple = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a : Dict = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a : Union[str, Any] = load_dataset('csv' , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a : Optional[Any] = load_dataset('json' , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a : int = raw_datasets['''train'''].features['''label'''].names __a : List[Any] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a : List[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__lowerCamelCase , ) __a : Any = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a : str = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a : List[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. __a : Any = {'''Refused''': 0, '''Entailed''': 1} __a : str = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __a : str = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_SCREAMING_SNAKE_CASE : Optional[int] ): # Tokenize the texts def _convert_table_text_to_pandas(_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Dict = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a : List[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a : Tuple = examples['''statement'''] __a : str = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a : Dict = tokenizer(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ) __a : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a : List[Any] = raw_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a : str = raw_datasets['''train'''] if data_args.max_train_samples is not None: __a : Union[str, Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a : Any = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: __a : Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a : Optional[Any] = raw_datasets['''test'''] if data_args.max_predict_samples is not None: __a : str = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__lowerCamelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Union[str, Any] = p.predictions[0] if isinstance(p.predictions , __lowerCamelCase ) else p.predictions __a : Dict = np.argmax(__lowerCamelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a : List[str] = default_data_collator elif training_args.fpaa: __a : Any = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) else: __a : List[Any] = None # Initialize our Trainer __a : Union[str, Any] = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCamelCase , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: __a : Dict = None if training_args.resume_from_checkpoint is not None: __a : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a : int = last_checkpoint __a : List[str] = trainer.train(resume_from_checkpoint=__lowerCamelCase ) __a : List[str] = train_result.metrics __a : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCamelCase ) ) __a : Any = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __lowerCamelCase ) trainer.save_metrics('train' , __lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a : Union[str, Any] = trainer.evaluate(eval_dataset=__lowerCamelCase ) __a : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCamelCase ) __a : Tuple = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics('eval' , __lowerCamelCase ) trainer.save_metrics('eval' , __lowerCamelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a : Tuple = predict_dataset.remove_columns('label' ) __a : str = trainer.predict(__lowerCamelCase , metric_key_prefix='predict' ).predictions __a : Tuple = np.argmax(__lowerCamelCase , axis=1 ) __a : List[Any] = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__lowerCamelCase ): __a : Optional[Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) __a : Dict = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
27
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__( self : str , __snake_case : int , __snake_case : Optional[Any]=13 , __snake_case : List[Any]=32 , __snake_case : int=3 , __snake_case : str=4 , __snake_case : Optional[int]=[10, 20, 30, 40] , __snake_case : Optional[Any]=[2, 2, 3, 2] , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=37 , __snake_case : int="gelu" , __snake_case : str=10 , __snake_case : Union[str, Any]=0.02 , __snake_case : List[Any]=["stage2", "stage3", "stage4"] , __snake_case : Any=[2, 3, 4] , __snake_case : Optional[Any]=None , ) -> int: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_stages _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_labels _lowerCAmelCase = initializer_range _lowerCAmelCase = out_features _lowerCAmelCase = out_indices _lowerCAmelCase = scope def lowercase__ ( self : str ) -> Any: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase__ ( self : Dict , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> List[str]: _lowerCAmelCase = ConvNextModel(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self : int , __snake_case : int , __snake_case : Optional[int] , __snake_case : Tuple ) -> List[str]: _lowerCAmelCase = ConvNextForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any ) -> Union[str, Any]: _lowerCAmelCase = ConvNextBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCAmelCase = None _lowerCAmelCase = ConvNextBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ , A_ , unittest.TestCase ): _lowercase: Optional[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowercase: Union[str, Any] = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _lowercase: Optional[Any] = True _lowercase: Optional[Any] = False _lowercase: Optional[Any] = False _lowercase: Optional[Any] = False _lowercase: Dict = False def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = ConvNextModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def lowercase__ ( self : List[Any] ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[Any] ) -> int: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def lowercase__ ( self : Tuple ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def lowercase__ ( self : str ) -> Tuple: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) def lowercase__ ( self : Union[str, Any] ) -> int: def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Union[str, Any] ): _lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) ) _lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def lowercase__ ( self : int ) -> List[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def lowercase__ ( self : List[Any] ) -> List[Any]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = ConvNextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Optional[int]: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_snake_case ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_snake_case , return_tensors="""pt""" ).to(_snake_case ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**_snake_case ) # verify the logits _lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _snake_case ) _lowerCAmelCase = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase , A_ ): _lowercase: str = (ConvNextBackbone,) if is_torch_available() else () _lowercase: int = ConvNextConfig _lowercase: List[str] = False def lowercase__ ( self : Dict ) -> List[str]: _lowerCAmelCase = ConvNextModelTester(self )
70
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
0
import torch def a__ ( ): """simple docstring""" if torch.cuda.is_available(): __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.device_count() else: __SCREAMING_SNAKE_CASE : List[str] = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
303
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
0
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : int = 1_0_0 ) ->int: lowerCamelCase__ : List[Any] =(n * (n + 1) // 2) ** 2 lowerCamelCase__ : Optional[int] =n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
126
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
0
def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) snake_case : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
59
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> int: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope def _a ( self ) -> Optional[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: __UpperCamelCase =LlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() __UpperCamelCase =model(_snake_case , attention_mask=_snake_case ) __UpperCamelCase =model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[str]: __UpperCamelCase =True __UpperCamelCase =LlamaModel(_snake_case ) model.to(_snake_case ) model.eval() __UpperCamelCase =model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) __UpperCamelCase =model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) __UpperCamelCase =model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Union[str, Any]: __UpperCamelCase =LlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() __UpperCamelCase =model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Dict: __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =LlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass __UpperCamelCase =model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) __UpperCamelCase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase =torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase =model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['''hidden_states'''][0] __UpperCamelCase =model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['''hidden_states'''][0] # select random slice __UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.prepare_config_and_inputs() ( __UpperCamelCase ) =config_and_inputs __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : int = (LlamaForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : int = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[Any] = False def _a ( self ) -> str: __UpperCamelCase =LlamaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self ) -> str: self.config_tester.run_common_tests() def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(*_snake_case ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =3 __UpperCamelCase =input_dict['''input_ids'''] __UpperCamelCase =input_ids.ne(1 ).to(_snake_case ) __UpperCamelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase =LlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() __UpperCamelCase =model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =3 __UpperCamelCase ='''single_label_classification''' __UpperCamelCase =input_dict['''input_ids'''] __UpperCamelCase =input_ids.ne(1 ).to(_snake_case ) __UpperCamelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase =LlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() __UpperCamelCase =model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =3 __UpperCamelCase ='''multi_label_classification''' __UpperCamelCase =input_dict['''input_ids'''] __UpperCamelCase =input_ids.ne(1 ).to(_snake_case ) __UpperCamelCase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase =LlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() __UpperCamelCase =model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _a ( self ) -> Union[str, Any]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def _a ( self , A_ ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase =LlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() __UpperCamelCase =original_model(_snake_case ).last_hidden_state __UpperCamelCase =original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase ={'''type''': scaling_type, '''factor''': 10.0} __UpperCamelCase =LlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() __UpperCamelCase =scaled_model(_snake_case ).last_hidden_state __UpperCamelCase =scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _a ( self ) -> List[str]: __UpperCamelCase =[1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCamelCase =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) __UpperCamelCase =model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCamelCase =torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _snake_case , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase =torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _snake_case , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =[1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCamelCase =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) __UpperCamelCase =model(torch.tensor(_snake_case ) ) # Expected mean on dim = -1 __UpperCamelCase =torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _snake_case , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase =torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _snake_case , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _a ( self ) -> Any: __UpperCamelCase =[1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCamelCase =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) __UpperCamelCase =model(torch.tensor(_snake_case ) ) # Expected mean on dim = -1 __UpperCamelCase =torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _snake_case , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase =torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _snake_case , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _a ( self ) -> Any: __UpperCamelCase =[1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCamelCase =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) __UpperCamelCase =model(torch.tensor(_snake_case ) ) __UpperCamelCase =torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _snake_case , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCamelCase =torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _snake_case , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase ='''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' __UpperCamelCase ='''Simply put, the theory of relativity states that ''' __UpperCamelCase =LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) __UpperCamelCase =tokenizer.encode(_snake_case , return_tensors='pt' ) __UpperCamelCase =LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=_snake_case ) # greedy generation outputs __UpperCamelCase =model.generate(_snake_case , max_new_tokens=64 , top_p=_snake_case , temperature=1 , do_sample=_snake_case ) __UpperCamelCase =tokenizer.decode(generated_ids[0] , skip_special_tokens=_snake_case ) self.assertEqual(_snake_case , _snake_case )
62
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : Dict = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__lowerCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__lowerCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__lowerCamelCase ) return parser.parse_args() def UpperCamelCase_ ( ) -> Tuple: """simple docstring""" lowerCAmelCase_ : List[Any] = parse_args() # Import training_script as a module. lowerCAmelCase_ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase_ : Dict = script_fpath.stem lowerCAmelCase_ : str = importlib.import_module(__lowerCamelCase ) # Patch sys.argv lowerCAmelCase_ : List[str] = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
224
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : int ) -> int: return x if y == 0 else greatest_common_divisor(__lowerCamelCase , x % y ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any] ) -> int: return (x * y) // greatest_common_divisor(__lowerCamelCase , __lowerCamelCase ) def _lowerCAmelCase ( __snake_case : Union[str, Any] = 20 ) -> int: __A : Union[str, Any] = 1 for i in range(1 , n + 1 ): __A : Any = lcm(__lowerCamelCase , __lowerCamelCase ) return g if __name__ == "__main__": print(f"""{solution() = }""")
190
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __A ( a_ :int , a_ :List[str] , a_ :str , a_ :Any , ) -> list[float]: __a : str = coefficient_matrix.shape __a : Any = constant_matrix.shape if rowsa != colsa: __a : Union[str, Any] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__lowerCamelCase) if colsa != 1: __a : List[Any] = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__lowerCamelCase) if rowsa != rowsa: __a : Dict = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__lowerCamelCase) if len(__lowerCamelCase) != rowsa: __a : List[Any] = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(__lowerCamelCase)} and {rowsa}""" ) raise ValueError(__lowerCamelCase) if iterations <= 0: raise ValueError('''Iterations must be at least 1''') __a : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1) __a : Dict = table.shape strictly_diagonally_dominant(__lowerCamelCase) # Iterates the whole matrix for given number of times for _ in range(__lowerCamelCase): __a : Optional[Any] = [] for row in range(__lowerCamelCase): __a : Optional[int] = 0 for col in range(__lowerCamelCase): if col == row: __a : List[Any] = table[row][col] elif col == cols - 1: __a : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __a : Any = (temp + val) / denom new_val.append(__lowerCamelCase) __a : int = new_val return [float(__lowerCamelCase) for i in new_val] def __A ( a_ :List[Any]) -> bool: __a : Tuple = table.shape __a : Dict = True for i in range(0 , __lowerCamelCase): __a : List[str] = 0 for j in range(0 , cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''') return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
160
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : List[str] = "▁" _lowerCamelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( A_ , unittest.TestCase ): UpperCamelCase = BigBirdTokenizer UpperCamelCase = BigBirdTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Dict ): super().setUp() UpperCAmelCase : Tuple = self.tokenizer_class(_snake_case, keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = '''<s>''' UpperCAmelCase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ), _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ), _snake_case ) def __magic_name__ ( self : Dict ): UpperCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<unk>''' ) self.assertEqual(vocab_keys[1], '''<s>''' ) self.assertEqual(vocab_keys[-1], '''[MASK]''' ) self.assertEqual(len(_snake_case ), 1_0_0_4 ) def __magic_name__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size, 1_0_0_0 ) def __magic_name__ ( self : Optional[int] ): if not self.test_rust_tokenizer: return UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : List[Any] = '''I was born in 92000, and this is falsé.''' UpperCAmelCase : Dict = tokenizer.tokenize(_snake_case ) UpperCAmelCase : Any = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case, _snake_case ) UpperCAmelCase : Any = tokenizer.encode(_snake_case, add_special_tokens=_snake_case ) UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(_snake_case, add_special_tokens=_snake_case ) self.assertListEqual(_snake_case, _snake_case ) UpperCAmelCase : List[Any] = self.get_rust_tokenizer() UpperCAmelCase : Dict = tokenizer.encode(_snake_case ) UpperCAmelCase : Tuple = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case, _snake_case ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Optional[int] = BigBirdTokenizer(_snake_case, keep_accents=_snake_case ) UpperCAmelCase : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ), [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2], ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ], ) UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case, [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4], ) UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ], ) @cached_property def __magic_name__ ( self : List[Any] ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : Optional[int] = '''Hello World!''' UpperCAmelCase : Union[str, Any] = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(_snake_case, self.big_tokenizer.encode(_snake_case ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Dict = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase : int = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(_snake_case, self.big_tokenizer.encode(_snake_case ) ) @require_torch @slow def __magic_name__ ( self : int ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase : Dict = list(self.big_tokenizer.get_vocab().keys() )[:1_0] UpperCAmelCase : Union[str, Any] = ''' '''.join(_snake_case ) UpperCAmelCase : int = self.big_tokenizer.encode_plus(_snake_case, return_tensors='''pt''', return_token_type_ids=_snake_case ) UpperCAmelCase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence], return_tensors='''pt''', return_token_type_ids=_snake_case ) UpperCAmelCase : Tuple = BigBirdConfig(attention_type='''original_full''' ) UpperCAmelCase : Any = BigBirdModel(_snake_case ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_snake_case ) model(**_snake_case ) @slow def __magic_name__ ( self : int ): UpperCAmelCase : Tuple = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) UpperCAmelCase : int = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = {'''input_ids''': [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case, model_name='''google/bigbird-roberta-base''', revision='''215c99f1600e06f83acce68422f2035b2b5c3510''', )
