code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _lowerCamelCase( _a ): lowercase_ : int = """roberta""" def __init__( self, lowerCamelCase=5_02_65, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=2, lowerCamelCase="absolute", lowerCamelCase=True, lowerCamelCase=None, **lowerCamelCase, ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) _lowercase : str = vocab_size _lowercase : Optional[int] = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Tuple = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Any = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : int = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : Tuple = position_embedding_type _lowercase : Union[str, Any] = use_cache _lowercase : Union[str, Any] = classifier_dropout class _lowerCamelCase( _a ): @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
21
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Any = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Tuple = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : str = after_output[0] _lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Any = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Tuple = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Any = to_atuple(vision_model.config.patch_size) _lowercase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" pt_model.to(lowerCamelCase) pt_model.eval() # prepare inputs _lowercase : Any = inputs_dict _lowercase : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : Tuple = pt_model(**lowerCamelCase).to_tuple() _lowercase : Any = fx_model(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase) _lowercase : List[Any] = fx_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase) _lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase) pt_model_loaded.to(lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[Any] = pt_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : str = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase) _lowercase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @is_pt_flax_cross_test def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = config_inputs_dict.pop('vision_config') _lowercase : str = config_inputs_dict.pop('text_config') _lowercase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : List[Any] = model_a(**lowerCamelCase) _lowercase : Tuple = after_outputs[0] _lowercase : Dict = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_flax class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : List[Any] = 13 _lowercase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[Any] = FlaxViTModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = FlaxViTModelTester(self) _lowercase : Any = FlaxBertModelTester(self) _lowercase : Dict = vit_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : List[str] = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : Tuple = 13 _lowercase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = FlaxCLIPVisionModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = FlaxCLIPVisionModelTester(self) _lowercase : Union[str, Any] = FlaxBertModelTester(self) _lowercase : Tuple = clip_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Dict = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian', logit_scale_init_value=1.0) _lowercase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : List[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : List[Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3))
21
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase, lowerCamelCase=7, lowerCamelCase=3, lowerCamelCase=30, lowerCamelCase=4_00, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=True, lowerCamelCase=[0.5, 0.5, 0.5], lowerCamelCase=[0.5, 0.5, 0.5], lowerCamelCase=True, lowerCamelCase=1 / 2_55, lowerCamelCase=True, ) -> Tuple: """simple docstring""" _lowercase : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} _lowercase : str = parent _lowercase : List[Any] = batch_size _lowercase : Union[str, Any] = num_channels _lowercase : str = min_resolution _lowercase : str = max_resolution _lowercase : Union[str, Any] = do_resize _lowercase : List[Any] = size _lowercase : Union[str, Any] = do_normalize _lowercase : int = image_mean _lowercase : str = image_std _lowercase : str = do_rescale _lowercase : List[str] = rescale_factor _lowercase : Optional[int] = do_pad def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=False) -> int: """simple docstring""" if not batched: _lowercase : List[Any] = image_inputs[0] if isinstance(lowerCamelCase, Image.Image): _lowercase , _lowercase : Optional[Any] = image.size else: _lowercase , _lowercase : Dict = image.shape[1], image.shape[2] if w < h: _lowercase : Optional[Any] = int(self.size['shortest_edge'] * h / w) _lowercase : int = self.size['shortest_edge'] elif w > h: _lowercase : Optional[Any] = self.size['shortest_edge'] _lowercase : int = int(self.size['shortest_edge'] * w / h) else: _lowercase : int = self.size['shortest_edge'] _lowercase : List[str] = self.size['shortest_edge'] else: _lowercase : Union[str, Any] = [] for image in image_inputs: _lowercase , _lowercase : List[Any] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _lowercase : Optional[Any] = max(lowerCamelCase, key=lambda lowerCamelCase: item[0])[0] _lowercase : str = max(lowerCamelCase, key=lambda lowerCamelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : str = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = DeformableDetrImageProcessingTester(self) @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase, 'image_mean')) self.assertTrue(hasattr(lowerCamelCase, 'image_std')) self.assertTrue(hasattr(lowerCamelCase, 'do_normalize')) self.assertTrue(hasattr(lowerCamelCase, 'do_resize')) self.assertTrue(hasattr(lowerCamelCase, 'do_rescale')) self.assertTrue(hasattr(lowerCamelCase, 'do_pad')) self.assertTrue(hasattr(lowerCamelCase, 'size')) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 13_33}) self.assertEqual(image_processor.do_pad, lowerCamelCase) _lowercase : Any = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=lowerCamelCase) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" pass def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image) # Test not batched input _lowercase : int = image_processing(image_inputs[0], return_tensors='pt').pixel_values _lowercase , _lowercase : List[str] = self.image_processor_tester.get_expected_values(lowerCamelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowercase , _lowercase : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase) _lowercase : Any = image_processing(lowerCamelCase, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray) # Test not batched input _lowercase : List[str] = image_processing(image_inputs[0], return_tensors='pt').pixel_values _lowercase , _lowercase : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowercase : Any = image_processing(lowerCamelCase, return_tensors='pt').pixel_values _lowercase , _lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor) # Test not batched input _lowercase : Union[str, Any] = image_processing(image_inputs[0], return_tensors='pt').pixel_values _lowercase , _lowercase : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowercase : Optional[int] = image_processing(lowerCamelCase, return_tensors='pt').pixel_values _lowercase , _lowercase : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r') as f: _lowercase : Optional[Any] = json.loads(f.read()) _lowercase : Optional[Any] = {'image_id': 3_97_69, 'annotations': target} # encode them _lowercase : Optional[Any] = DeformableDetrImageProcessor() _lowercase : Optional[Any] = image_processing(images=lowerCamelCase, annotations=lowerCamelCase, return_tensors='pt') # verify pixel values _lowercase : Tuple = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase) _lowercase : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase, atol=1E-4)) # verify area _lowercase : Optional[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase)) # verify boxes _lowercase : List[str] = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase) _lowercase : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase, atol=1E-3)) # verify image_id _lowercase : int = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase)) # verify is_crowd _lowercase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase)) # verify class_labels _lowercase : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase)) # verify orig_size _lowercase : str = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase)) # verify size _lowercase : Optional[int] = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase)) @slow def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r') as f: _lowercase : Optional[Any] = json.loads(f.read()) _lowercase : int = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} _lowercase : List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them _lowercase : str = DeformableDetrImageProcessor(format='coco_panoptic') _lowercase : Dict = image_processing(images=lowerCamelCase, annotations=lowerCamelCase, masks_path=lowerCamelCase, return_tensors='pt') # verify pixel values _lowercase : List[Any] = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase) _lowercase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase, atol=1E-4)) # verify area _lowercase : str = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase)) # verify boxes _lowercase : str = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase, atol=1E-3)) # verify image_id _lowercase : Union[str, Any] = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase)) # verify is_crowd _lowercase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase)) # verify class_labels _lowercase : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase)) # verify masks _lowercase : Optional[int] = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), lowerCamelCase) # verify orig_size _lowercase : str = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase)) # verify size _lowercase : str = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase))
21
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
1
def UpperCamelCase_( lowerCamelCase_ = 100_0000 ) -> int: _lowercase : Optional[int] = limit + 1 _lowercase : str = [0] * limit for first_term in range(1 , lowerCamelCase_ ): for n in range(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _lowercase : int = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowercase : str = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
21
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : List[str] = filter(lambda lowerCamelCase_ : p.requires_grad , model.parameters() ) _lowercase : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: if metric == "rouge2": _lowercase : List[str] = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowercase : Union[str, Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowercase : Optional[Any] = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) _lowercase : Any = ModelCheckpoint( dirpath=lowerCamelCase_ , filename=lowerCamelCase_ , monitor=F'''val_{metric}''' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: return EarlyStopping( monitor=F'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=lowerCamelCase_ , verbose=lowerCamelCase_ , ) class _lowerCamelCase( pl.Callback ): def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Dict = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(lowerCamelCase) @rank_zero_only def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=True) -> None: """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''') _lowercase : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _lowercase : Optional[Any] = Path(pl_module.hparams.output_dir) if type_path == "test": _lowercase : Optional[int] = od / 'test_results.txt' _lowercase : Optional[Any] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowercase : Union[str, Any] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _lowercase : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowerCamelCase) generations_file.parent.mkdir(exist_ok=lowerCamelCase) with open(lowerCamelCase, 'a+') as writer: for key in sorted(lowerCamelCase): if key in ["log", "progress_bar", "preds"]: continue _lowercase : Optional[Any] = metrics[key] if isinstance(lowerCamelCase, torch.Tensor): _lowercase : Optional[int] = val.item() _lowercase : Union[str, Any] = F'''{key}: {val:.6f}\n''' writer.write(lowerCamelCase) if not save_generations: return if "preds" in metrics: _lowercase : Tuple = '\n'.join(metrics['preds']) generations_file.open('w+').write(lowerCamelCase) @rank_zero_only def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" try: _lowercase : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: _lowercase : List[Any] = pl_module.model.num_parameters() _lowercase : Optional[int] = count_trainable_parameters(lowerCamelCase) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" save_json(pl_module.metrics, pl_module.metrics_save_path) return self._write_logs(lowerCamelCase, lowerCamelCase, 'test') @rank_zero_only def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" save_json(pl_module.metrics, pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
21
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : str = "bart" SCREAMING_SNAKE_CASE : Optional[int] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> int: if LOAD_DENSE_INDEX: _lowercase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowercase : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowercase : str = qar_model.eval() else: _lowercase , _lowercase : Any = (None, None) if MODEL_TYPE == "bart": _lowercase : Dict = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowercase : Any = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowercase : List[Any] = sas_model.eval() else: _lowercase , _lowercase : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> str: if LOAD_DENSE_INDEX: _lowercase : Optional[Any] = faiss.StandardGpuResources() _lowercase : Optional[int] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowercase : Tuple = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowercase : Any = faiss.IndexFlatIP(128 ) _lowercase : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: _lowercase , _lowercase : Any = (None, None) _lowercase : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : List[str] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowercase : Optional[Any] = elia['train_eli5'] _lowercase : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowercase : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = load_train_data() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=10 ) -> List[str]: _lowercase : Any = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) _lowercase , _lowercase : List[str] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[str] = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ) -> Dict: if source == "none": _lowercase , _lowercase : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowercase , _lowercase : Dict = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase , _lowercase : str = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) _lowercase : List[Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowercase : Union[str, Any] = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=256 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ) -> Dict: with torch.no_grad(): _lowercase : str = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : List[Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : Any = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Optional[int] = action_list.index(action_st) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : int = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : Dict = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : int = "wiki40b" SCREAMING_SNAKE_CASE : int = "dense" SCREAMING_SNAKE_CASE : str = "beam" SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : List[str] = 64 SCREAMING_SNAKE_CASE : Union[str, Any] = 256 SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : Any = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : int = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : int = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Any = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : str = None # start main text SCREAMING_SNAKE_CASE : List[str] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : List[str] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : Optional[int] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE : int = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : Optional[Any] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : List[Any] = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : Any = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : List[Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : str = find_nearest_training(question) SCREAMING_SNAKE_CASE : Any = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : str = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