336
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class snake_case ( A_, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = "ssube/stable-diffusion-x4-upscaler-onnx" def lowercase_ ( self : Any , UpperCamelCase__ : Any=0)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: List[Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(_snake_case)) __lowerCAmelCase: Union[str, Any] = torch.manual_seed(_snake_case) __lowerCAmelCase: List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Optional[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: List[Any] = self.get_dummy_inputs() __lowerCAmelCase: Union[str, Any] = pipe(**_snake_case).images __lowerCAmelCase: Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: List[str] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def lowercase_ ( self : List[str])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase: List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_snake_case) pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: List[Any] = self.get_dummy_inputs() __lowerCAmelCase: Optional[Any] = pipe(**_snake_case).images __lowerCAmelCase: int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: Any = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def lowercase_ ( self : Tuple)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase: int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: Union[str, Any] = self.get_dummy_inputs() __lowerCAmelCase: str = pipe(**_snake_case).images __lowerCAmelCase: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: Tuple = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def lowercase_ ( self : Optional[int])-> List[str]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase: Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: Optional[Any] = self.get_dummy_inputs() __lowerCAmelCase: Any = pipe(**_snake_case).images __lowerCAmelCase: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: List[str] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def lowercase_ ( self : Dict)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase: int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: List[str] = self.get_dummy_inputs() __lowerCAmelCase: int = pipe(**_snake_case).images __lowerCAmelCase: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: Union[str, Any] = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class snake_case ( unittest.TestCase ): @property def lowercase_ ( self : int)-> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self : Union[str, Any])-> Any: '''simple docstring''' __lowerCAmelCase: List[str] = ort.SessionOptions() __lowerCAmelCase: Optional[Any] = False return options def lowercase_ ( self : Optional[Any])-> str: '''simple docstring''' __lowerCAmelCase: Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") __lowerCAmelCase: int = init_image.resize((1_2_8, 1_2_8)) # using the PNDM scheduler by default __lowerCAmelCase: Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: Any = '''A fantasy landscape, trending on artstation''' __lowerCAmelCase: Union[str, Any] = torch.manual_seed(0) __lowerCAmelCase: Tuple = pipe( prompt=_snake_case , image=_snake_case , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_snake_case , output_type="np" , ) __lowerCAmelCase: Tuple = output.images __lowerCAmelCase: List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: Any = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def lowercase_ ( self : List[str])-> List[Any]: '''simple docstring''' __lowerCAmelCase: str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") __lowerCAmelCase: List[str] = init_image.resize((1_2_8, 1_2_8)) __lowerCAmelCase: Any = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler") __lowerCAmelCase: List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: List[Any] = '''A fantasy landscape, trending on artstation''' __lowerCAmelCase: Optional[int] = torch.manual_seed(0) __lowerCAmelCase: Union[str, Any] = pipe( prompt=_snake_case , image=_snake_case , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_snake_case , output_type="np" , ) __lowerCAmelCase: List[str] = output.images __lowerCAmelCase: str = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: str = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
217
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self , __a , __a=3 , __a=32 , __a=3 , __a=10 , __a=[8, 16, 32, 64] , __a=[1, 1, 2, 1] , __a=True , __a=True , __a="relu" , __a=3 , __a=None , __a=["stage2", "stage3", "stage4"] , __a=[2, 3, 4] , __a=1 , ): '''simple docstring''' __a : Any = parent __a : Dict = batch_size __a : Any = image_size __a : Dict = num_channels __a : int = embeddings_size __a : str = hidden_sizes __a : Tuple = depths __a : Tuple = is_training __a : str = use_labels __a : int = hidden_act __a : List[Any] = num_labels __a : Dict = scope __a : Dict = len(_snake_case ) __a : Optional[int] = out_features __a : List[str] = out_indices __a : Any = num_groups def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[int] = None if self.use_labels: __a : str = ids_tensor([self.batch_size] , self.num_labels ) __a : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Tuple = BitModel(config=_snake_case ) model.to(_snake_case ) model.eval() __a : Union[str, Any] = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Optional[int] = self.num_labels __a : List[str] = BitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() __a : int = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : int = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() __a : str = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __a : Tuple = None __a : Optional[int] = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() __a : int = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.prepare_config_and_inputs() __a : Optional[Any] = config_and_inputs __a : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( A_ , A_ , unittest.TestCase ): A_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () A_ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = BitModelTester(self ) __a : Tuple = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def __UpperCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ): '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(_snake_case ) __a : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : List[str] = [*signature.parameters.keys()] __a : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[Any] = model_class(config=_snake_case ) for name, module in model.named_modules(): if isinstance(_snake_case , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def __UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__a , __a , __a ): __a : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a : Tuple = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a : int = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __a : str = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __a : Dict = layer_type __a : Tuple = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : List[Any] = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = BitModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowerCamelCase (): __a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_snake_case ) __a : List[Any] = self.default_image_processor __a : str = prepare_img() __a : str = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): __a : Optional[int] = model(**_snake_case ) # verify the logits __a : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) __a : List[str] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @require_torch class __UpperCamelCase ( A_ , unittest.TestCase ): A_ = (BitBackbone,) if is_torch_available() else () A_ = BitConfig A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = BitModelTester(self )
27
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
0
'''simple docstring''' from statistics import mean import numpy as np def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = 0 # Number of processes finished _lowerCAmelCase = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. _lowerCAmelCase = [0] * no_of_process # List to include calculation results _lowerCAmelCase = [0] * no_of_process # Sort by arrival time. _lowerCAmelCase = [burst_time[i] for i in np.argsort(__lowerCamelCase )] _lowerCAmelCase = [process_name[i] for i in np.argsort(__lowerCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: _lowerCAmelCase = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: _lowerCAmelCase = arrival_time[i] _lowerCAmelCase = 0 # Index showing the location of the process being performed _lowerCAmelCase = 0 # Saves the current response ratio. _lowerCAmelCase = 0 for i in range(0 , __lowerCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: _lowerCAmelCase = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: _lowerCAmelCase = temp _lowerCAmelCase = i # Calculate the turn around time _lowerCAmelCase = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. _lowerCAmelCase = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [0] * no_of_process for i in range(0 , __lowerCamelCase ): _lowerCAmelCase = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": A__ : str =5 A__ : List[Any] =['''A''', '''B''', '''C''', '''D''', '''E'''] A__ : Optional[Any] =[1, 2, 3, 4, 5] A__ : List[str] =[1, 2, 3, 4, 5] A__ : int =calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) A__ : Optional[int] =calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
70
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowercase_ = logging.getLogger(__name__) def a__ ( snake_case , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = False , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = bnb_quantization_config.load_in_abit __SCREAMING_SNAKE_CASE : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) __SCREAMING_SNAKE_CASE : List[str] = [] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: __SCREAMING_SNAKE_CASE : str = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __SCREAMING_SNAKE_CASE : Any = get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Optional[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft __SCREAMING_SNAKE_CASE : Optional[Any] = load_in_abit __SCREAMING_SNAKE_CASE : Optional[Any] = load_in_abit __SCREAMING_SNAKE_CASE : str = get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) __SCREAMING_SNAKE_CASE : Dict = replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype __SCREAMING_SNAKE_CASE : Dict = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __SCREAMING_SNAKE_CASE : Any = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) __SCREAMING_SNAKE_CASE : Dict = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): __SCREAMING_SNAKE_CASE : int = replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : int = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def a__ ( snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): __SCREAMING_SNAKE_CASE : Optional[int] = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) __SCREAMING_SNAKE_CASE : List[str] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = special_dtypes __SCREAMING_SNAKE_CASE : Optional[int] = no_split_module_classes __SCREAMING_SNAKE_CASE : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __SCREAMING_SNAKE_CASE : Optional[Any] = get_balanced_memory( __lowerCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowerCamelCase , **__lowerCamelCase , ) __SCREAMING_SNAKE_CASE : int = max_memory __SCREAMING_SNAKE_CASE : List[Any] = infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu __SCREAMING_SNAKE_CASE : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __SCREAMING_SNAKE_CASE : Union[str, Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def a__ ( snake_case , snake_case , snake_case=None , snake_case=None ): """simple docstring""" if modules_to_not_convert is None: __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Optional[Any] = _replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def a__ ( snake_case , snake_case , snake_case=None , snake_case=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = False for name, module in model.named_children(): if current_key_name is None: __SCREAMING_SNAKE_CASE : Optional[int] = [] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __SCREAMING_SNAKE_CASE : Union[str, Any] = '''.'''.join(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __SCREAMING_SNAKE_CASE : int = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __SCREAMING_SNAKE_CASE : Optional[int] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __SCREAMING_SNAKE_CASE : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) __SCREAMING_SNAKE_CASE : List[str] = module.weight.data if module.bias is not None: __SCREAMING_SNAKE_CASE : Dict = module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = True if len(list(module.children() ) ) > 0: __SCREAMING_SNAKE_CASE : int = _replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a__ ( snake_case ): """simple docstring""" # Create a copy of the model with init_empty_weights(): __SCREAMING_SNAKE_CASE : int = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __SCREAMING_SNAKE_CASE : Optional[Any] = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __SCREAMING_SNAKE_CASE : Optional[int] = sum(__lowerCamelCase , [] ) __SCREAMING_SNAKE_CASE : List[str] = len(__lowerCamelCase ) > 0 # Check if it is a base model __SCREAMING_SNAKE_CASE : Any = False if hasattr(__lowerCamelCase , '''base_model_prefix''' ): __SCREAMING_SNAKE_CASE : Optional[int] = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __SCREAMING_SNAKE_CASE : int = list(model.named_children() ) __SCREAMING_SNAKE_CASE : List[Any] = [list_modules[-1][0]] # add last module together with tied weights __SCREAMING_SNAKE_CASE : Union[str, Any] = set(__lowerCamelCase ) - set(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys __SCREAMING_SNAKE_CASE : int = ['''.weight''', '''.bias'''] __SCREAMING_SNAKE_CASE : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __SCREAMING_SNAKE_CASE : str = name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def a__ ( snake_case ): """simple docstring""" for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def a__ ( snake_case ): """simple docstring""" return next(parameter.parameters() ).device def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = param_name __SCREAMING_SNAKE_CASE : List[Any] = model if "." in tensor_name: __SCREAMING_SNAKE_CASE : Dict = tensor_name.split('''.''' ) for split in splits[:-1]: __SCREAMING_SNAKE_CASE : int = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) __SCREAMING_SNAKE_CASE : int = new_module __SCREAMING_SNAKE_CASE : str = splits[-1] # offload weights __SCREAMING_SNAKE_CASE : Any = False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , '''meta''' , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
0
"""simple docstring""" import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCAmelCase_ ( snake_case_ : int ) ->Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : Dict =create_tensor(__lowerCamelCase ) lowerCamelCase__ : int =gather(__lowerCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCAmelCase_ ( snake_case_ : List[str] ) ->List[str]: lowerCamelCase__ : List[str] =[state.process_index] lowerCamelCase__ : Dict =gather_object(__lowerCamelCase ) assert len(__lowerCamelCase ) == state.num_processes, f"""{gathered_obj}, {len(__lowerCamelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : str =create_tensor(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =broadcast(__lowerCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCAmelCase_ ( snake_case_ : Dict ) ->List[str]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCamelCase__ : Any =torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase__ : Tuple =torch.arange(state.num_processes ).to(state.device ) lowerCamelCase__ : List[str] =pad_across_processes(__lowerCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCAmelCase_ ( snake_case_ : int ) ->Optional[int]: # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase__ : Tuple =create_tensor(__lowerCamelCase ) lowerCamelCase__ : Dict =reduce(__lowerCamelCase , 'sum' ) lowerCamelCase__ : Optional[int] =torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowerCAmelCase_ ( snake_case_ : List[Any] ) ->int: # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase__ : List[str] =create_tensor(__lowerCamelCase ) lowerCamelCase__ : int =reduce(__lowerCamelCase , 'mean' ) lowerCamelCase__ : List[str] =torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowerCAmelCase_ ( snake_case_ : Dict ) ->Optional[int]: # For xla_spawn (TPUs) main() def lowerCAmelCase_ ( ) ->List[str]: lowerCamelCase__ : List[str] =PartialState() state.print(f"""State: {state}""" ) state.print('testing gather' ) test_gather(__lowerCamelCase ) state.print('testing gather_object' ) test_gather_object(__lowerCamelCase ) state.print('testing broadcast' ) test_broadcast(__lowerCamelCase ) state.print('testing pad_across_processes' ) test_pad_across_processes(__lowerCamelCase ) state.print('testing reduce_sum' ) test_reduce_sum(__lowerCamelCase ) state.print('testing reduce_mean' ) test_reduce_mean(__lowerCamelCase ) if __name__ == "__main__": main()
126
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
0
class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : int , snake_case__ : Union[str, Any]=None , snake_case__ : List[Any]=None ) -> Tuple: '''simple docstring''' snake_case : List[Any] = data snake_case : Tuple = previous snake_case : Tuple = next_node def __str__(self : Optional[Any] ) -> str: '''simple docstring''' return f"""{self.data}""" def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' return self.data def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' return self.next def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return self.previous class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Any ) -> int: '''simple docstring''' snake_case : Union[str, Any] = head def __iter__(self : Union[str, Any] ) -> Any: '''simple docstring''' return self def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' if not self.current: raise StopIteration else: snake_case : str = self.current.get_data() snake_case : Optional[Any] = self.current.get_next() return value class UpperCAmelCase : def __init__(self : List[Any] ) -> Dict: '''simple docstring''' snake_case : Tuple = None # First node in list snake_case : int = None # Last node in list def __str__(self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = self.head snake_case : Dict = [] while current is not None: nodes.append(current.get_data() ) snake_case : Dict = current.get_next() return " ".join(str(_snake_case ) for node in nodes ) def __contains__(self : Any , snake_case__ : int ) -> Any: '''simple docstring''' snake_case : List[str] = self.head while current: if current.get_data() == value: return True snake_case : Tuple = current.get_next() return False def __iter__(self : Any ) -> Union[str, Any]: '''simple docstring''' return LinkedListIterator(self.head ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' if self.tail: return self.tail.get_data() return None def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Node ) -> None: '''simple docstring''' if self.head is None: snake_case : Dict = node snake_case : Dict = node else: self.insert_before_node(self.head , _snake_case ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Node ) -> None: '''simple docstring''' if self.head is None: self.set_head(_snake_case ) else: self.insert_after_node(self.tail , _snake_case ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : int ) -> None: '''simple docstring''' snake_case : Any = Node(_snake_case ) if self.head is None: self.set_head(_snake_case ) else: self.set_tail(_snake_case ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Node , snake_case__ : Node ) -> None: '''simple docstring''' snake_case : Tuple = node snake_case : Optional[Any] = node.previous if node.get_previous() is None: snake_case : Optional[int] = node_to_insert else: snake_case : List[str] = node_to_insert snake_case : Tuple = node_to_insert def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Node , snake_case__ : Node ) -> None: '''simple docstring''' snake_case : Dict = node snake_case : str = node.next if node.get_next() is None: snake_case : int = node_to_insert else: snake_case : Optional[int] = node_to_insert snake_case : Tuple = node_to_insert def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : int , snake_case__ : int ) -> None: '''simple docstring''' snake_case : Dict = 1 snake_case : Optional[Any] = Node(_snake_case ) snake_case : Any = self.head while node: if current_position == position: self.insert_before_node(_snake_case , _snake_case ) return current_position += 1 snake_case : Optional[Any] = node.next self.insert_after_node(self.tail , _snake_case ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : int ) -> Node: '''simple docstring''' snake_case : Any = self.head while node: if node.get_data() == item: return node snake_case : Tuple = node.get_next() raise Exception("Node not found" ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : List[Any] ) -> str: '''simple docstring''' if (node := self.get_node(_snake_case )) is not None: if node == self.head: snake_case : List[Any] = self.head.get_next() if node == self.tail: snake_case : List[Any] = self.tail.get_previous() self.remove_node_pointers(_snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : Node ) -> None: '''simple docstring''' if node.get_next(): snake_case : int = node.previous if node.get_previous(): snake_case : Optional[int] = node.next snake_case : List[Any] = None snake_case : Tuple = None def _SCREAMING_SNAKE_CASE (self : str ) -> str: '''simple docstring''' return self.head is None def UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
59
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
0
from math import isclose, sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =point_y / 4 / point_x __UpperCamelCase =2 * normal_gradient / (1 + normal_gradient * normal_gradient) __UpperCamelCase =(1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __UpperCamelCase =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __UpperCamelCase =outgoing_gradient**2 + 4 __UpperCamelCase =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __UpperCamelCase =(point_y - outgoing_gradient * point_x) ** 2 - 1_00 __UpperCamelCase =( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __UpperCamelCase =( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __UpperCamelCase =x_minus if isclose(__lowerCamelCase , __lowerCamelCase ) else x_plus __UpperCamelCase =point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 1.4 , SCREAMING_SNAKE_CASE__ : List[Any] = -9.6 ): __UpperCamelCase =0 __UpperCamelCase =first_x_coord __UpperCamelCase =first_y_coord __UpperCamelCase =(10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __UpperCamelCase =next_point(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
62
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Any = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowercase__ : Optional[Any] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> Tuple: """simple docstring""" for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase_ : Tuple = '''lm_head''' lowerCAmelCase_ : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowerCAmelCase_ : List[Any] = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowerCAmelCase_ : Any = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCAmelCase_ : Optional[int] = value elif weight_type == "weight_g": lowerCAmelCase_ : Tuple = value elif weight_type == "weight_v": lowerCAmelCase_ : Any = value elif weight_type == "bias": lowerCAmelCase_ : int = value else: lowerCAmelCase_ : Tuple = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : int = fairseq_model.state_dict() lowerCAmelCase_ : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase_ : Optional[int] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase_ : int = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase_ : Union[str, Any] = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCAmelCase_ : List[str] = True if "*" in mapped_key: lowerCAmelCase_ : Tuple = name.split(__lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase_ : Union[str, Any] = mapped_key.replace('*' , __lowerCamelCase ) if "weight_g" in name: lowerCAmelCase_ : int = '''weight_g''' elif "weight_v" in name: lowerCAmelCase_ : Tuple = '''weight_v''' elif "bias" in name: lowerCAmelCase_ : Tuple = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase_ : List[str] = '''weight''' else: lowerCAmelCase_ : Dict = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase_ : Dict = full_name.split('conv_layers.' )[-1] lowerCAmelCase_ : int = name.split('.' ) lowerCAmelCase_ : str = int(items[0] ) lowerCAmelCase_ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) lowerCAmelCase_ : Any = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) lowerCAmelCase_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) lowerCAmelCase_ : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) lowerCAmelCase_ : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]=True ) -> List[Any]: """simple docstring""" if config_path is not None: lowerCAmelCase_ : Union[str, Any] = UniSpeechConfig.from_pretrained(__lowerCamelCase ) else: lowerCAmelCase_ : Optional[int] = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase_ : Union[str, Any] = Dictionary.load_from_json(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase_ : Optional[int] = target_dict.pad_index lowerCAmelCase_ : Optional[Any] = target_dict.bos_index lowerCAmelCase_ : Optional[int] = target_dict.eos_index lowerCAmelCase_ : Tuple = len(target_dict.symbols ) lowerCAmelCase_ : Optional[int] = os.path.join(__lowerCamelCase , 'vocab.json' ) if not os.path.isdir(__lowerCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) lowerCAmelCase_ : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase_ : Any = 42 lowerCAmelCase_ : Union[str, Any] = 43 with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase_ : Tuple = WavaVecaPhonemeCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__lowerCamelCase , ) lowerCAmelCase_ : str = True if config.feat_extract_norm == '''layer''' else False lowerCAmelCase_ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) lowerCAmelCase_ : Tuple = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowerCAmelCase_ : List[str] = UniSpeechForCTC(__lowerCamelCase ) else: lowerCAmelCase_ : List[Any] = UniSpeechForPreTraining(__lowerCamelCase ) if is_finetuned: lowerCAmelCase_ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: lowerCAmelCase_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase_ : Union[str, Any] = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_unispeech.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowercase__ : str = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
224
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowercase__ : List[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> List[List[ImageInput]]: if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class SCREAMING_SNAKE_CASE (A_ ): lowerCAmelCase = ["pixel_values"] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_snake_case) __A : int = size if size is not None else {'''shortest_edge''': 256} __A : Union[str, Any] = get_size_dict(_snake_case , default_to_square=_snake_case) __A : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __A : Optional[Any] = get_size_dict(_snake_case , param_name='crop_size') __A : List[Any] = do_resize __A : Optional[int] = size __A : Union[str, Any] = do_center_crop __A : int = crop_size __A : List[str] = resample __A : int = do_rescale __A : Tuple = rescale_factor __A : List[Any] = offset __A : Optional[int] = do_normalize __A : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Optional[int] = get_size_dict(_snake_case , default_to_square=_snake_case) if "shortest_edge" in size: __A : Optional[int] = get_resize_output_image_size(_snake_case , size['shortest_edge'] , default_to_square=_snake_case) elif "height" in size and "width" in size: __A : Optional[Any] = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}') return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Dict = get_size_dict(_snake_case) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}') return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : List[Any] = image.astype(np.floataa) if offset: __A : List[str] = image - (scale / 2) return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.') # All transformations expect numpy arrays. __A : Dict = to_numpy_array(_snake_case) if do_resize: __A : Union[str, Any] = self.resize(image=_snake_case , size=_snake_case , resample=_snake_case) if do_center_crop: __A : Optional[Any] = self.center_crop(_snake_case , size=_snake_case) if do_rescale: __A : List[Any] = self.rescale(image=_snake_case , scale=_snake_case , offset=_snake_case) if do_normalize: __A : List[Any] = self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case) __A : List[str] = to_channel_dimension_format(_snake_case , _snake_case) return image def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __A : int = resample if resample is not None else self.resample __A : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __A : str = do_rescale if do_rescale is not None else self.do_rescale __A : int = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[Any] = offset if offset is not None else self.offset __A : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __A : Any = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(_snake_case , default_to_square=_snake_case) __A : Tuple = crop_size if crop_size is not None else self.crop_size __A : Union[str, Any] = get_size_dict(_snake_case , param_name='crop_size') if not valid_images(_snake_case): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') __A : Any = make_batched(_snake_case) __A : Optional[int] = [ [ self._preprocess_image( image=_snake_case , do_resize=_snake_case , size=_snake_case , resample=_snake_case , do_center_crop=_snake_case , crop_size=_snake_case , do_rescale=_snake_case , rescale_factor=_snake_case , offset=_snake_case , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , data_format=_snake_case , ) for img in video ] for video in videos ] __A : Dict = {'''pixel_values''': videos} return BatchFeature(data=_snake_case , tensor_type=_snake_case)
190
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A = logging.get_logger(__name__) A = {'''vocab_file''': '''vocab.txt'''} A = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } A = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } A = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class __lowercase ( A_ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ConvBertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) __a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' , _snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _snake_case ) != tokenize_chinese_chars ): __a : int = getattr(_snake_case , normalizer_state.pop('''type''' ) ) __a : Optional[Any] = do_lower_case __a : List[str] = strip_accents __a : Optional[Any] = tokenize_chinese_chars __a : List[str] = normalizer_class(**_snake_case ) __a : Optional[int] = do_lower_case def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __a : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Tuple = [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : str = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
160
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
0
from __future__ import annotations from random import random class __UpperCAmelCase : def __init__( self : str, __A : int | None = None ): UpperCAmelCase : int = value UpperCAmelCase : Any = random() UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def __repr__( self : Tuple ): from pprint import pformat if self.left is None and self.right is None: return F'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {F'''{self.value}: {self.prior:.5}''': (self.left, self.right)}, indent=1 ) def __str__( self : Dict ): UpperCAmelCase : Dict = str(self.value ) + ''' ''' UpperCAmelCase : Dict = str(self.left or '''''' ) UpperCAmelCase : List[str] = str(self.right or '''''' ) return value + left + right def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: UpperCAmelCase : Dict = split(root.left , __lowerCamelCase ) return left, root else: UpperCAmelCase : Optional[Any] = split(root.right , __lowerCamelCase ) return root, right def a__ ( UpperCAmelCase : str , UpperCAmelCase : str ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: UpperCAmelCase : Optional[int] = merge(left.right , __lowerCamelCase ) return left else: UpperCAmelCase : str = merge(__lowerCamelCase , right.left ) return right def a__ ( UpperCAmelCase : Any , UpperCAmelCase : Dict ) -> Node | None: UpperCAmelCase : Union[str, Any] = Node(__lowerCamelCase ) UpperCAmelCase : Optional[Any] = split(__lowerCamelCase , __lowerCamelCase ) return merge(merge(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Node | None: UpperCAmelCase : List[str] = split(__lowerCamelCase , value - 1 ) UpperCAmelCase : Tuple = split(__lowerCamelCase , __lowerCamelCase ) return merge(__lowerCamelCase , __lowerCamelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": UpperCAmelCase : Any = insert(__lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": UpperCAmelCase : List[Any] = erase(__lowerCamelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def a__ ( ) -> None: UpperCAmelCase : str = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) UpperCAmelCase : Optional[Any] = input() while args != "q": UpperCAmelCase : Union[str, Any] = interact_treap(__lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) UpperCAmelCase : Optional[Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
336
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase: List[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def a__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase: Dict = emb.weight.shape __lowerCAmelCase: List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) __lowerCAmelCase: Optional[int] = emb.weight.data return lin_layer def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False ) -> Optional[int]: __lowerCAmelCase: int = torch.load(__lowerCamelCase , map_location="cpu" )['''model'''] remove_ignore_keys_(__lowerCamelCase ) __lowerCAmelCase: Dict = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowerCAmelCase: Optional[int] = MBartConfig.from_pretrained(__lowerCamelCase , vocab_size=__lowerCamelCase ) if mbart_aa and finetuned: __lowerCAmelCase: Tuple = '''relu''' __lowerCAmelCase: List[Any] = state_dict['''decoder.embed_tokens.weight'''] __lowerCAmelCase: Tuple = MBartForConditionalGeneration(__lowerCamelCase ) model.model.load_state_dict(__lowerCamelCase ) if finetuned: __lowerCAmelCase: Any = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __A = parser.parse_args() __A = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
217
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants __lowercase : int = 3_00 # TEMPERATURE (unit = K) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , ): if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
27
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self : int , __snake_case : Union[str, Any] , __snake_case : Tuple=12 , __snake_case : Optional[int]=7 , __snake_case : List[Any]=True , __snake_case : int=True , __snake_case : Optional[int]=True , __snake_case : Union[str, Any]=99 , __snake_case : int=32 , __snake_case : int=32 , __snake_case : List[Any]=2 , __snake_case : int=4 , __snake_case : Union[str, Any]=37 , __snake_case : Dict=0.1 , __snake_case : int=0.1 , __snake_case : int=5_12 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=0 , __snake_case : Union[str, Any]=None , ) -> Optional[int]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = projection_dim _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = scope _lowerCAmelCase = bos_token_id def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _lowerCAmelCase = input_mask.numpy() _lowerCAmelCase = input_mask.shape _lowerCAmelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def lowercase__ ( self : Tuple ) -> str: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : List[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[Any] ) -> Dict: _lowerCAmelCase = TFBlipTextModel(config=_snake_case ) _lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) _lowerCAmelCase = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( A_ , unittest.TestCase ): _lowercase: int = (TFBlipTextModel,) if is_tf_available() else () _lowercase: Optional[Any] = False _lowercase: List[Any] = False _lowercase: Union[str, Any] = False def lowercase__ ( self : Any ) -> Any: _lowerCAmelCase = BlipTextModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def lowercase__ ( self : str ) -> Optional[int]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowercase__ ( self : List[Any] ) -> Tuple: pass def lowercase__ ( self : List[str] ) -> Tuple: pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> str: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def lowercase__ ( self : Optional[int] ) -> Any: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def lowercase__ ( self : Optional[Any] ) -> Dict: pass @slow def lowercase__ ( self : int ) -> List[Any]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowercase__ ( self : Dict , __snake_case : List[str]=True ) -> Optional[int]: super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
70
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( A_ ): """simple docstring""" def __init__( self : Any , *_A : int , **_A : str ): """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
303
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
126
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowerCamelCase = """\\n Text data.\n Second line of data.""" __lowerCamelCase = """file""" @pytest.fixture(scope="session" ) def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : Union[str, Any] = tmp_path_factory.mktemp("data" ) / (FILE_PATH + '''.zstd''') snake_case : Any = bytes(__lowerCamelCase , "utf-8" ) with zstd.open(__lowerCamelCase , "wb" ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture def UpperCamelCase ( __lowerCamelCase : List[str] ): with open(os.path.join(tmpfs.local_root_dir , __lowerCamelCase ) , "w" ) as f: f.write(__lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str ): snake_case : str = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} snake_case : str = input_paths[compression_format] snake_case : Tuple = tmp_path / '''cache''' snake_case : Optional[int] = DownloadConfig(cache_dir=__lowerCamelCase , extract_compressed_file=__lowerCamelCase ) snake_case : Union[str, Any] = cached_path(__lowerCamelCase , download_config=__lowerCamelCase ) with open(__lowerCamelCase ) as f: snake_case : Dict = f.read() with open(__lowerCamelCase ) as f: snake_case : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] ): snake_case : Any = '''custom_cache''' snake_case : Tuple = '''custom_extracted_dir''' snake_case : Tuple = tmp_path / '''custom_extracted_path''' if default_extracted: snake_case : List[Any] = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , __lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(__lowerCamelCase ) ) snake_case : str = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case : int = xz_file snake_case : List[Any] = ( DownloadConfig(extract_compressed_file=__lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCamelCase ) ) snake_case : Union[str, Any] = cached_path(__lowerCamelCase , download_config=__lowerCamelCase ) assert Path(__lowerCamelCase ).parent.parts[-2:] == expected def UpperCamelCase ( __lowerCamelCase : Optional[int] ): # absolute path snake_case : List[Any] = str(Path(__lowerCamelCase ).resolve() ) assert cached_path(__lowerCamelCase ) == text_file # relative path snake_case : Union[str, Any] = str(Path(__lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCamelCase ) == text_file def UpperCamelCase ( __lowerCamelCase : Any ): # absolute path snake_case : Dict = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(__lowerCamelCase ): cached_path(__lowerCamelCase ) # relative path snake_case : Dict = '''./__missing_file__.txt''' with pytest.raises(__lowerCamelCase ): cached_path(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : List[str] = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(__lowerCamelCase ) as f: snake_case : int = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ) def UpperCamelCase ( ): with pytest.raises(__lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : str = tmp_path_factory.mktemp("data" ) / '''file.html''' with pytest.raises(__lowerCamelCase ): http_get("https://huggingface.co" , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : List[str] = tmp_path_factory.mktemp("data" ) / '''file.html''' with pytest.raises(__lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : List[Any] = tmp_path_factory.mktemp("data" ) / '''file.html''' with pytest.raises(__lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): fsspec_head("s3://huggingface.co" )