21
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = 'laion/clap-htsat-unfused' _lowercase : Optional[Any] = tempfile.mkdtemp() def UpperCamelCase ( self, **lowerCamelCase) -> List[Any]: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint, **lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> str: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint, **lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.get_tokenizer() _lowercase : Optional[int] = self.get_feature_extractor() _lowercase : int = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase) processor.save_pretrained(self.tmpdirname) _lowercase : Union[str, Any] = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, lowerCamelCase) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) _lowercase : str = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') _lowercase : List[str] = self.get_feature_extractor(do_normalize=lowerCamelCase, padding_value=1.0) _lowercase : Tuple = ClapProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowerCamelCase) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = self.get_feature_extractor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Dict = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase) _lowercase : Union[str, Any] = floats_list((3, 10_00)) _lowercase : str = feature_extractor(lowerCamelCase, return_tensors='np') _lowercase : Tuple = processor(audios=lowerCamelCase, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = self.get_feature_extractor() _lowercase : Any = self.get_tokenizer() _lowercase : Dict = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase) _lowercase : Any = 'This is a test string' _lowercase : List[Any] = processor(text=lowerCamelCase) _lowercase : Dict = tokenizer(lowerCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = self.get_feature_extractor() _lowercase : str = self.get_tokenizer() _lowercase : List[str] = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase) _lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : str = processor.batch_decode(lowerCamelCase) _lowercase : Any = tokenizer.batch_decode(lowerCamelCase) self.assertListEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = self.get_feature_extractor() _lowercase : Any = self.get_tokenizer() _lowercase : Tuple = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase) self.assertListEqual( processor.model_input_names[2:], feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', )
21
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Dict = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
1
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
21
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : Node | None class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Node | None = None for i in sorted(lowerCamelCase, reverse=lowerCamelCase): _lowercase : Tuple = Node(lowerCamelCase, self.head) def __iter__( self) -> Iterator[int]: """simple docstring""" _lowercase : Union[str, Any] = self.head while node: yield node.data _lowercase : int = node.next_node def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __str__( self) -> str: """simple docstring""" return " -> ".join([str(lowerCamelCase) for node in self]) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList: return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
21
1
def UpperCamelCase_( lowerCamelCase_ ) -> float: _lowercase : Dict = 0 while len(lowerCamelCase_ ) > 1: _lowercase : Dict = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _lowercase : Union[str, Any] = files.index(min(lowerCamelCase_ ) ) temp += files[min_index] files.pop(lowerCamelCase_ ) files.append(lowerCamelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = KandinskyImgaImgPipeline lowercase_ : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowercase_ : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowercase_ : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ : Union[str, Any] = False @property def UpperCamelCase ( self) -> str: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> int: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 1_00 @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def UpperCamelCase ( self) -> int: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=10_05, ) _lowercase : Optional[int] = MultilingualCLIP(lowerCamelCase) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Optional[Any] = UNetaDConditionModel(**lowerCamelCase) return model @property def UpperCamelCase ( self) -> str: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.dummy_text_encoder _lowercase : List[Any] = self.dummy_tokenizer _lowercase : int = self.dummy_unet _lowercase : int = self.dummy_movq _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : List[Any] = DDIMScheduler(**lowerCamelCase) _lowercase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" _lowercase : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(lowerCamelCase) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Tuple = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB').resize((2_56, 2_56)) if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = 'cpu' _lowercase : Tuple = self.get_dummy_components() _lowercase : str = self.pipeline_class(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = pipe(**self.get_dummy_inputs(lowerCamelCase)) _lowercase : Optional[int] = output.images _lowercase : List[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase), return_dict=lowerCamelCase, )[0] _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') _lowercase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa) pipe_prior.to(lowerCamelCase) _lowercase : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1', torch_dtype=torch.floataa) _lowercase : List[Any] = pipeline.to(lowerCamelCase) pipeline.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = torch.Generator(device='cpu').manual_seed(0) _lowercase , _lowercase : List[Any] = pipe_prior( lowerCamelCase, generator=lowerCamelCase, num_inference_steps=5, negative_prompt='', ).to_tuple() _lowercase : Union[str, Any] = pipeline( lowerCamelCase, image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=1_00, height=7_68, width=7_68, strength=0.2, output_type='np', ) _lowercase : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase)
21
1
import math def UpperCamelCase_( lowerCamelCase_ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase_( lowerCamelCase_ = 1_0001 ) -> int: try: _lowercase : List[Any] = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _lowercase : list[int] = [] _lowercase : Union[str, Any] = 2 while len(lowerCamelCase_ ) < nth: if is_prime(lowerCamelCase_ ): primes.append(lowerCamelCase_ ) num += 1 else: num += 1 return primes[len(lowerCamelCase_ ) - 1] if __name__ == "__main__": print(F"{solution() = }")
21
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase, lowerCamelCase=7, lowerCamelCase=3, lowerCamelCase=18, lowerCamelCase=30, lowerCamelCase=4_00, lowerCamelCase=True, lowerCamelCase=32, lowerCamelCase=True, ) -> Any: """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : Any = batch_size _lowercase : str = num_channels _lowercase : Optional[int] = image_size _lowercase : Tuple = min_resolution _lowercase : Tuple = max_resolution _lowercase : str = do_resize _lowercase : Optional[Any] = size_divisor _lowercase : Any = do_rescale def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Dict = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[int] = GLPNImageProcessingTester(self) @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase, 'do_resize')) self.assertTrue(hasattr(lowerCamelCase, 'size_divisor')) self.assertTrue(hasattr(lowerCamelCase, 'resample')) self.assertTrue(hasattr(lowerCamelCase, 'do_rescale')) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) _lowercase : Optional[int] = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) _lowercase : List[Any] = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) _lowercase : Tuple = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