59
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase__ : ClassVar[Features] = Features({"image": Image()} ) UpperCAmelCase__ : ClassVar[Features] = Features({"labels": ClassLabel} ) UpperCAmelCase__ : str = "image" UpperCAmelCase__ : str = "labels" def _a ( self , A_ ) -> str: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , _snake_case ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCamelCase =copy.deepcopy(self ) __UpperCamelCase =self.label_schema.copy() __UpperCamelCase =features[self.label_column] __UpperCamelCase =label_schema return task_template @property def _a ( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
62
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
0
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowercase__ : Optional[int] = 4 lowercase__ : Union[str, Any] = 3 class UpperCamelCase__ ( A_ ): """simple docstring""" pass def UpperCamelCase_ ( lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def UpperCamelCase_ ( ) -> Tuple: """simple docstring""" lowerCAmelCase_ : int = int(os.environ['RANK'] ) lowerCAmelCase_ : str = int(os.environ['WORLD_SIZE'] ) lowerCAmelCase_ : List[Any] = ArgumentParser() parser.add_argument('--streaming' , type=__lowerCamelCase ) parser.add_argument('--local_rank' , type=__lowerCamelCase ) parser.add_argument('--num_workers' , type=__lowerCamelCase , default=0 ) lowerCAmelCase_ : int = parser.parse_args() lowerCAmelCase_ : Optional[Any] = args.streaming lowerCAmelCase_ : List[Any] = args.num_workers lowerCAmelCase_ : Optional[Any] = {'''shards''': [f"shard_{shard_idx}" for shard_idx in range(__lowerCamelCase )]} lowerCAmelCase_ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowerCAmelCase_ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowerCAmelCase_ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCAmelCase_ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCAmelCase_ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
224
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
0
'''simple docstring''' class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = name __A : int = value __A : int = weight def __repr__( self): '''simple docstring''' return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.value def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.name def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.weight def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.value / self.weight def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Any , __snake_case : str ) -> List[Any]: __A : List[Any] = [] for i in range(len(__lowerCamelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Any ) -> Union[str, Any]: __A : Tuple = sorted(__lowerCamelCase , key=__lowerCamelCase , reverse=__lowerCamelCase ) __A : int = [] __A : Optional[int] = 0.0, 0.0 for i in range(len(__lowerCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _lowerCAmelCase ( ) -> List[str]: pass if __name__ == "__main__": import doctest doctest.testmod()
190
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput A = 8 def __A ( a_ :str , a_ :Any=BITS) -> Optional[Any]: __a : List[Any] = x.device __a : List[Any] = (x * 2_55).int().clamp(0 , 2_55) __a : List[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCamelCase) __a : Tuple = rearrange(__lowerCamelCase , '''d -> d 1 1''') __a : Optional[int] = rearrange(__lowerCamelCase , '''b c h w -> b c 1 h w''') __a : Tuple = ((x & mask) != 0).float() __a : Dict = rearrange(__lowerCamelCase , '''b c d h w -> b (c d) h w''') __a : Optional[Any] = bits * 2 - 1 return bits def __A ( a_ :Dict , a_ :str=BITS) -> List[Any]: __a : str = x.device __a : Tuple = (x > 0).int() __a : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCamelCase , dtype=torch.intaa) __a : List[Any] = rearrange(__lowerCamelCase , '''d -> d 1 1''') __a : Tuple = rearrange(__lowerCamelCase , '''b (c d) h w -> b c d h w''' , d=8) __a : Union[str, Any] = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''') return (dec / 2_55).clamp(0.0 , 1.0) def __A ( self :str , a_ :Union[str, Any] , a_ :Optional[int] , a_ :Dict , a_ :Any = 0.0 , a_ :Optional[Any] = True , a_ :Any=None , a_ :int = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''') # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __a : Union[str, Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __a : Tuple = self.alphas_cumprod[timestep] __a : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __a : str = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __a : Dict = self.bit_scale if self.config.clip_sample: __a : Union[str, Any] = torch.clamp(__lowerCamelCase , -scale , __lowerCamelCase) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __a : Optional[Any] = self._get_variance(__lowerCamelCase , __lowerCamelCase) __a : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __a : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a : Dict = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __a : Union[str, Any] = model_output.device if torch.is_tensor(__lowerCamelCase) else '''cpu''' __a : Union[str, Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCamelCase).to(__lowerCamelCase) __a : Dict = self._get_variance(__lowerCamelCase , __lowerCamelCase) ** 0.5 * eta * noise __a : List[Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase) def __A ( self :int , a_ :str , a_ :Union[str, Any] , a_ :Any , a_ :Dict="epsilon" , a_ :Union[str, Any]=None , a_ :str = True , ) -> Union[DDPMSchedulerOutput, Tuple]: __a : List[str] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __a : Optional[Any] = torch.split(__lowerCamelCase , sample.shape[1] , dim=1) else: __a : Optional[int] = None # 1. compute alphas, betas __a : Tuple = self.alphas_cumprod[t] __a : Tuple = self.alphas_cumprod[t - 1] if t > 0 else self.one __a : Optional[Any] = 1 - alpha_prod_t __a : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __a : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __a : Optional[int] = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""") # 3. Clip "predicted x_0" __a : Tuple = self.bit_scale if self.config.clip_sample: __a : Union[str, Any] = torch.clamp(__lowerCamelCase , -scale , __lowerCamelCase) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : Any = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __a : int = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __a : Any = 0 if t > 0: __a : List[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCamelCase).to(model_output.device) __a : Dict = (self._get_variance(__lowerCamelCase , predicted_variance=__lowerCamelCase) ** 0.5) * noise __a : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase) class __lowercase ( A_ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , ): super().__init__() __a : Optional[Any] = bit_scale __a : Dict = ( ddim_bit_scheduler_step if isinstance(_snake_case , _snake_case ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_snake_case , scheduler=_snake_case ) @torch.no_grad() def __call__( self , _UpperCAmelCase = 256 , _UpperCAmelCase = 256 , _UpperCAmelCase = 50 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , **_UpperCAmelCase , ): __a : Dict = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_snake_case , ) __a : Dict = decimal_to_bits(_snake_case ) * self.bit_scale __a : Optional[Any] = latents.to(self.device ) self.scheduler.set_timesteps(_snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __a : List[Any] = self.unet(_snake_case , _snake_case ).sample # compute the previous noisy sample x_t -> x_t-1 __a : Any = self.scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample __a : str = bits_to_decimal(_snake_case ) if output_type == "pil": __a : str = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
160
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
0
from __future__ import annotations def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int = None ) -> list[list[str]]: UpperCAmelCase : List[str] = word_bank or [] # create a table UpperCAmelCase : int = len(__lowerCamelCase ) + 1 UpperCAmelCase : list[list[list[str]]] = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value UpperCAmelCase : Union[str, Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: UpperCAmelCase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
336
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class snake_case : def __init__( self : Dict , UpperCamelCase__ : Dict)-> Tuple: '''simple docstring''' __lowerCAmelCase: Optional[int] = str(id_) __lowerCAmelCase: Tuple = None __lowerCAmelCase: Dict = None __lowerCAmelCase: Dict = [] __lowerCAmelCase: int = {} # {vertex:distance} def __lt__( self : List[Any] , UpperCamelCase__ : int)-> Any: '''simple docstring''' return self.key < other.key def __repr__( self : Tuple)-> List[str]: '''simple docstring''' return self.id def lowercase_ ( self : Dict , UpperCamelCase__ : Optional[Any])-> Any: '''simple docstring''' self.neighbors.append(_snake_case) def lowercase_ ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple)-> List[str]: '''simple docstring''' __lowerCAmelCase: Any = weight def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __lowerCamelCase ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: __lowerCAmelCase: List[Any] = [] for u in graph: __lowerCAmelCase: str = math.inf __lowerCAmelCase: Optional[Any] = None __lowerCAmelCase: Union[str, Any] = 0 __lowerCAmelCase: Tuple = graph[:] while q: __lowerCAmelCase: int = min(__lowerCamelCase ) q.remove(__lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowerCAmelCase: List[Any] = u __lowerCAmelCase: Tuple = u.edges[v.id] for i in range(1 , len(__lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: __lowerCAmelCase: List[str] = math.inf __lowerCAmelCase: Any = None __lowerCAmelCase: Dict = 0 __lowerCAmelCase: Any = list(__lowerCamelCase ) hq.heapify(__lowerCamelCase ) while h: __lowerCAmelCase: List[str] = hq.heappop(__lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowerCAmelCase: str = u __lowerCAmelCase: Optional[int] = u.edges[v.id] hq.heapify(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
217
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowercase : Any = logging.get_logger(__name__) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : List[str]=None ): # Recurse if needed if "." in tensor_name: __a : List[str] = tensor_name.split('.' ) for split in splits[:-1]: __a : List[Any] = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) __a : Optional[int] = new_module __a : Tuple = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) __a : List[Any] = tensor_name in module._buffers __a : Any = getattr(__lowerCamelCase , __lowerCamelCase ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) __a : Any = False __a : List[str] = False if is_buffer or not is_bitsandbytes_available(): __a : Union[str, Any] = False __a : str = False else: __a : Any = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __a : int = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __a : Tuple = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __a : List[Any] = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): __a : str = value.to('cpu' ) if value.dtype == torch.inta: __a : str = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: __a : Tuple = torch.tensor(__lowerCamelCase , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCamelCase ) and fpaa_statistics is None: __a : str = new_value.T __a : str = old_value.__dict__ if is_abit: __a : Union[str, Any] = bnb.nn.IntaParams(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) elif is_abit: __a : Optional[int] = bnb.nn.Paramsabit(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) __a : Tuple = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(__lowerCamelCase ) ) else: if value is None: __a : Union[str, Any] = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): __a : List[Any] = value.to(__lowerCamelCase ) else: __a : Optional[Any] = torch.tensor(__lowerCamelCase , device=__lowerCamelCase ) if is_buffer: __a : Tuple = new_value else: __a : List[Any] = nn.Parameter(__lowerCamelCase , requires_grad=old_value.requires_grad ) __a : int = new_value def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Any=False ): for name, module in model.named_children(): if current_key_name is None: __a : Tuple = [] current_key_name.append(__lowerCamelCase ) if (isinstance(__lowerCamelCase , nn.Linear ) or isinstance(__lowerCamelCase , __lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(__lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __a : str = module.weight.shape else: __a : str = module.in_features __a : Union[str, Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": __a : Union[str, Any] = bnb.nn.LinearabitLt( __lowerCamelCase , __lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __a : List[Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __a : Tuple = bnb.nn.Linearabit( __lowerCamelCase , __lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __a : Optional[int] = True # Store the module class in case we need to transpose the weight later __a : str = type(__lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCamelCase ) if len(list(module.children() ) ) > 0: __a : Any = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_been_replaced=__lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Dict=None ): __a : Dict = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert __a : str = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCamelCase (*_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : int ): warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , __lowerCamelCase , ) return replace_with_bnb_linear(*__lowerCamelCase , **__lowerCamelCase ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Any , **_SCREAMING_SNAKE_CASE : int ): warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , __lowerCamelCase , ) return set_module_quantized_tensor_to_device(*__lowerCamelCase , **__lowerCamelCase ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : List[str] = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __a : Union[str, Any] = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): __a : Optional[int] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __a : Union[str, Any] = sum(__lowerCamelCase , [] ) __a : Dict = len(__lowerCamelCase ) > 0 # Check if it is a base model __a : Optional[Any] = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __a : Optional[int] = list(model.named_children() ) __a : int = [list_modules[-1][0]] # add last module together with tied weights __a : int = set(__lowerCamelCase ) - set(__lowerCamelCase ) __a : Dict = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys __a : Dict = ['''.weight''', '''.bias'''] __a : Dict = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __a : List[str] = name.replace(__lowerCamelCase , '' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names
27
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A__ : List[Any] ='''sshleifer/bart-tiny-random''' A__ : Any ='''patrickvonplaten/t5-tiny-random''' @require_torch class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : Union[str, Any] ) -> int: return AutoConfig.from_pretrained(_snake_case ) def lowercase__ ( self : Optional[int] ) -> List[str]: _lowerCAmelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowercase__ ( self : Tuple ) -> Any: _lowerCAmelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowercase__ ( self : List[Any] ) -> Any: _lowerCAmelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowercase__ ( self : Any ) -> List[Any]: with self.assertRaises(_snake_case ): create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=_snake_case , d=_snake_case )
70
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowercase_ = logging.get_logger(__name__) lowercase_ = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) lowercase_ = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) lowercase_ = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) lowercase_ = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) lowercase_ = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) lowercase_ = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) lowercase_ = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) lowercase_ = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) lowercase_ = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) lowercase_ = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) lowercase_ = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_MAPPING lowercase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
0
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : int ) ->int: while b: lowerCamelCase__ : str =b, a % b return a def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : List[str] ) ->int: return a if b == 0 else euclidean_gcd_recursive(__lowerCamelCase , a % b ) def lowerCAmelCase_ ( ) ->Tuple: print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
126
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : int = BertJapaneseTokenizer A__ : Dict = False A__ : str = True def _SCREAMING_SNAKE_CASE (self : str ) -> str: '''simple docstring''' super().setUp() snake_case : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Dict ) -> str: '''simple docstring''' snake_case : str = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case : Any = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> Any: '''simple docstring''' snake_case : List[Any] = self.get_input_output_texts(_snake_case ) snake_case : int = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) snake_case : Optional[Any] = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case ) return text, ids def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.tokenizer_class(self.vocab_file ) snake_case : Any = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(_snake_case , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Any: '''simple docstring''' snake_case : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(_snake_case ) snake_case : Optional[Any] = '''こんにちは、世界。\nこんばんは、世界。''' snake_case : Optional[int] = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case : Dict = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_snake_case , "wb" ) as handle: pickle.dump(_snake_case , _snake_case ) with open(_snake_case , "rb" ) as handle: snake_case : int = pickle.load(_snake_case ) snake_case : Optional[Any] = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Tuple: '''simple docstring''' try: snake_case : Optional[Any] = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' try: snake_case : Dict = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : int = MecabTokenizer(do_lower_case=_snake_case , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' try: snake_case : Tuple = MecabTokenizer( do_lower_case=_snake_case , normalize_text=_snake_case , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' snake_case : str = MecabTokenizer(normalize_text=_snake_case , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(_snake_case ) snake_case : Tuple = '''こんにちは、世界。\nこんばんは、世界。''' snake_case : Optional[int] = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case : Optional[Any] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_snake_case , "wb" ) as handle: pickle.dump(_snake_case , _snake_case ) with open(_snake_case , "rb" ) as handle: snake_case : Optional[int] = pickle.load(_snake_case ) snake_case : Dict = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) @require_sudachi def _SCREAMING_SNAKE_CASE (self : str ) -> str: '''simple docstring''' snake_case : int = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case : int = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case : Optional[int] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Dict = SudachiTokenizer(do_lower_case=_snake_case , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' snake_case : Optional[Any] = SudachiTokenizer(normalize_text=_snake_case , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = SudachiTokenizer(trim_whitespace=_snake_case , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> str: '''simple docstring''' snake_case : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(_snake_case ) snake_case : Dict = '''こんにちは、世界。