21
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE : Optional[int] = 16 SCREAMING_SNAKE_CASE : List[Any] = 32 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 16 ) -> Optional[Any]: _lowercase : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowercase : Any = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) _lowercase : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase : Union[str, Any] = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _lowercase : Any = 8 else: _lowercase : List[Any] = None return tokenizer.pad( lowerCamelCase_ , padding='longest' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. _lowercase : str = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=lowerCamelCase_ ) _lowercase : str = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: # Initialize accelerator _lowercase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : Tuple = config['lr'] _lowercase : Any = int(config['num_epochs'] ) _lowercase : Optional[int] = int(config['seed'] ) _lowercase : List[str] = int(config['batch_size'] ) _lowercase : List[Any] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _lowercase : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowercase : List[str] = batch_size // MAX_GPU_BATCH_SIZE _lowercase : Any = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase_ ) _lowercase , _lowercase : Optional[int] = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowercase : str = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler _lowercase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : int = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase : str = model(**lowerCamelCase_ ) _lowercase : Tuple = outputs.loss _lowercase : str = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : List[str] = model(**lowerCamelCase_ ) _lowercase : Dict = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _lowercase : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) def UpperCamelCase_( ) -> Tuple: _lowercase : List[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowercase : Optional[int] = parser.parse_args() _lowercase : Dict = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
21
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=64, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=1, ) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = seq_length _lowercase : Optional[Any] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : List[str] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : List[str] = num_labels _lowercase : Any = num_choices _lowercase : Tuple = scope _lowercase : Optional[Any] = q_groups _lowercase : List[str] = k_groups _lowercase : Optional[int] = v_groups _lowercase : List[str] = post_attention_groups _lowercase : Union[str, Any] = intermediate_groups _lowercase : int = output_groups def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Dict = None _lowercase : int = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = SqueezeBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = SqueezeBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : int = SqueezeBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : List[str] = SqueezeBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = self.num_choices _lowercase : str = SqueezeBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Dict = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase_ : Optional[int] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = True lowercase_ : int = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = SqueezeBertModelTester(self) _lowercase : Dict = ConfigTester(self, config_class=lowerCamelCase, dim=37) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = SqueezeBertModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_sentencepiece @require_tokenizers @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') _lowercase : Optional[int] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]]) _lowercase : List[str] = model(lowerCamelCase)[0] _lowercase : Union[str, Any] = torch.Size((1, 3)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-4))
21
1
import torch def UpperCamelCase_( ) -> List[str]: if torch.cuda.is_available(): _lowercase : Optional[int] = torch.cuda.device_count() else: _lowercase : int = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
21
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase( unittest.TestCase ): lowercase_ : Dict = JukeboxTokenizer lowercase_ : Dict = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" import torch _lowercase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics') _lowercase : Optional[Any] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" import torch _lowercase : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics') _lowercase : List[str] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
21
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE : Any = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] SCREAMING_SNAKE_CASE : Any = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] SCREAMING_SNAKE_CASE : List[Any] = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase_ : int = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCamelCase ( self, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(lowerCamelCase)) _lowercase : Union[str, Any] = torch.manual_seed(lowerCamelCase) _lowercase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : str = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[Any] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs() _lowercase : List[str] = pipe(**lowerCamelCase).images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) # using the PNDM scheduler by default _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np', ) _lowercase : List[Any] = output.images _lowercase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : List[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) _lowercase : str = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler') _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCamelCase, output_type='np', ) _lowercase : str = output.images _lowercase : str = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
21
1
import functools def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: # Validation if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(lowerCamelCase_ ) != 3 or not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(lowerCamelCase_ ) == 0: return 0 if min(lowerCamelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(lowerCamelCase_ ) >= 366: raise ValueError('All days elements should be less than 366' ) _lowercase : Optional[int] = set(lowerCamelCase_ ) @functools.cache def dynamic_programming(lowerCamelCase_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
21