\nこんばんは、世界。''' snake_case : List[Any] = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case : int = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_snake_case , "wb" ) as handle: pickle.dump(_snake_case , _snake_case ) with open(_snake_case , "rb" ) as handle: snake_case : Optional[int] = pickle.load(_snake_case ) snake_case : Tuple = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) @require_jumanpp def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' snake_case : List[str] = JumanppTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' snake_case : Any = JumanppTokenizer(normalize_text=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' snake_case : int = JumanppTokenizer(trim_whitespace=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] snake_case : Dict = {} for i, token in enumerate(_snake_case ): snake_case : Any = i snake_case : Any = WordpieceTokenizer(vocab=_snake_case , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) snake_case : Union[str, Any] = tokenizer.subword_tokenizer snake_case : Tuple = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(_snake_case , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) snake_case : List[Any] = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(_snake_case , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : Any = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) snake_case : List[Any] = tokenizer.encode("ありがとう。" , add_special_tokens=_snake_case ) snake_case : Optional[Any] = tokenizer.encode("どういたしまして。" , add_special_tokens=_snake_case ) snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(_snake_case ) snake_case : str = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : Optional[Any] = BertJapaneseTokenizer A__ : Tuple = False def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' super().setUp() snake_case : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , **snake_case__ : int ) -> Optional[Any]: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **_snake_case ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[Any] ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case : Optional[int] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : int = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) snake_case : Union[str, Any] = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( _snake_case , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case : Optional[Any] = {} for i, token in enumerate(_snake_case ): snake_case : List[str] = i snake_case : Optional[Any] = CharacterTokenizer(vocab=_snake_case , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' snake_case : str = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) snake_case : Dict = tokenizer.encode("ありがとう。" , add_special_tokens=_snake_case ) snake_case : Union[str, Any] = tokenizer.encode("どういたしまして。" , add_special_tokens=_snake_case ) snake_case : str = tokenizer.build_inputs_with_special_tokens(_snake_case ) snake_case : Optional[int] = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' snake_case : Dict = '''cl-tohoku/bert-base-japanese''' snake_case : List[str] = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' snake_case : List[str] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(_snake_case ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) snake_case : List[str] = '''bert-base-cased''' with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(_snake_case ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
59
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Union[str, Any]: __UpperCamelCase =StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __UpperCamelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) sd_pipe.set_scheduler('sample_euler' ) __UpperCamelCase ='''A painting of a squirrel eating a burger''' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sd_pipe([prompt] , generator=_snake_case , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> str: __UpperCamelCase =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __UpperCamelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) sd_pipe.set_scheduler('sample_euler' ) __UpperCamelCase ='''A painting of a squirrel eating a burger''' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sd_pipe([prompt] , generator=_snake_case , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _a ( self ) -> int: __UpperCamelCase =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __UpperCamelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __UpperCamelCase ='''A painting of a squirrel eating a burger''' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sd_pipe( [prompt] , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_snake_case , ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase =np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
62
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : List[Any] = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCamelCase__ ( A_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = "wavlm" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[str]=3_2 , SCREAMING_SNAKE_CASE_ : Tuple=7_6_8 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE_ : Any=1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=1E-5 , SCREAMING_SNAKE_CASE_ : List[Any]="group" , SCREAMING_SNAKE_CASE_ : List[str]="gelu" , SCREAMING_SNAKE_CASE_ : Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE_ : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_ : List[Any]=(1_0, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Dict=1_2_8 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_6 , SCREAMING_SNAKE_CASE_ : List[Any]=3_2_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=8_0_0 , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.05 , SCREAMING_SNAKE_CASE_ : Dict=1_0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_0 , SCREAMING_SNAKE_CASE_ : str=3_2_0 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_0_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=2_5_6 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]="mean" , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Any=2_5_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , SCREAMING_SNAKE_CASE_ : Any=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE_ : str=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE_ : Any=5_1_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=8_0 , SCREAMING_SNAKE_CASE_ : Tuple=0 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : Optional[int]=None , **SCREAMING_SNAKE_CASE_ : Dict , ): super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case ) lowerCAmelCase_ : int = hidden_size lowerCAmelCase_ : Optional[Any] = feat_extract_norm lowerCAmelCase_ : List[str] = feat_extract_activation lowerCAmelCase_ : List[Any] = list(_snake_case ) lowerCAmelCase_ : str = list(_snake_case ) lowerCAmelCase_ : Tuple = list(_snake_case ) lowerCAmelCase_ : str = conv_bias lowerCAmelCase_ : Tuple = num_buckets lowerCAmelCase_ : Optional[int] = max_bucket_distance lowerCAmelCase_ : str = num_conv_pos_embeddings lowerCAmelCase_ : str = num_conv_pos_embedding_groups lowerCAmelCase_ : Dict = len(self.conv_dim ) lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : Tuple = hidden_dropout lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : int = activation_dropout lowerCAmelCase_ : Union[str, Any] = feat_proj_dropout lowerCAmelCase_ : Any = final_dropout lowerCAmelCase_ : Optional[Any] = layerdrop lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = num_ctc_classes lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Any = do_stable_layer_norm lowerCAmelCase_ : List[str] = use_weighted_layer_sum lowerCAmelCase_ : int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ : List[str] = apply_spec_augment lowerCAmelCase_ : Dict = mask_time_prob lowerCAmelCase_ : List[Any] = mask_time_length lowerCAmelCase_ : Union[str, Any] = mask_time_min_masks lowerCAmelCase_ : List[str] = mask_feature_prob lowerCAmelCase_ : Dict = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase_ : List[str] = num_codevectors_per_group lowerCAmelCase_ : Dict = num_codevector_groups lowerCAmelCase_ : List[Any] = contrastive_logits_temperature lowerCAmelCase_ : int = num_negatives lowerCAmelCase_ : Union[str, Any] = codevector_dim lowerCAmelCase_ : Tuple = proj_codevector_dim lowerCAmelCase_ : int = diversity_loss_weight # ctc loss lowerCAmelCase_ : Any = ctc_loss_reduction lowerCAmelCase_ : Optional[Any] = ctc_zero_infinity # adapter lowerCAmelCase_ : Optional[Any] = add_adapter lowerCAmelCase_ : Tuple = adapter_kernel_size lowerCAmelCase_ : List[str] = adapter_stride lowerCAmelCase_ : Union[str, Any] = num_adapter_layers lowerCAmelCase_ : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase_ : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ : int = list(_snake_case ) lowerCAmelCase_ : List[Any] = list(_snake_case ) lowerCAmelCase_ : str = list(_snake_case ) lowerCAmelCase_ : Dict = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
224
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
0
'''simple docstring''' import re import string import numpy as np import datasets lowercase__ : str = '''\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n''' lowercase__ : int = '''\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n''' lowercase__ : int = '''\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: __A : Dict = np.array([re.sub(_snake_case , '' , _snake_case) for x in predictions]) __A : Optional[Any] = np.array([re.sub(_snake_case , '' , _snake_case) for x in references]) else: __A : Optional[Any] = np.asarray(_snake_case) __A : Any = np.asarray(_snake_case) if ignore_case: __A : List[str] = np.char.lower(_snake_case) __A : Tuple = np.char.lower(_snake_case) if ignore_punctuation: __A : Union[str, Any] = string.punctuation.maketrans('' , '' , string.punctuation) __A : int = np.char.translate(_snake_case , table=_snake_case) __A : Optional[int] = np.char.translate(_snake_case , table=_snake_case) if ignore_numbers: __A : Optional[Any] = string.digits.maketrans('' , '' , string.digits) __A : Tuple = np.char.translate(_snake_case , table=_snake_case) __A : List[str] = np.char.translate(_snake_case , table=_snake_case) __A : Any = predictions == references return {"exact_match": np.mean(_snake_case) * 100}
190
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = 1 UpperCAmelCase : Tuple = 3 UpperCAmelCase : str = (3_2, 3_2) UpperCAmelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(_snake_case ) return image @property def __magic_name__ ( self : int ): torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=3_2, ) return model @property def __magic_name__ ( self : Dict ): torch.manual_seed(0 ) UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) return model @property def __magic_name__ ( self : int ): torch.manual_seed(0 ) UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) return CLIPTextModel(_snake_case ) @property def __magic_name__ ( self : List[Any] ): def extract(*__A : int, **__A : int ): class __UpperCAmelCase : def __init__( self : int ): UpperCAmelCase : Union[str, Any] = torch.ones([0] ) def __magic_name__ ( self : Optional[Any], __A : List[Any] ): self.pixel_values.to(_snake_case ) return self return Out() return extract def __magic_name__ ( self : Dict ): UpperCAmelCase : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : List[Any] = self.dummy_cond_unet UpperCAmelCase : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='''scaled_linear''', clip_sample=_snake_case, set_alpha_to_one=_snake_case, ) UpperCAmelCase : str = self.dummy_vae UpperCAmelCase : int = self.dummy_text_encoder UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase : str = StableDiffusionPipeline( unet=_snake_case, scheduler=_snake_case, vae=_snake_case, text_encoder=_snake_case, tokenizer=_snake_case, safety_checker=_snake_case, feature_extractor=self.dummy_extractor, ) UpperCAmelCase : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase : Dict = '''A painting of a squirrel eating a burger''' UpperCAmelCase : List[Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) UpperCAmelCase : int = sd_pipe([prompt], generator=_snake_case, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) UpperCAmelCase : Any = output.images UpperCAmelCase : Union[str, Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) UpperCAmelCase : int = sd_pipe( [prompt], generator=_snake_case, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=_snake_case, )[0] UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=_snake_case ) UpperCAmelCase : str = self.dummy_vae UpperCAmelCase : int = self.dummy_text_encoder UpperCAmelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase : Optional[int] = StableDiffusionPipeline( unet=_snake_case, scheduler=_snake_case, vae=_snake_case, text_encoder=_snake_case, tokenizer=_snake_case, safety_checker=_snake_case, feature_extractor=self.dummy_extractor, ) UpperCAmelCase : Any = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase : int = '''A painting of a squirrel eating a burger''' UpperCAmelCase : str = torch.Generator(device=_snake_case ).manual_seed(0 ) UpperCAmelCase : Optional[Any] = sd_pipe([prompt], generator=_snake_case, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) UpperCAmelCase : int = output.images UpperCAmelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(0 ) UpperCAmelCase : int = sd_pipe( [prompt], generator=_snake_case, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=_snake_case, )[0] UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase : int = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self : Any ): UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''', safety_checker=_snake_case ) assert isinstance(_snake_case, _snake_case ) assert isinstance(pipe.scheduler, _snake_case ) assert pipe.safety_checker is None UpperCAmelCase : Union[str, Any] = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case ) UpperCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(_snake_case ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase : str = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''', '''This test requires a GPU''' ) def __magic_name__ ( self : str ): UpperCAmelCase : Any = self.dummy_cond_unet UpperCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=_snake_case ) UpperCAmelCase : int = self.dummy_vae UpperCAmelCase : List[str] = self.dummy_text_encoder UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCAmelCase : Dict = unet.half() UpperCAmelCase : Any = vae.half() UpperCAmelCase : Tuple = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline( unet=_snake_case, scheduler=_snake_case, vae=_snake_case, text_encoder=_snake_case, tokenizer=_snake_case, safety_checker=_snake_case, feature_extractor=self.dummy_extractor, ) UpperCAmelCase : str = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase : Any = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Union[str, Any] = sd_pipe([prompt], num_inference_steps=2, output_type='''np''' ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=_snake_case ) UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase : str = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase : Optional[int] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCAmelCase : List[Any] = 4_0_0_3_6_6_0_3_4_6 UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase : Optional[Any] = torch.manual_seed(_snake_case ) UpperCAmelCase : str = sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=5_0, output_type='''np''', width=5_1_2, height=5_1_2, sld_guidance_scale=0, ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase : int = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCAmelCase : Optional[int] = torch.manual_seed(_snake_case ) UpperCAmelCase : Optional[Any] = sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=5_0, output_type='''np''', width=5_1_2, height=5_1_2, sld_guidance_scale=2_0_0_0, sld_warmup_steps=7, sld_threshold=0.0_2_5, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCAmelCase : List[Any] = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : Optional[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self : Any ): UpperCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=_snake_case ) UpperCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase : Optional[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase : List[Any] = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCAmelCase : Tuple = 2_7_3_4_9_7_1_7_5_5 UpperCAmelCase : List[str] = 7 UpperCAmelCase : Dict = torch.manual_seed(_snake_case ) UpperCAmelCase : Union[str, Any] = sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=5_0, output_type='''np''', width=5_1_2, height=5_1_2, sld_guidance_scale=0, ) UpperCAmelCase : str = output.images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCAmelCase : Tuple = torch.manual_seed(_snake_case ) UpperCAmelCase : Union[str, Any] = sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=5_0, output_type='''np''', width=5_1_2, height=5_1_2, sld_guidance_scale=2_0_0_0, sld_warmup_steps=7, sld_threshold=0.0_2_5, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCAmelCase : int = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : Optional[int] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self : Tuple ): UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCAmelCase : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase : Optional[int] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCAmelCase : List[Any] = 1_0_4_4_3_5_5_2_3_4 UpperCAmelCase : Optional[int] = 1_2 UpperCAmelCase : List[Any] = torch.manual_seed(_snake_case ) UpperCAmelCase : Dict = sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=5_0, output_type='''np''', width=5_1_2, height=5_1_2, sld_guidance_scale=0, ) UpperCAmelCase : str = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : List[str] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCAmelCase : Optional[int] = torch.manual_seed(_snake_case ) UpperCAmelCase : Any = sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=5_0, output_type='''np''', width=5_1_2, height=5_1_2, sld_guidance_scale=2_0_0_0, sld_warmup_steps=7, sld_threshold=0.0_2_5, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
336
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( A_, A_, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = StableDiffusionSAGPipeline SCREAMING_SNAKE_CASE_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Optional[int] = False def lowercase_ ( self : Tuple)-> List[str]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) __lowerCAmelCase: Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) __lowerCAmelCase: Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0) __lowerCAmelCase: List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __lowerCAmelCase: str = CLIPTextModel(_snake_case) __lowerCAmelCase: Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : str=0)-> List[Any]: '''simple docstring''' if str(_snake_case).startswith("mps"): __lowerCAmelCase: Optional[Any] = torch.manual_seed(_snake_case) else: __lowerCAmelCase: int = torch.Generator(device=_snake_case).manual_seed(_snake_case) __lowerCAmelCase: Any = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def lowercase_ ( self : Optional[Any])-> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any])-> Dict: '''simple docstring''' __lowerCAmelCase: str = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") __lowerCAmelCase: Any = sag_pipe.to(_snake_case) sag_pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: str = '''.''' __lowerCAmelCase: Optional[Any] = torch.manual_seed(0) __lowerCAmelCase: Any = sag_pipe( [prompt] , generator=_snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np") __lowerCAmelCase: Any = output.images __lowerCAmelCase: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: int = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def lowercase_ ( self : int)-> Any: '''simple docstring''' __lowerCAmelCase: Dict = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") __lowerCAmelCase: Optional[Any] = sag_pipe.to(_snake_case) sag_pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: Any = '''.''' __lowerCAmelCase: Optional[Any] = torch.manual_seed(0) __lowerCAmelCase: int = sag_pipe( [prompt] , generator=_snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np") __lowerCAmelCase: Dict = output.images __lowerCAmelCase: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: int = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") __lowerCAmelCase: Tuple = sag_pipe.to(_snake_case) sag_pipe.set_progress_bar_config(disable=_snake_case) __lowerCAmelCase: Tuple = '''.''' __lowerCAmelCase: List[Any] = torch.manual_seed(0) __lowerCAmelCase: Dict = sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=_snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" , ) __lowerCAmelCase: List[str] = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
217
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( A_ , unittest.TestCase ): A_ = LayoutLMTokenizer A_ = LayoutLMTokenizerFast A_ = True A_ = True def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() __a : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Dict = '''UNwant\u00E9d,running''' __a : Optional[Any] = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.tokenizer_class(self.vocab_file ) __a : Optional[int] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_snake_case , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [7, 4, 5, 10, 8, 9] ) def __UpperCAmelCase ( self ): '''simple docstring''' pass
27
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A__ : int ={ '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) A__ : Any ={ '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = list(s_dict.keys() ) for key in keys: _lowerCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: _lowerCAmelCase = new_key.replace(__lowerCamelCase , __lowerCamelCase ) print(f"{key} -> {new_key}" ) _lowerCAmelCase = s_dict.pop(__lowerCamelCase ) return s_dict def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _lowerCAmelCase = emb.weight.data return lin_layer def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.basename(__lowerCamelCase ) _lowerCAmelCase = url.split("""/""" )[-2] _lowerCAmelCase = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ) and not os.path.isfile(__lowerCamelCase ): raise RuntimeError(f"{download_target} exists and is not a regular file" ) if os.path.isfile(__lowerCamelCase ): _lowerCAmelCase = open(__lowerCamelCase , """rb""" ).read() if hashlib.shaaaa(__lowerCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(__lowerCamelCase ) as source, open(__lowerCamelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=__lowerCamelCase , unit_divisor=10_24 ) as loop: while True: _lowerCAmelCase = source.read(81_92 ) if not buffer: break output.write(__lowerCamelCase ) loop.update(len(__lowerCamelCase ) ) _lowerCAmelCase = open(__lowerCamelCase , """rb""" ).read() if hashlib.shaaaa(__lowerCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if ".pt" not in checkpoint_path: _lowerCAmelCase = _download(_MODELS[checkpoint_path] ) else: _lowerCAmelCase = torch.load(__lowerCamelCase , map_location="""cpu""" ) _lowerCAmelCase = original_checkpoint['''dims'''] _lowerCAmelCase = original_checkpoint['''model_state_dict'''] _lowerCAmelCase = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(__lowerCamelCase ) rename_keys(__lowerCamelCase ) _lowerCAmelCase = True _lowerCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] _lowerCAmelCase = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=__lowerCamelCase , decoder_ffn_dim=__lowerCamelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) _lowerCAmelCase = WhisperForConditionalGeneration(__lowerCamelCase ) _lowerCAmelCase = model.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) if len(__lowerCamelCase ) > 0 and not set(__lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f" but all the following weights are missing {missing}" ) if tie_embeds: _lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCAmelCase = proj_out_weights model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": A__ : Any =argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A__ : List[Any] =parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
70
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
0
from ...configuration_utils import PretrainedConfig lowercase_ = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class __UpperCamelCase ( A_ ): """simple docstring""" lowerCAmelCase_ = "tapas" def __init__( self : List[Any] , _A : Dict=3_0522 , _A : Union[str, Any]=768 , _A : int=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : List[Any]="gelu" , _A : Optional[int]=0.1 , _A : Tuple=0.1 , _A : List[Any]=1024 , _A : Any=[3, 256, 256, 2, 256, 256, 10] , _A : List[Any]=0.02 , _A : Union[str, Any]=1e-12 , _A : str=0 , _A : Any=10.0 , _A : int=0 , _A : Optional[Any]=1.0 , _A : List[str]=None , _A : Tuple=1.0 , _A : Tuple=False , _A : List[Any]=None , _A : int=1.0 , _A : List[Any]=1.0 , _A : Optional[int]=False , _A : Optional[int]=False , _A : Optional[int]="ratio" , _A : Any=None , _A : Union[str, Any]=None , _A : List[str]=64 , _A : Optional[Any]=32 , _A : Optional[Any]=False , _A : Optional[int]=True , _A : Dict=False , _A : Tuple=False , _A : int=True , _A : List[str]=False , _A : Dict=None , _A : Optional[int]=None , **_A : int , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : Any = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = type_vocab_sizes __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps # Fine-tuning task hyperparameters __SCREAMING_SNAKE_CASE : Any = positive_label_weight __SCREAMING_SNAKE_CASE : int = num_aggregation_labels __SCREAMING_SNAKE_CASE : List[str] = aggregation_loss_weight __SCREAMING_SNAKE_CASE : Optional[int] = use_answer_as_supervision __SCREAMING_SNAKE_CASE : Optional[Any] = answer_loss_importance __SCREAMING_SNAKE_CASE : Union[str, Any] = use_normalized_answer_loss __SCREAMING_SNAKE_CASE : str = huber_loss_delta __SCREAMING_SNAKE_CASE : str = temperature __SCREAMING_SNAKE_CASE : int = aggregation_temperature __SCREAMING_SNAKE_CASE : List[Any] = use_gumbel_for_cells __SCREAMING_SNAKE_CASE : Tuple = use_gumbel_for_aggregation __SCREAMING_SNAKE_CASE : Union[str, Any] = average_approximation_function __SCREAMING_SNAKE_CASE : Union[str, Any] = cell_selection_preference __SCREAMING_SNAKE_CASE : Any = answer_loss_cutoff __SCREAMING_SNAKE_CASE : List[Any] = max_num_rows __SCREAMING_SNAKE_CASE : str = max_num_columns __SCREAMING_SNAKE_CASE : int = average_logits_per_cell __SCREAMING_SNAKE_CASE : str = select_one_column __SCREAMING_SNAKE_CASE : str = allow_empty_column_selection __SCREAMING_SNAKE_CASE : Any = init_cell_selection_weights_to_zero __SCREAMING_SNAKE_CASE : Optional[int] = reset_position_index_per_cell __SCREAMING_SNAKE_CASE : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __SCREAMING_SNAKE_CASE : Optional[Any] = aggregation_labels __SCREAMING_SNAKE_CASE : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , _snake_case ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
303
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
0
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : int ) ->float: lowerCamelCase__ : Optional[int] =0 while len(__lowerCamelCase ) > 1: lowerCamelCase__ : Optional[int] =0 # Consider two files with minimum cost to be merged for _ in range(2 ): lowerCamelCase__ : List[Any] =files.index(min(__lowerCamelCase ) ) temp += files[min_index] files.pop(__lowerCamelCase ) files.append(__lowerCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
126
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
0
def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): snake_case : Optional[Any] = generate_pascal_triangle(__lowerCamelCase ) for row_idx in range(__lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def UpperCamelCase ( __lowerCamelCase : str ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("The input value of \'num_rows\' should be \'int\'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of \'num_rows\' should be greater than or equal to 0" ) snake_case : list[list[int]] = [] for current_row_idx in range(__lowerCamelCase ): snake_case : int = populate_current_row(__lowerCamelCase , __lowerCamelCase ) triangle.append(__lowerCamelCase ) return triangle def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ): snake_case : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case : Tuple = 1, 1 for current_col_idx in range(1 , __lowerCamelCase ): calculate_current_element( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return current_row def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , ): snake_case : Optional[Any] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case : Dict = triangle[current_row_idx - 1][current_col_idx] snake_case : Dict = above_to_left_elt + above_to_right_elt def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("The input value of \'num_rows\' should be \'int\'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of \'num_rows\' should be greater than or equal to 0" ) snake_case : list[list[int]] = [[1]] for row_index in range(1 , __lowerCamelCase ): snake_case : Any = [0] + result[-1] + [0] snake_case : List[Any] = row_index + 1 # Calculate the number of distinct elements in a row snake_case : List[str] = sum(divmod(__lowerCamelCase , 2 ) ) snake_case : Dict = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case : List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case : List[Any] = row_first_half + row_second_half result.append(__lowerCamelCase ) return result def UpperCamelCase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ) -> None: snake_case : str = f"""{func.__name__}({value})""" snake_case : Optional[int] = timeit(f"""__main__.{call}""" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCamelCase , __lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
59
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
62
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ) -> List[Any]: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def UpperCamelCase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : str = [[float('inf' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowerCAmelCase_ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCAmelCase_ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowercase__ : Optional[int] = int(input("""Enter number of vertices: """)) lowercase__ : List[str] = int(input("""Enter number of edges: """)) lowercase__ : Optional[int] = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): lowercase__ : Optional[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) lowercase__ : List[Any] = int(input("""Enter source:""")) lowercase__ : List[Any] = int(input("""Enter destination:""")) lowercase__ : int = float(input("""Enter weight:""")) lowercase__ : Tuple = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
224
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowercase__ : Union[str, Any] = get_logger(__name__) def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Any=0 ) -> List[Any]: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __A : Optional[int] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __A : Optional[Any] = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __A : Tuple = os.path.join(__lowerCamelCase , __lowerCamelCase ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __A : Optional[int] = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __A : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Saving model to {output_model_file}' ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __A : Union[str, Any] = os.path.join(__lowerCamelCase , f'{MODEL_NAME}_{model_index}' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) logger.info(f'Saving model to {ckpt_dir}' ) __A : Any = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__lowerCamelCase , storage_writer=dist_cp.FileSystemWriter(__lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def _lowerCAmelCase ( __snake_case : str , __snake_case : str , __snake_case : str , __snake_case : int , __snake_case : List[Any]=0 ) -> Tuple: accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__lowerCamelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return __A : Optional[Any] = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __A : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Loading model from {input_model_file}' ) __A : List[Any] = torch.load(__lowerCamelCase ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __A : List[Any] = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __A : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Loading model from {input_model_file}' ) __A : List[str] = torch.load(__lowerCamelCase ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __A : str = ( os.path.join(__lowerCamelCase , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __A : Dict = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__lowerCamelCase , storage_reader=dist_cp.FileSystemReader(__lowerCamelCase ) , planner=DefaultLoadPlanner() , ) __A : Optional[int] = state_dict['''model'''] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(__lowerCamelCase ) def _lowerCAmelCase ( __snake_case : str , __snake_case : Any , __snake_case : Dict , __snake_case : List[str] , __snake_case : Any , __snake_case : Dict=0 ) -> int: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __A : Tuple = FSDP.optim_state_dict(__lowerCamelCase , __lowerCamelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __A : List[Any] = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __A : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __A : Any = os.path.join(__lowerCamelCase , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : List[str]=0 ) -> Any: accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __A : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __A : Optional[int] = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __A : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __A : Tuple = torch.load(__lowerCamelCase ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __A : Any = ( os.path.join(__lowerCamelCase , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __A : List[str] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__lowerCamelCase ) , ) __A : int = optim_state['''optimizer'''] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __A : List[Any] = FSDP.optim_state_dict_to_load(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) optimizer.load_state_dict(__lowerCamelCase )
190
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _lowerCamelCase : List[str] = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _lowerCamelCase : List[Any] = { "ctrl": 2_5_6, } _lowerCamelCase : List[Any] = { "Pregnancy": 1_6_8_6_2_9, "Christianity": 7_6_7_5, "Explain": 1_0_6_4_2_3, "Fitness": 6_3_4_4_0, "Saving": 6_3_1_6_3, "Ask": 2_7_1_7_1, "Ass": 9_5_9_8_5, "Joke": 1_6_3_5_0_9, "Questions": 4_5_6_2_2, "Thoughts": 4_9_6_0_5, "Retail": 5_2_3_4_2, "Feminism": 1_6_4_3_3_8, "Writing": 1_1_9_9_2, "Atheism": 1_9_2_2_6_3, "Netflix": 4_8_6_1_6, "Computing": 3_9_6_3_9, "Opinion": 4_3_2_1_3, "Alone": 4_4_9_6_7, "Funny": 5_8_9_1_7, "Gaming": 4_0_3_5_8, "Human": 4_0_8_8, "India": 1_3_3_1, "Joker": 7_7_1_3_8, "Diet": 3_6_2_0_6, "Legal": 1_1_8_5_9, "Norman": 4_9_3_9, "Tip": 7_2_6_8_9, "Weight": 5_2_3_4_3, "Movies": 4_6_2_7_3, "Running": 2_3_4_2_5, "Science": 2_0_9_0, "Horror": 3_7_7_9_3, "Confession": 6_0_5_7_2, "Finance": 1_2_2_5_0, "Politics": 1_6_3_6_0, "Scary": 1_9_1_9_8_5, "Support": 1_2_6_5_4, "Technologies": 3_2_5_1_6, "Teenage": 6_6_1_6_0, "Event": 3_2_7_6_9, "Learned": 6_7_4_6_0, "Notion": 1_8_2_7_7_0, "Wikipedia": 3_7_5_8_3, "Books": 6_6_6_5, "Extract": 7_6_0_5_0, "Confessions": 1_0_2_7_0_1, "Conspiracy": 7_5_9_3_2, "Links": 6_3_6_7_4, "Narcissus": 1_5_0_4_2_5, "Relationship": 5_4_7_6_6, "Relationships": 1_3_4_7_9_6, "Reviews": 4_1_6_7_1, "News": 4_2_5_6, "Translation": 2_6_8_2_0, "multilingual": 1_2_8_4_0_6, } def a__ ( UpperCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : Dict = set() UpperCAmelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Dict = char UpperCAmelCase : Tuple = set(__lowerCamelCase ) return pairs class __UpperCAmelCase ( A_ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTROL_CODES def __init__( self : int, __A : str, __A : Tuple, __A : List[str]="<unk>", **__A : List[str] ): super().__init__(unk_token=_snake_case, **_snake_case ) with open(_snake_case, encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : Dict = json.load(_snake_case ) UpperCAmelCase : str = {v: k for k, v in self.encoder.items()} with open(_snake_case, encoding='''utf-8''' ) as merges_handle: UpperCAmelCase : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase : List[Any] = [tuple(merge.split() ) for merge in merges] UpperCAmelCase : List[str] = dict(zip(_snake_case, range(len(_snake_case ) ) ) ) UpperCAmelCase : int = {} @property def __magic_name__ ( self : Optional[Any] ): return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): return dict(self.encoder, **self.added_tokens_encoder ) def __magic_name__ ( self : Any, __A : Union[str, Any] ): if token in self.cache: return self.cache[token] UpperCAmelCase : str = tuple(_snake_case ) UpperCAmelCase : Dict = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) UpperCAmelCase : Any = get_pairs(_snake_case ) if not pairs: return token while True: UpperCAmelCase : Dict = min(_snake_case, key=lambda __A : self.bpe_ranks.get(_snake_case, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase : Any = bigram UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = 0 while i < len(_snake_case ): try: UpperCAmelCase : Optional[Any] = word.index(_snake_case, _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : int = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Tuple = tuple(_snake_case ) UpperCAmelCase : int = new_word if len(_snake_case ) == 1: break else: UpperCAmelCase : Optional[Any] = get_pairs(_snake_case ) UpperCAmelCase : Union[str, Any] = '''@@ '''.join(_snake_case ) UpperCAmelCase : List[Any] = word[:-4] UpperCAmelCase : int = word return word def __magic_name__ ( self : Optional[Any], __A : Optional[int] ): UpperCAmelCase : List[str] = [] UpperCAmelCase : int = re.findall(R'''\S+\n?''', _snake_case ) for token in words: split_tokens.extend(list(self.bpe(_snake_case ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : List[Any], __A : List[Any] ): return self.encoder.get(_snake_case, self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Optional[int], __A : str ): return self.decoder.get(_snake_case, self.unk_token ) def __magic_name__ ( self : List[str], __A : str ): UpperCAmelCase : List[str] = ''' '''.join(_snake_case ).replace('''@@ ''', '''''' ).strip() return out_string def __magic_name__ ( self : Dict, __A : str, __A : Optional[str] = None ): if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : int = os.path.join( _snake_case, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : Dict = os.path.join( _snake_case, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=_snake_case, ensure_ascii=_snake_case ) + '''\n''' ) UpperCAmelCase : Optional[int] = 0 with open(_snake_case, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda __A : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase : List[Any] = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
336
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( A_ ): SCREAMING_SNAKE_CASE_ : int = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[Any] = "FlavaImageProcessor" SCREAMING_SNAKE_CASE_ : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Union[str, Any])-> int: '''simple docstring''' __lowerCAmelCase: Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _snake_case , ) __lowerCAmelCase: Dict = kwargs.pop("feature_extractor") __lowerCAmelCase: List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(_snake_case , _snake_case) __lowerCAmelCase: str = self.image_processor def __call__( self : Tuple , UpperCamelCase__ : Optional[ImageInput] = None , UpperCamelCase__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : Any , )-> Tuple: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: __lowerCAmelCase: List[str] = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) if images is not None: __lowerCAmelCase: List[Any] = self.image_processor( _snake_case , return_image_mask=_snake_case , return_codebook_pixels=_snake_case , return_tensors=_snake_case , **_snake_case , ) if text is not None and images is not None: encoding.update(_snake_case) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case) , tensor_type=_snake_case) def lowercase_ ( self : int , *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str])-> int: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def lowercase_ ( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Any)-> Any: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case) @property def lowercase_ ( self : List[Any])-> int: '''simple docstring''' __lowerCAmelCase: Optional[int] = self.tokenizer.model_input_names __lowerCAmelCase: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def lowercase_ ( self : Optional[Any])-> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _snake_case , ) return self.image_processor_class @property def lowercase_ ( self : Any)-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _snake_case , ) return self.image_processor