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = 1 _lowercase : Any = 3 _lowercase : Tuple = (32, 32) _lowercase : Tuple = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image @property def UpperCamelCase ( self) -> str: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) return model @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) return model @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=50_06, ) return RobertaSeriesModelWithTransformation(lowerCamelCase) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" def extract(*lowerCamelCase, **lowerCamelCase): class _lowerCamelCase: def __init__( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = torch.ones([0]) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" self.pixel_values.to(lowerCamelCase) return self return Out() return extract def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : Optional[Any] = self.dummy_vae _lowercase : List[Any] = self.dummy_text_encoder _lowercase : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Tuple = 77 _lowercase : int = self.dummy_image.to(lowerCamelCase) _lowercase : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Optional[int] = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : Dict = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Any = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, ) _lowercase : Optional[int] = output.images _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Optional[Any] = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, return_dict=lowerCamelCase, )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Tuple = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : str = self.dummy_vae _lowercase : Optional[Any] = self.dummy_text_encoder _lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Optional[Any] = 77 _lowercase : str = self.dummy_image.to(lowerCamelCase) # put models in fp16 _lowercase : List[str] = unet.half() _lowercase : List[Any] = vae.half() _lowercase : Any = bert.half() # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Any = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = 'A painting of a squirrel eating a burger' _lowercase : Optional[Any] = torch.manual_seed(0) _lowercase : Union[str, Any] = alt_pipe( [prompt], generator=lowerCamelCase, num_inference_steps=2, output_type='np', image=lowerCamelCase, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : str = init_image.resize((7_60, 5_04)) _lowercase : Optional[int] = 'BAAI/AltDiffusion' _lowercase : str = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : List[str] = 'A fantasy landscape, trending on artstation' _lowercase : Any = torch.manual_seed(0) _lowercase : Dict = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : List[str] = output.images[0] _lowercase : Tuple = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowercase : Optional[Any] = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : str = init_image.resize((7_68, 5_12)) _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy') _lowercase : str = 'BAAI/AltDiffusion' _lowercase : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : int = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : int = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : Union[str, Any] = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
21
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) _lowercase : Union[str, Any] = eval_examples _lowercase : Dict = post_process_function def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase = "eval") -> Any: """simple docstring""" _lowercase : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset _lowercase : str = self.get_eval_dataloader(lowerCamelCase) _lowercase : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _lowercase : List[str] = self.compute_metrics _lowercase : Dict = None _lowercase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _lowercase : Optional[Any] = time.time() try: _lowercase : Any = eval_loop( lowerCamelCase, description='Evaluation', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: _lowercase : List[str] = compute_metrics _lowercase : Any = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _lowercase : Any = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions) _lowercase : Optional[Any] = self.compute_metrics(lowerCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _lowercase : List[str] = metrics.pop(lowerCamelCase) metrics.update(output.metrics) else: _lowercase : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _lowercase : List[Any] = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase) return metrics def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase = "test") -> str: """simple docstring""" _lowercase : str = self.get_test_dataloader(lowerCamelCase) # Temporarily disable metric computation, we will do it in the loop here. _lowercase : str = self.compute_metrics _lowercase : Tuple = None _lowercase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _lowercase : Optional[int] = time.time() try: _lowercase : Optional[Any] = eval_loop( lowerCamelCase, description='Prediction', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: _lowercase : str = compute_metrics _lowercase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is None or self.compute_metrics is None: return output _lowercase : Optional[int] = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions, 'predict') _lowercase : Optional[int] = self.compute_metrics(lowerCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _lowercase : str = metrics.pop(lowerCamelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase)
21
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) @dataclass class _lowerCamelCase: lowercase_ : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) lowercase_ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowercase_ : int = field( default=1_28, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.task_name.lower() class _lowerCamelCase( _a ): lowercase_ : int = """train""" lowercase_ : Any = """dev""" lowercase_ : int = """test""" class _lowerCamelCase( _a ): lowercase_ : GlueDataTrainingArguments lowercase_ : str lowercase_ : List[InputFeatures] def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = Split.train, lowerCamelCase = None, ) -> str: """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py', lowerCamelCase, ) _lowercase : Union[str, Any] = args _lowercase : Dict = glue_processors[args.task_name]() _lowercase : int = glue_output_modes[args.task_name] if isinstance(lowerCamelCase, lowerCamelCase): try: _lowercase : Optional[int] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file _lowercase : Tuple = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''', ) _lowercase : int = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowercase , _lowercase : Optional[int] = label_list[2], label_list[1] _lowercase : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowercase : Optional[Any] = cached_features_file + '.lock' with FileLock(lowerCamelCase): if os.path.exists(lowerCamelCase) and not args.overwrite_cache: _lowercase : Union[str, Any] = time.time() _lowercase : Optional[int] = torch.load(lowerCamelCase) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''') if mode == Split.dev: _lowercase : Optional[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: _lowercase : Any = self.processor.get_test_examples(args.data_dir) else: _lowercase : List[Any] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: _lowercase : List[Any] = examples[:limit_length] _lowercase : int = glue_convert_examples_to_features( lowerCamelCase, lowerCamelCase, max_length=args.max_seq_length, label_list=lowerCamelCase, output_mode=self.output_mode, ) _lowercase : Optional[int] = time.time() torch.save(self.features, lowerCamelCase) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''') def __len__( self) -> Any: """simple docstring""" return len(self.features) def __getitem__( self, lowerCamelCase) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return self.label_list
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _lowerCamelCase( _a ): lowercase_ : List[str] = """xlm-roberta-xl""" def __init__( self, lowerCamelCase=25_08_80, lowerCamelCase=25_60, lowerCamelCase=36, lowerCamelCase=32, lowerCamelCase=1_02_40, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_14, lowerCamelCase=1, lowerCamelCase=0.0_2, lowerCamelCase=1E-05, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=2, lowerCamelCase="absolute", lowerCamelCase=True, lowerCamelCase=None, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : str = intermediate_size _lowercase : str = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Optional[Any] = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Dict = initializer_range _lowercase : Dict = layer_norm_eps _lowercase : Dict = position_embedding_type _lowercase : Optional[int] = use_cache _lowercase : str = classifier_dropout class _lowerCamelCase( _a ): @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowercase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