217
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
0
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] = 100 ): __a : Optional[Any] = n * (n + 1) * (2 * n + 1) / 6 __a : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
27
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A__ : Any =logging.get_logger(__name__) A__ : Optional[Any] ={'''vocab_file''': '''spiece.model'''} A__ : str ={ '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class UpperCAmelCase ( A_ ): def __init__( self : str , __snake_case : Tuple , __snake_case : int=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=False , __snake_case : Dict="<s>" , __snake_case : Optional[Any]="</s>" , __snake_case : List[str]="<unk>" , __snake_case : int="<sep>" , __snake_case : List[Any]="<pad>" , __snake_case : Union[str, Any]="<cls>" , __snake_case : str="<mask>" , __snake_case : int=["<eop>", "<eod>"] , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Optional[int] , ) -> None: _lowerCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase__ ( self : Tuple ) -> Optional[Any]: return len(self.sp_model ) def lowercase__ ( self : Optional[Any] ) -> Dict: _lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self : List[str] , __snake_case : int ) -> Union[str, Any]: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : List[str] , __snake_case : Optional[Any] ) -> Optional[Any]: if self.remove_space: _lowerCAmelCase = ''' '''.join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("""``""" , """\"""" ).replace("""\'\'""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("""NFKD""" , _snake_case ) _lowerCAmelCase = ''''''.join([c for c in outputs if not unicodedata.combining(_snake_case )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def lowercase__ ( self : int , __snake_case : str ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_snake_case ) _lowerCAmelCase = self.sp_model.encode(_snake_case , out_type=_snake_case ) _lowerCAmelCase = [] for piece in pieces: if len(_snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_snake_case ) else: new_pieces.append(_snake_case ) return new_pieces def lowercase__ ( self : List[str] , __snake_case : List[Any] ) -> Union[str, Any]: return self.sp_model.PieceToId(_snake_case ) def lowercase__ ( self : List[Any] , __snake_case : Optional[Any] ) -> Tuple: return self.sp_model.IdToPiece(_snake_case ) def lowercase__ ( self : Dict , __snake_case : int ) -> Tuple: _lowerCAmelCase = ''''''.join(_snake_case ).replace(_snake_case , """ """ ).strip() return out_string def lowercase__ ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is not None: return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1, 1] return ([0] * len(_snake_case )) + [1, 1] def lowercase__ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(_snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,) def lowercase__ ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[str] ) -> Dict: _lowerCAmelCase = super()._decode(*_snake_case , **_snake_case ) _lowerCAmelCase = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
70
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
0
import os def a__ ( ): """simple docstring""" with open(os.path.dirname(__lowerCamelCase ) + '''/grid.txt''' ) as f: __SCREAMING_SNAKE_CASE : Optional[int] = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowerCamelCase ) for x in f.readline().split()] ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 # right for i in range(20 ): for j in range(17 ): __SCREAMING_SNAKE_CASE : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __SCREAMING_SNAKE_CASE : Tuple = temp # down for i in range(17 ): for j in range(20 ): __SCREAMING_SNAKE_CASE : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __SCREAMING_SNAKE_CASE : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __SCREAMING_SNAKE_CASE : Any = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __SCREAMING_SNAKE_CASE : int = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __SCREAMING_SNAKE_CASE : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __SCREAMING_SNAKE_CASE : List[str] = temp return maximum if __name__ == "__main__": print(solution())
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( A_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = CLIPTokenizer SCREAMING_SNAKE_CASE_ = CLIPTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = False def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" super().setUp() # fmt: off lowerCamelCase__ : Dict =['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCamelCase__ : Union[str, Any] =dict(zip(_snake_case , range(len(_snake_case ) ) ) ) lowerCamelCase__ : Union[str, Any] =['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] lowerCamelCase__ : List[str] ={'''unk_token''': '''<unk>'''} lowerCamelCase__ : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) def UpperCAmelCase__ ( self :Any , **lowerCamelCase_ :Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self :Optional[Any] , **lowerCamelCase_ :List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self :Optional[int] , lowerCamelCase_ :List[str] ): """simple docstring""" lowerCamelCase__ : Dict ='''lower newer''' lowerCamelCase__ : Optional[Any] ='''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ : Dict ='''lower newer''' lowerCamelCase__ : Union[str, Any] =['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] lowerCamelCase__ : Tuple =tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCamelCase__ : List[str] =tokens + [tokenizer.unk_token] lowerCamelCase__ : Optional[Any] =[10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) @require_ftfy def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase__ : List[str] =self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCamelCase__ : Dict =self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCamelCase__ : Union[str, Any] ='''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' lowerCamelCase__ : str =tokenizer_s.tokenize(_snake_case ) lowerCamelCase__ : Optional[Any] =tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCamelCase__ : Optional[Any] ='''xa\u0303y''' + ''' ''' + '''x\xe3y''' lowerCamelCase__ : int =tokenizer_s.tokenize(_snake_case ) lowerCamelCase__ : Union[str, Any] =tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # Test that the tokenization is identical on unicode of space type lowerCamelCase__ : Optional[int] =[ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCamelCase__ : Tuple =tokenizer_s.tokenize(_snake_case ) lowerCamelCase__ : Optional[int] =tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # Test that the tokenization is identical on unicode of line break type lowerCamelCase__ : Tuple =[ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCamelCase__ : Dict =tokenizer_s.tokenize(_snake_case ) lowerCamelCase__ : Tuple =tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase__ : Union[str, Any] ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase__ : List[Any] =f"""{text_of_1_token} {text_of_1_token}""" lowerCamelCase__ : Dict =self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , ) lowerCamelCase__ : Optional[int] =tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) lowerCamelCase__ : Tuple =f""" {text}""" lowerCamelCase__ : Any =self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , ) lowerCamelCase__ : Dict =tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ) + 1, 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" with self.assertRaises(_snake_case ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def UpperCAmelCase__ ( self :Any ): """simple docstring""" super().test_tokenization_python_rust_equals() def UpperCAmelCase__ ( self :str ): """simple docstring""" pass
126
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class UpperCAmelCase ( A_ ): A__ : Any = "lxmert" A__ : Union[str, Any] = {} def __init__(self : List[str] , snake_case__ : Any=3_05_22 , snake_case__ : Optional[Any]=7_68 , snake_case__ : Any=12 , snake_case__ : Optional[int]=95_00 , snake_case__ : Optional[Any]=16_00 , snake_case__ : Union[str, Any]=4_00 , snake_case__ : Optional[int]=30_72 , snake_case__ : List[Any]="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[int]=5_12 , snake_case__ : Any=2 , snake_case__ : Tuple=0.02 , snake_case__ : Any=1e-12 , snake_case__ : str=9 , snake_case__ : Optional[int]=5 , snake_case__ : List[str]=5 , snake_case__ : int=20_48 , snake_case__ : Optional[int]=4 , snake_case__ : str=6.67 , snake_case__ : Optional[int]=True , snake_case__ : Optional[Any]=True , snake_case__ : str=True , snake_case__ : List[str]=True , snake_case__ : int=True , snake_case__ : Any=True , snake_case__ : Any=True , **snake_case__ : Optional[int] , ) -> Dict: '''simple docstring''' snake_case : Tuple = vocab_size snake_case : str = hidden_size snake_case : List[Any] = num_attention_heads snake_case : Optional[Any] = hidden_act snake_case : Optional[int] = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : Dict = attention_probs_dropout_prob snake_case : List[str] = max_position_embeddings snake_case : Optional[Any] = type_vocab_size snake_case : List[Any] = initializer_range snake_case : List[Any] = layer_norm_eps snake_case : Optional[int] = num_qa_labels snake_case : List[Any] = num_object_labels snake_case : int = num_attr_labels snake_case : Optional[int] = l_layers snake_case : Any = x_layers snake_case : Optional[Any] = r_layers snake_case : int = visual_feat_dim snake_case : Optional[Any] = visual_pos_dim snake_case : Optional[int] = visual_loss_normalizer snake_case : List[str] = task_matched snake_case : Optional[Any] = task_mask_lm snake_case : Tuple = task_obj_predict snake_case : int = task_qa snake_case : Any = visual_obj_loss snake_case : Optional[Any] = visual_attr_loss snake_case : Tuple = visual_feat_loss snake_case : str = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**_snake_case )
59
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
0
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : int, *UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[Any]=None, **UpperCAmelCase__ : Optional[int] ): super().__init__(*UpperCAmelCase__, **UpperCAmelCase__ ) __lowercase = eval_examples __lowercase = post_process_function def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[Dataset] = None, UpperCAmelCase__ : Tuple=None, UpperCAmelCase__ : Optional[List[str]] = None, UpperCAmelCase__ : str = "eval", **UpperCAmelCase__ : List[str], ): __lowercase = gen_kwargs.copy() __lowercase = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) __lowercase = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) __lowercase = gen_kwargs __lowercase = self.eval_dataset if eval_dataset is None else eval_dataset __lowercase = self.get_eval_dataloader(UpperCAmelCase__ ) __lowercase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase = self.compute_metrics __lowercase = None __lowercase = time.time() __lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase = eval_loop( UpperCAmelCase__, description="Evaluation", prediction_loss_only=True if compute_metrics is None else None, ignore_keys=UpperCAmelCase__, metric_key_prefix=UpperCAmelCase__, ) finally: __lowercase = compute_metrics __lowercase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCAmelCase__, UpperCAmelCase__, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase = self.post_process_function(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowercase = metrics.pop(UpperCAmelCase__ ) metrics.update(output.metrics ) else: __lowercase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCAmelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase = self.callback_handler.on_evaluate(self.args, self.state, self.control, UpperCAmelCase__ ) return metrics def _lowercase ( self : List[str], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str=None, UpperCAmelCase__ : str = "test", **UpperCAmelCase__ : str ): __lowercase = gen_kwargs.copy() __lowercase = self.get_test_dataloader(UpperCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase = self.compute_metrics __lowercase = None __lowercase = time.time() __lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase = eval_loop( UpperCAmelCase__, description="Prediction", prediction_loss_only=True if compute_metrics is None else None, ignore_keys=UpperCAmelCase__, metric_key_prefix=UpperCAmelCase__, ) finally: __lowercase = compute_metrics __lowercase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCAmelCase__, UpperCAmelCase__, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase = self.post_process_function(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, "predict" ) __lowercase = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowercase = metrics.pop(UpperCAmelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=UpperCAmelCase__ )
17
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
1
"""simple docstring""" from math import factorial def _A ( UpperCamelCase_ : int = 100) -> int: '''simple docstring''' return sum(map(UpperCamelCase_, str(factorial(UpperCamelCase_)))) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=lowercase ): """simple docstring""" __UpperCAmelCase : int = ["keras_nlp"] def __init__( self : str, *UpperCAmelCase__ : Dict, **UpperCAmelCase__ : Union[str, Any] ): requires_backends(self, ["keras_nlp"] )
17
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata _a = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class _lowerCAmelCase ( tr.AbstractTransform ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : str = " " ): __lowercase = sentence_delimiter def _lowercase ( self : Optional[Any], UpperCAmelCase__ : str ): return list(UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : List[str] ): __lowercase = [] for sent_idx, sentence in enumerate(UpperCAmelCase__ ): chars.extend(self.process_string(UpperCAmelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCAmelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars _a = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _a = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _a = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _a = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' _a = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence" ), "references": datasets.Value("string", id="sequence" ), } ), codebase_urls=["https://github.com/jitsi/jiwer/"], reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ], ) def _lowercase ( self : str, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Tuple=False ): if concatenate_texts: return jiwer.compute_measures( UpperCAmelCase__, UpperCAmelCase__, truth_transform=UpperCAmelCase__, hypothesis_transform=UpperCAmelCase__, )["wer"] __lowercase = 0 __lowercase = 0 for prediction, reference in zip(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = jiwer.compute_measures( UpperCAmelCase__, UpperCAmelCase__, truth_transform=UpperCAmelCase__, hypothesis_transform=UpperCAmelCase__, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
17
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = (DDPMScheduler,) def _lowercase ( self : Optional[int], **UpperCAmelCase__ : List[Any] ): __lowercase = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase__ ) return config def _lowercase ( self : Tuple ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def _lowercase ( self : Any ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase__, beta_end=UpperCAmelCase__ ) def _lowercase ( self : Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def _lowercase ( self : int ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase__ ) def _lowercase ( self : str ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__ ) def _lowercase ( self : Tuple ): self.check_over_configs(thresholding=UpperCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__, prediction_type=UpperCAmelCase__, sample_max_value=UpperCAmelCase__, ) def _lowercase ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def _lowercase ( self : Dict ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def _lowercase ( self : Union[str, Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = len(UpperCAmelCase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual __lowercase = model(UpperCAmelCase__, UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(UpperCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _lowercase ( self : List[str] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type="v_prediction" ) __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = len(UpperCAmelCase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual __lowercase = model(UpperCAmelCase__, UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(UpperCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _lowercase ( self : Optional[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) __lowercase = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase__ ): if i == len(UpperCAmelCase__ ) - 1: __lowercase = -1 else: __lowercase = timesteps[i + 1] __lowercase = scheduler.previous_timestep(UpperCAmelCase__ ) __lowercase = prev_t.item() self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCAmelCase__, msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) def _lowercase ( self : List[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = [1_0_0, 8_7, 5_0, 1, 0] __lowercase = len(UpperCAmelCase__ ) with self.assertRaises(UpperCAmelCase__, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__, timesteps=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__, msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ )
17
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowerCAmelCase ( lowercase ): """simple docstring""" def _lowercase ( self : List[str] ): __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase__, "tf_padding" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase__, "depth_multiplier" ) ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple=1_3, UpperCAmelCase__ : List[str]=3, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : List[Any]=0.25, UpperCAmelCase__ : Tuple=8, UpperCAmelCase__ : Any=True, UpperCAmelCase__ : Union[str, Any]=1_0_2_4, UpperCAmelCase__ : Tuple=3_2, UpperCAmelCase__ : List[Any]="relu6", UpperCAmelCase__ : str=0.1, UpperCAmelCase__ : List[Any]=0.02, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : Optional[int]=1_0, UpperCAmelCase__ : int=None, ): __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = depth_multiplier __lowercase = min_depth __lowercase = tf_padding __lowercase = int(last_hidden_size * depth_multiplier ) __lowercase = output_stride __lowercase = hidden_act __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope def _lowercase ( self : Tuple ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, min_depth=self.min_depth, tf_padding=self.tf_padding, hidden_act=self.hidden_act, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any] ): __lowercase = MobileNetVaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def _lowercase ( self : int, UpperCAmelCase__ : int, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = self.num_labels __lowercase = MobileNetVaForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase ,__lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __UpperCAmelCase : Optional[int] = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Any = False __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[int] = False def _lowercase ( self : Dict ): __lowercase = MobileNetVaModelTester(self ) __lowercase = MobileNetVaConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__ ) def _lowercase ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def _lowercase ( self : Dict ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def _lowercase ( self : Dict ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def _lowercase ( self : List[Any] ): pass def _lowercase ( self : int ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : List[Any] ): def check_hidden_states_output(UpperCAmelCase__ : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase = outputs.hidden_states __lowercase = 2_6 self.assertEqual(len(UpperCAmelCase__ ), UpperCAmelCase__ ) __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : int ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileNetVaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> List[Any]: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def _lowercase ( self : Dict ): __lowercase = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(UpperCAmelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="pt" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**UpperCAmelCase__ ) # verify the logits __lowercase = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, UpperCAmelCase__ ) __lowercase = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