21
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : str = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Dict = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Tuple = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : Any = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.99_95 ) -> Tuple: if not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : List[Any] = True _lowercase : Any = va.device _lowercase : Union[str, Any] = va.cpu().numpy() _lowercase : int = va.cpu().numpy() _lowercase : int = np.sum(va * va / (np.linalg.norm(lowerCamelCase_ ) * np.linalg.norm(lowerCamelCase_ )) ) if np.abs(lowerCamelCase_ ) > DOT_THRESHOLD: _lowercase : Any = (1 - t) * va + t * va else: _lowercase : Dict = np.arccos(lowerCamelCase_ ) _lowercase : str = np.sin(lowerCamelCase_ ) _lowercase : int = theta_a * t _lowercase : Dict = np.sin(lowerCamelCase_ ) _lowercase : Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowercase : List[Any] = sin_theta_t / sin_theta_a _lowercase : Dict = sa * va + sa * va if inputs_are_torch: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) return va def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: for param in model.parameters(): _lowercase : Any = value class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=lowerCamelCase, text_encoder=lowerCamelCase, clip_model=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, coca_model=lowerCamelCase, coca_tokenizer=lowerCamelCase, coca_transform=lowerCamelCase, ) _lowercase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCamelCase) else feature_extractor.size['shortest_edge'] ) _lowercase : Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, lowerCamelCase) set_requires_grad(self.clip_model, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase = "auto") -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength), lowerCamelCase) _lowercase : List[Any] = max(num_inference_steps - init_timestep, 0) _lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase, torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase)}''') _lowercase : Any = image.to(device=lowerCamelCase, dtype=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCamelCase) ] _lowercase : int = torch.cat(lowerCamelCase, dim=0) else: _lowercase : int = self.vae.encode(lowerCamelCase).latent_dist.sample(lowerCamelCase) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : str = 0.1_8_2_1_5 * init_latents _lowercase : List[str] = init_latents.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = randn_tensor(init_latents.shape, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) # get latents _lowercase : Any = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = init_latents return latents def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = self.coca_transform(lowerCamelCase).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowercase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Tuple = self.feature_extractor.preprocess(lowerCamelCase) _lowercase : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _lowercase : int = self.clip_model.get_image_features(lowerCamelCase) _lowercase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : int = image_embeddings_clip.repeat_interleave(lowerCamelCase, dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : List[Any] = latents.detach().requires_grad_() _lowercase : Union[str, Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Tuple = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowercase : Any = self.scheduler.alphas_cumprod[timestep] _lowercase : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowercase : List[str] = torch.sqrt(lowerCamelCase) _lowercase : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCamelCase): _lowercase : Dict = self.scheduler.sigmas[index] _lowercase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Dict = 1 / 0.1_8_2_1_5 * sample _lowercase : Optional[Any] = self.vae.decode(lowerCamelCase).sample _lowercase : int = (image / 2 + 0.5).clamp(0, 1) _lowercase : Any = transforms.Resize(self.feature_extractor_size)(lowerCamelCase) _lowercase : Optional[Any] = self.normalize(lowerCamelCase).to(latents.dtype) _lowercase : List[str] = self.clip_model.get_image_features(lowerCamelCase) _lowercase : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : Optional[Any] = spherical_dist_loss(lowerCamelCase, lowerCamelCase).mean() * clip_guidance_scale _lowercase : str = -torch.autograd.grad(lowerCamelCase, lowerCamelCase)[0] if isinstance(self.scheduler, lowerCamelCase): _lowercase : Union[str, Any] = latents.detach() + grads * (sigma**2) _lowercase : List[str] = noise_pred_original else: _lowercase : List[Any] = noise_pred_original - torch.sqrt(lowerCamelCase) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 0.6, lowerCamelCase = 50, lowerCamelCase = 7.5, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1_00, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, lowerCamelCase = 0.8, lowerCamelCase = 0.1, lowerCamelCase = 0.1, ) -> int: """simple docstring""" if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(lowerCamelCase, torch.Generator) and batch_size > 1: _lowercase : Dict = [generator] + [None] * (batch_size - 1) _lowercase : Optional[int] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowercase : str = ', '.join(lowerCamelCase) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : List[Any] = self.get_image_description(lowerCamelCase) if style_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : Dict = self.get_image_description(lowerCamelCase) # get prompt text embeddings for content and style _lowercase : Optional[int] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowercase : Union[str, Any] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowercase : Any = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) # duplicate text embeddings for each generation per prompt _lowercase : Dict = text_embeddings.repeat_interleave(lowerCamelCase, dim=0) # set timesteps _lowercase : Dict = 'offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_offset: _lowercase : Any = 1 self.scheduler.set_timesteps(lowerCamelCase, **lowerCamelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowercase , _lowercase : List[Any] = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device) _lowercase : str = timesteps[:1].repeat(lowerCamelCase) # Preprocess image _lowercase : str = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : int = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : Optional[int] = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) if clip_guidance_scale > 0: _lowercase : Optional[int] = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = slerp( lowerCamelCase, lowerCamelCase, lowerCamelCase) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : Tuple = content_text_input.input_ids.shape[-1] _lowercase : Union[str, Any] = self.tokenizer([''], padding='max_length', max_length=lowerCamelCase, return_tensors='pt') _lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowercase : Union[str, Any] = uncond_embeddings.repeat_interleave(lowerCamelCase, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowercase : List[Any] = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='cpu', dtype=lowerCamelCase).to( self.device) else: _lowercase : Any = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _lowercase : Tuple = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowercase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : Dict = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_eta: _lowercase : List[Any] = eta # check if the scheduler accepts generator _lowercase : Dict = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowercase : str = generator with self.progress_bar(total=lowerCamelCase): for i, t in enumerate(lowerCamelCase): # expand the latents if we are doing classifier free guidance _lowercase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : List[Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Dict = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample # perform classifier free guidance if do_classifier_free_guidance: _lowercase , _lowercase : Optional[Any] = noise_pred.chunk(2) _lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowercase : Tuple = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowercase , _lowercase : List[Any] = self.cond_fn( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Any = 1 / 0.1_8_2_1_5 * latents _lowercase : List[str] = self.vae.decode(lowerCamelCase).sample _lowercase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowercase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase)
21
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : int = split_dict._to_yaml_list() assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) _lowercase : str = SplitDict._from_yaml_list(lowerCamelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _lowercase : int = None # the split name of split_dict takes over the name of the split info object _lowercase : Optional[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=lowerCamelCase_ ), SplitInfo(dataset_name='my_dataset' )] ) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _lowercase : List[str] = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
21
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ConsistencyModelPipeline lowercase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ : List[str] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet', ) return unet @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet_class_cond', ) return unet def UpperCamelCase ( self, lowerCamelCase=False) -> Dict: """simple docstring""" if class_cond: _lowercase : Union[str, Any] = self.dummy_cond_unet else: _lowercase : Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Tuple: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Optional[int] = self.get_dummy_components() _lowercase : str = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Dict = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : int = image[0, -3:, -3:, -1] _lowercase : Dict = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Any = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase) _lowercase : Any = 0 _lowercase : List[str] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.get_dummy_components() _lowercase : Optional[Any] = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : List[str] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Union[str, Any] = 1 _lowercase : Tuple = None _lowercase : Tuple = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Dict = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Optional[Any] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = 1 _lowercase : int = None _lowercase : Tuple = 0 _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase=False, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) _lowercase : str = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _lowercase : Optional[Any] = self.get_fixed_latents(seed=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase, shape=lowerCamelCase) _lowercase : Tuple = latents return inputs def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Any: """simple docstring""" if type(lowerCamelCase) == str: _lowercase : Union[str, Any] = torch.device(lowerCamelCase) _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[str] = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) return latents def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Any = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Union[str, Any] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs() _lowercase : int = 1 _lowercase : Optional[Any] = None _lowercase : str = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[int] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : int = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) _lowercase : int = 1 _lowercase : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : int = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
21
1
def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : str = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase_( lowerCamelCase_ = 5000 ) -> int: _lowercase : Optional[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCamelCase_ )] for i, pentagonal_i in enumerate(lowerCamelCase_ ): for j in range(lowerCamelCase_ , len(lowerCamelCase_ ) ): _lowercase : List[Any] = pentagonal_nums[j] _lowercase : Optional[int] = pentagonal_i + pentagonal_j _lowercase : str = pentagonal_j - pentagonal_i if is_pentagonal(lowerCamelCase_ ) and is_pentagonal(lowerCamelCase_ ): return b return -1 if __name__ == "__main__": print(F"{solution() = }")
21
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class _lowerCamelCase( _a ): lowercase_ : Dict = """longformer""" def __init__( self, lowerCamelCase = 5_12, lowerCamelCase = 2, lowerCamelCase = 1, lowerCamelCase = 0, lowerCamelCase = 2, lowerCamelCase = 3_05_22, lowerCamelCase = 7_68, lowerCamelCase = 12, lowerCamelCase = 12, lowerCamelCase = 30_72, lowerCamelCase = "gelu", lowerCamelCase = 0.1, lowerCamelCase = 0.1, lowerCamelCase = 5_12, lowerCamelCase = 2, lowerCamelCase = 0.0_2, lowerCamelCase = 1E-12, lowerCamelCase = False, **lowerCamelCase, ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase, **lowerCamelCase) _lowercase : Union[str, Any] = attention_window _lowercase : Union[str, Any] = sep_token_id _lowercase : int = bos_token_id _lowercase : Tuple = eos_token_id _lowercase : List[Any] = vocab_size _lowercase : Tuple = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : int = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Optional[Any] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : str = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : Dict = onnx_export class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase = "default", lowerCamelCase = None) -> Dict: """simple docstring""" super().__init__(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = True @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowercase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ]) @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _lowercase : List[Any] = super().outputs if self.task == "default": _lowercase : List[Any] = {0: 'batch'} return outputs @property def UpperCamelCase ( self) -> float: """simple docstring""" return 1E-4 @property def UpperCamelCase ( self) -> int: """simple docstring""" return max(super().default_onnx_opset, 14) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = -1, lowerCamelCase = -1, lowerCamelCase = False, lowerCamelCase = None, ) -> Mapping[str, Any]: """simple docstring""" _lowercase : str = super().generate_dummy_inputs( preprocessor=lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : Any = torch.zeros_like(inputs['input_ids']) # make every second token global _lowercase : List[str] = 1 return inputs
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> bool: if len(lowerCamelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _lowercase : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=64, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=1, ) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = seq_length _lowercase : Optional[Any] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : List[str] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : List[str] = num_labels _lowercase : Any = num_choices _lowercase : Tuple = scope _lowercase : Optional[Any] = q_groups _lowercase : List[str] = k_groups _lowercase : Optional[int] = v_groups _lowercase : List[str] = post_attention_groups _lowercase : Union[str, Any] = intermediate_groups _lowercase : int = output_groups def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Dict = None _lowercase : int = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = SqueezeBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = SqueezeBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : int = SqueezeBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : List[str] = SqueezeBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = self.num_choices _lowercase : str = SqueezeBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Dict = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase_ : Optional[int] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = True lowercase_ : int = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = SqueezeBertModelTester(self) _lowercase : Dict = ConfigTester(self, config_class=lowerCamelCase, dim=37) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = SqueezeBertModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_sentencepiece @require_tokenizers @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') _lowercase : Optional[int] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]]) _lowercase : List[str] = model(lowerCamelCase)[0] _lowercase : Union[str, Any] = torch.Size((1, 3)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-4))