17
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Union[List[PIL.Image.Image], np.ndarray] __UpperCAmelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : np.ndarray __UpperCAmelCase : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
17
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
1
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self : int ): __lowercase = "" __lowercase = "" __lowercase = [] def _lowercase ( self : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __lowercase = self.__min_dist_top_down_dp(m - 1, n - 1 ) else: __lowercase = self.__min_dist_top_down_dp(UpperCAmelCase__, n - 1 ) __lowercase = self.__min_dist_top_down_dp(m - 1, UpperCAmelCase__ ) __lowercase = self.__min_dist_top_down_dp(m - 1, n - 1 ) __lowercase = 1 + min(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return self.dp[m][n] def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : str ): __lowercase = worda __lowercase = worda __lowercase = [[-1 for _ in range(len(UpperCAmelCase__ ) )] for _ in range(len(UpperCAmelCase__ ) )] return self.__min_dist_top_down_dp(len(UpperCAmelCase__ ) - 1, len(UpperCAmelCase__ ) - 1 ) def _lowercase ( self : int, UpperCAmelCase__ : str, UpperCAmelCase__ : str ): __lowercase = worda __lowercase = worda __lowercase = len(UpperCAmelCase__ ) __lowercase = len(UpperCAmelCase__ ) __lowercase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __lowercase = j elif j == 0: # second string is empty __lowercase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __lowercase = self.dp[i - 1][j - 1] else: __lowercase = self.dp[i][j - 1] __lowercase = self.dp[i - 1][j] __lowercase = self.dp[i - 1][j - 1] __lowercase = 1 + min(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return self.dp[m][n] if __name__ == "__main__": _a = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() _a = input('Enter the first string: ').strip() _a = input('Enter the second string: ').strip() print() print(F"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(F"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
17
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
1
"""simple docstring""" import unittest from knapsack import knapsack as k class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] ): __lowercase = 0 __lowercase = [0] __lowercase = [0] __lowercase = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), 0 ) __lowercase = [6_0] __lowercase = [1_0] __lowercase = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), 0 ) def _lowercase ( self : Union[str, Any] ): __lowercase = 3 __lowercase = [1, 2, 3] __lowercase = [3, 2, 1] __lowercase = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), 5 ) def _lowercase ( self : Dict ): __lowercase = 5_0 __lowercase = [6_0, 1_0_0, 1_2_0] __lowercase = [1_0, 2_0, 3_0] __lowercase = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), 2_2_0 ) if __name__ == "__main__": unittest.main()
17
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
1
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCAmelCase : """simple docstring""" @property def _lowercase ( self : Dict ): return self.get_dummy_input() @property def _lowercase ( self : Optional[int] ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def _lowercase ( self : Dict, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : str=False, UpperCAmelCase__ : Union[str, Any]=False, UpperCAmelCase__ : List[str]=False, ): __lowercase = 4 __lowercase = 3_2 __lowercase = (3_2, 3_2) __lowercase = torch.manual_seed(0 ) __lowercase = torch.device(UpperCAmelCase__ ) __lowercase = (batch_size, num_channels) + sizes __lowercase = randn_tensor(UpperCAmelCase__, generator=UpperCAmelCase__, device=UpperCAmelCase__ ) __lowercase = {"hidden_states": hidden_states} if include_temb: __lowercase = 1_2_8 __lowercase = randn_tensor((batch_size, temb_channels), generator=UpperCAmelCase__, device=UpperCAmelCase__ ) if include_res_hidden_states_tuple: __lowercase = torch.manual_seed(1 ) __lowercase = (randn_tensor(UpperCAmelCase__, generator=UpperCAmelCase__, device=UpperCAmelCase__ ),) if include_encoder_hidden_states: __lowercase = floats_tensor((batch_size, 3_2, 3_2) ).to(UpperCAmelCase__ ) if include_skip_sample: __lowercase = randn_tensor(((batch_size, 3) + sizes), generator=UpperCAmelCase__, device=UpperCAmelCase__ ) return dummy_input def _lowercase ( self : Tuple ): __lowercase = { "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": __lowercase = 3_2 if self.block_type == "mid": init_dict.pop("out_channels" ) __lowercase = self.dummy_input return init_dict, inputs_dict def _lowercase ( self : Any, UpperCAmelCase__ : Optional[int] ): __lowercase ,__lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**UpperCAmelCase__ ) unet_block.to(UpperCAmelCase__ ) unet_block.eval() with torch.no_grad(): __lowercase = unet_block(**UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = output[0] self.assertEqual(output.shape, self.output_shape ) __lowercase = output[0, -1, -3:, -3:] __lowercase = torch.tensor(UpperCAmelCase__ ).to(UpperCAmelCase__ ) assert torch_all_close(output_slice.flatten(), UpperCAmelCase__, atol=5E-3 ) @unittest.skipIf(torch_device == "mps", "Training is not supported in mps" ) def _lowercase ( self : Any ): __lowercase ,__lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() __lowercase = model(**UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = output[0] __lowercase = torch.device(UpperCAmelCase__ ) __lowercase = randn_tensor(output.shape, device=UpperCAmelCase__ ) __lowercase = torch.nn.functional.mse_loss(UpperCAmelCase__, UpperCAmelCase__ ) loss.backward()
17
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
1
"""simple docstring""" from __future__ import annotations import math _a = '2020.9.26' _a = 'xcodz-dot, cclaus, dhruvmanila' def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(UpperCamelCase_, (float, int)) for val in locals().values()): __lowercase = F"""Input values must either be float or int: {list(locals().values())}""" raise TypeError(UpperCamelCase_) __lowercase = ((x * distance) / (z + distance)) * scale __lowercase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : str, UpperCamelCase_ : float) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(UpperCamelCase_, UpperCamelCase_): raise TypeError("Axis must be a str") __lowercase = locals() del input_variables["axis"] if not all(isinstance(UpperCamelCase_, (float, int)) for val in input_variables.values()): __lowercase = ( "Input values except axis must either be float or int: " F"""{list(input_variables.values())}""" ) raise TypeError(UpperCamelCase_) __lowercase = (angle % 360) / 450 * 180 / math.pi if axis == "z": __lowercase = x * math.cos(UpperCamelCase_) - y * math.sin(UpperCamelCase_) __lowercase = y * math.cos(UpperCamelCase_) + x * math.sin(UpperCamelCase_) __lowercase = z elif axis == "x": __lowercase = y * math.cos(UpperCamelCase_) - z * math.sin(UpperCamelCase_) __lowercase = z * math.cos(UpperCamelCase_) + y * math.sin(UpperCamelCase_) __lowercase = x elif axis == "y": __lowercase = x * math.cos(UpperCamelCase_) - z * math.sin(UpperCamelCase_) __lowercase = z * math.cos(UpperCamelCase_) + x * math.sin(UpperCamelCase_) __lowercase = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'") return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }") print(F"{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }")
17
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _A ( UpperCamelCase_ : Any) -> List[Any]: '''simple docstring''' __lowercase = filter(lambda UpperCamelCase_: p.requires_grad, model.parameters()) __lowercase = sum([np.prod(p.size()) for p in model_parameters]) return params _a = logging.getLogger(__name__) def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> Optional[int]: '''simple docstring''' if metric == "rouge2": __lowercase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": __lowercase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": __lowercase = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function.") __lowercase = ModelCheckpoint( dirpath=UpperCamelCase_, filename=UpperCamelCase_, monitor=F"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> int: '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=UpperCamelCase_, verbose=UpperCamelCase_, ) class _lowerCAmelCase ( pl.Callback ): """simple docstring""" def _lowercase ( self : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCAmelCase__ ) @rank_zero_only def _lowercase ( self : List[Any], UpperCAmelCase__ : pl.Trainer, UpperCAmelCase__ : pl.LightningModule, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int]=True ): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowercase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results __lowercase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowercase = od / "test_results.txt" __lowercase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowercase = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowercase = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=UpperCAmelCase__ ) generations_file.parent.mkdir(exist_ok=UpperCAmelCase__ ) with open(UpperCAmelCase__, "a+" ) as writer: for key in sorted(UpperCAmelCase__ ): if key in ["log", "progress_bar", "preds"]: continue __lowercase = metrics[key] if isinstance(UpperCAmelCase__, torch.Tensor ): __lowercase = val.item() __lowercase = F"""{key}: {val:.6f}\n""" writer.write(UpperCAmelCase__ ) if not save_generations: return if "preds" in metrics: __lowercase = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(UpperCAmelCase__ ) @rank_zero_only def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): try: __lowercase = pl_module.model.model.num_parameters() except AttributeError: __lowercase = pl_module.model.num_parameters() __lowercase = count_trainable_parameters(UpperCAmelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def _lowercase ( self : Any, UpperCAmelCase__ : pl.Trainer, UpperCAmelCase__ : pl.LightningModule ): save_json(pl_module.metrics, pl_module.metrics_save_path ) return self._write_logs(UpperCAmelCase__, UpperCAmelCase__, "test" ) @rank_zero_only def _lowercase ( self : int, UpperCAmelCase__ : pl.Trainer, UpperCAmelCase__ : Optional[Any] ): save_json(pl_module.metrics, pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
17
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
"""simple docstring""" from math import pow, sqrt def _A ( *UpperCamelCase_ : float) -> bool: '''simple docstring''' __lowercase = len(UpperCamelCase_) > 0 and all(value > 0.0 for value in values) return result def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a), 6) if validate(UpperCamelCase_, UpperCamelCase_) else ValueError("Input Error: Molar mass values must greater than 0.") ) def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a), 6) if validate(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a), 6) if validate(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a, 2), 6) if validate(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a, 2) / molar_mass, 6) if validate(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") )
17
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : str ): __lowercase = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __lowercase = AutoTokenizer.from_pretrained("google/mt5-small" ) __lowercase = tokenizer("Hello there", return_tensors="np" ).input_ids __lowercase = tokenizer("Hi I am", return_tensors="np" ).input_ids __lowercase = shift_tokens_right(UpperCAmelCase__, model.config.pad_token_id, model.config.decoder_start_token_id ) __lowercase = model(UpperCAmelCase__, decoder_input_ids=UpperCAmelCase__ ).logits __lowercase = optax.softmax_cross_entropy(UpperCAmelCase__, onehot(UpperCAmelCase__, logits.shape[-1] ) ).mean() __lowercase = -(labels.shape[-1] * loss.item()) __lowercase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
17
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : int) -> bool: '''simple docstring''' return sum(i for i in range(1, number // 2 + 1) if number % i == 0) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a = int(input('Enter number: ').strip()) print(F"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
17
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
1
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Any, UpperCamelCase_ : Dict, UpperCamelCase_ : Optional[int], UpperCamelCase_ : List[Any]) -> str: '''simple docstring''' __lowercase = StableDiffusionPipeline.from_pretrained(UpperCamelCase_, torch_dtype=torch.floataa) # load LoRA weight from .safetensors __lowercase = load_file(UpperCamelCase_) __lowercase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowercase = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") __lowercase = pipeline.text_encoder else: __lowercase = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") __lowercase = pipeline.unet # find the target layer __lowercase = layer_infos.pop(0) while len(UpperCamelCase_) > -1: try: __lowercase = curr_layer.__getattr__(UpperCamelCase_) if len(UpperCamelCase_) > 0: __lowercase = layer_infos.pop(0) elif len(UpperCamelCase_) == 0: break except Exception: if len(UpperCamelCase_) > 0: temp_name += "_" + layer_infos.pop(0) else: __lowercase = layer_infos.pop(0) __lowercase = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down", "lora_up")) pair_keys.append(UpperCamelCase_) else: pair_keys.append(UpperCamelCase_) pair_keys.append(key.replace("lora_up", "lora_down")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: __lowercase = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.floataa) __lowercase = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(UpperCamelCase_, UpperCamelCase_).unsqueeze(2).unsqueeze(3) else: __lowercase = state_dict[pair_keys[0]].to(torch.floataa) __lowercase = state_dict[pair_keys[1]].to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(UpperCamelCase_, UpperCamelCase_) # update visited list for item in pair_keys: visited.append(UpperCamelCase_) return pipeline if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') _a = parser.parse_args() _a = args.base_model_path _a = args.checkpoint_path _a = args.dump_path _a = args.lora_prefix_unet _a = args.lora_prefix_text_encoder _a = args.alpha _a = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
17
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
1
"""simple docstring""" from pathlib import Path import fire def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' __lowercase = Path(UpperCamelCase_) __lowercase = Path(UpperCamelCase_) dest_dir.mkdir(exist_ok=UpperCamelCase_) for path in src_dir.iterdir(): __lowercase = [x.rstrip() for x in list(path.open().readlines())][:n] __lowercase = dest_dir.joinpath(path.name) print(UpperCamelCase_) dest_path.open("w").write("\n".join(UpperCamelCase_)) if __name__ == "__main__": fire.Fire(minify)
17
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
1
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _a = True except ImportError: _a = False _a = logging.get_logger(__name__) # pylint: disable=invalid-name def _A ( UpperCamelCase_ : Namespace) -> List[Any]: '''simple docstring''' return AddNewModelCommand(args.testing, args.testing_file, path=args.path) class _lowerCAmelCase ( lowercase ): """simple docstring""" @staticmethod def _lowercase ( UpperCAmelCase__ : ArgumentParser ): __lowercase = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file", type=UpperCAmelCase__, help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path", type=UpperCAmelCase__, help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self : Tuple, UpperCAmelCase__ : bool, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any]=None, *UpperCAmelCase__ : Union[str, Any] ): __lowercase = testing __lowercase = testing_file __lowercase = path def _lowercase ( self : Any ): warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __lowercase = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:2_2]] if len(UpperCAmelCase__ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) __lowercase = ( Path(UpperCAmelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __lowercase = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCAmelCase__ ) ) else: with open(self._testing_file, "r" ) as configuration_file: __lowercase = json.load(UpperCAmelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ), no_input=UpperCAmelCase__, extra_context=UpperCAmelCase__, ) __lowercase = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:2_2]][0] # Retrieve configuration with open(directory + "/configuration.json", "r" ) as configuration_file: __lowercase = json.load(UpperCAmelCase__ ) __lowercase = configuration["lowercase_modelname"] __lowercase = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F"""{directory}/configuration.json""" ) __lowercase = "PyTorch" in generate_tensorflow_pytorch_and_flax __lowercase = "TensorFlow" in generate_tensorflow_pytorch_and_flax __lowercase = "Flax" in generate_tensorflow_pytorch_and_flax __lowercase = F"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) os.makedirs(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""", exist_ok=UpperCAmelCase__ ) # Tests require submodules as they have parent imports with open(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""", "w" ): pass shutil.move( F"""{directory}/__init__.py""", F"""{model_dir}/__init__.py""", ) shutil.move( F"""{directory}/configuration_{lowercase_model_name}.py""", F"""{model_dir}/configuration_{lowercase_model_name}.py""", ) def remove_copy_lines(UpperCAmelCase__ : int ): with open(UpperCAmelCase__, "r" ) as f: __lowercase = f.readlines() with open(UpperCAmelCase__, "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCAmelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_{lowercase_model_name}.py""", F"""{model_dir}/modeling_{lowercase_model_name}.py""", ) shutil.move( F"""{directory}/test_modeling_{lowercase_model_name}.py""", F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""", ) else: os.remove(F"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_tf_{lowercase_model_name}.py""", F"""{model_dir}/modeling_tf_{lowercase_model_name}.py""", ) shutil.move( F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""", F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""", ) else: os.remove(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_flax_{lowercase_model_name}.py""", F"""{model_dir}/modeling_flax_{lowercase_model_name}.py""", ) shutil.move( F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""", F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""", ) else: os.remove(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/{lowercase_model_name}.md""", F"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""", ) shutil.move( F"""{directory}/tokenization_{lowercase_model_name}.py""", F"""{model_dir}/tokenization_{lowercase_model_name}.py""", ) shutil.move( F"""{directory}/tokenization_fast_{lowercase_model_name}.py""", F"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""", ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCAmelCase__ : str, UpperCAmelCase__ : str, UpperCAmelCase__ : List[str] ): # Create temp file __lowercase ,__lowercase = mkstemp() __lowercase = False with fdopen(UpperCAmelCase__, "w" ) as new_file: with open(UpperCAmelCase__ ) as old_file: for line in old_file: new_file.write(UpperCAmelCase__ ) if line_to_copy_below in line: __lowercase = True for line_to_copy in lines_to_copy: new_file.write(UpperCAmelCase__ ) if not line_found: raise ValueError(F"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(UpperCAmelCase__, UpperCAmelCase__ ) # Remove original file remove(UpperCAmelCase__ ) # Move new file move(UpperCAmelCase__, UpperCAmelCase__ ) def skip_units(UpperCAmelCase__ : Any ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCAmelCase__ : Optional[Any] ): with open(UpperCAmelCase__ ) as datafile: __lowercase = [] __lowercase = False __lowercase = False for line in datafile: if "# To replace in: " in line and "##" not in line: __lowercase = line.split("\"" )[1] __lowercase = skip_units(UpperCAmelCase__ ) elif "# Below: " in line and "##" not in line: __lowercase = line.split("\"" )[1] __lowercase = skip_units(UpperCAmelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = [] elif "# Replace with" in line and "##" not in line: __lowercase = [] elif "##" not in line: lines_to_copy.append(UpperCAmelCase__ ) remove(UpperCAmelCase__ ) replace_in_files(F"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(UpperCAmelCase__ )
17
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1