21
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : Node | None class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Node | None = None for i in sorted(lowerCamelCase, reverse=lowerCamelCase): _lowercase : Tuple = Node(lowerCamelCase, self.head) def __iter__( self) -> Iterator[int]: """simple docstring""" _lowercase : Union[str, Any] = self.head while node: yield node.data _lowercase : int = node.next_node def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __str__( self) -> str: """simple docstring""" return " -> ".join([str(lowerCamelCase) for node in self]) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList: return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
21
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Any = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Tuple = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : str = after_output[0] _lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Any = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Tuple = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Any = to_atuple(vision_model.config.patch_size) _lowercase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" pt_model.to(lowerCamelCase) pt_model.eval() # prepare inputs _lowercase : Any = inputs_dict _lowercase : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : Tuple = pt_model(**lowerCamelCase).to_tuple() _lowercase : Any = fx_model(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase) _lowercase : List[Any] = fx_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase) _lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase) pt_model_loaded.to(lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[Any] = pt_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : str = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase) _lowercase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @is_pt_flax_cross_test def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = config_inputs_dict.pop('vision_config') _lowercase : str = config_inputs_dict.pop('text_config') _lowercase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : List[Any] = model_a(**lowerCamelCase) _lowercase : Tuple = after_outputs[0] _lowercase : Dict = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_flax class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : List[Any] = 13 _lowercase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[Any] = FlaxViTModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = FlaxViTModelTester(self) _lowercase : Any = FlaxBertModelTester(self) _lowercase : Dict = vit_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : List[str] = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : Tuple = 13 _lowercase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = FlaxCLIPVisionModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = FlaxCLIPVisionModelTester(self) _lowercase : Union[str, Any] = FlaxBertModelTester(self) _lowercase : Tuple = clip_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Dict = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian', logit_scale_init_value=1.0) _lowercase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : List[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : List[Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3))
21
1
from manim import * class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = Rectangle(height=0.5, width=0.5) _lowercase : List[Any] = Rectangle(height=0.4_6, width=0.4_6).set_stroke(width=0) _lowercase : Tuple = [mem.copy() for i in range(6)] _lowercase : Any = [mem.copy() for i in range(6)] _lowercase : str = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : List[str] = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : Union[str, Any] = VGroup(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : List[Any] = Text('CPU', font_size=24) _lowercase : Optional[Any] = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase) cpu.move_to([-2.5, -0.5, 0]) self.add(lowerCamelCase) _lowercase : Dict = [mem.copy() for i in range(4)] _lowercase : Union[str, Any] = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : int = Text('GPU', font_size=24) _lowercase : str = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase) gpu.move_to([-1, -1, 0]) self.add(lowerCamelCase) _lowercase : str = [mem.copy() for i in range(6)] _lowercase : Optional[int] = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : Union[str, Any] = Text('Model', font_size=24) _lowercase : Any = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, buff=0.5, aligned_edge=lowerCamelCase) model.move_to([3, -1.0, 0]) self.add(lowerCamelCase) _lowercase : Any = [] for i, rect in enumerate(lowerCamelCase): rect.set_stroke(lowerCamelCase) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowercase : Dict = Rectangle(height=0.4_6 / 4, width=0.4_6 / 3).set_stroke(width=0.0).set_fill(lowerCamelCase, opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.0_2, direction=lowerCamelCase) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0], direction=lowerCamelCase, buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1], direction=lowerCamelCase, buff=0.0) self.add(lowerCamelCase) cpu_targs.append(lowerCamelCase) _lowercase : Tuple = [mem.copy() for i in range(6)] _lowercase : Any = VGroup(*lowerCamelCase).arrange(lowerCamelCase, buff=0) _lowercase : List[str] = Text('Loaded Checkpoint', font_size=24) _lowercase : int = Group(lowerCamelCase, lowerCamelCase).arrange(lowerCamelCase, aligned_edge=lowerCamelCase, buff=0.4) checkpoint.move_to([3, 0.5, 0]) _lowercase : List[str] = Square(side_length=2.2) key.move_to([-5, 2, 0]) _lowercase : Dict = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, ) key_text.move_to([-5, 2.4, 0]) self.add(lowerCamelCase, lowerCamelCase) _lowercase : int = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''', font_size=18, ) blue_text.next_to(lowerCamelCase, DOWN * 2.4, aligned_edge=key_text.get_left()) _lowercase : Any = MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''', font_size=24, ) step_a.move_to([2, 2, 0]) self.play(Write(lowerCamelCase), Write(lowerCamelCase)) self.play(Write(lowerCamelCase, run_time=1), Create(lowerCamelCase, run_time=1)) _lowercase : Union[str, Any] = [] _lowercase : int = [] for i, rect in enumerate(lowerCamelCase): _lowercase : Any = fill.copy().set_fill(lowerCamelCase, opacity=0.7) target.move_to(lowerCamelCase) first_animations.append(GrowFromCenter(lowerCamelCase, run_time=1)) _lowercase : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowerCamelCase, run_time=1.5)) self.play(*lowerCamelCase) self.play(*lowerCamelCase) self.wait()
21
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class _lowerCamelCase( _a ): lowercase_ : Dict = """xlm-prophetnet""" lowercase_ : Union[str, Any] = ["""past_key_values"""] lowercase_ : Dict = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self, lowerCamelCase = 0.1, lowerCamelCase = "gelu", lowerCamelCase = 3_05_22, lowerCamelCase = 10_24, lowerCamelCase = 40_96, lowerCamelCase = 12, lowerCamelCase = 16, lowerCamelCase = 40_96, lowerCamelCase = 12, lowerCamelCase = 16, lowerCamelCase = 0.1, lowerCamelCase = 0.1, lowerCamelCase = 5_12, lowerCamelCase = 0.0_2, lowerCamelCase = True, lowerCamelCase = True, lowerCamelCase = 0, lowerCamelCase = 2, lowerCamelCase = 32, lowerCamelCase = 1_28, lowerCamelCase = False, lowerCamelCase = 0.0, lowerCamelCase = True, lowerCamelCase = 0, lowerCamelCase = 1, lowerCamelCase = 2, **lowerCamelCase, ) -> Any: """simple docstring""" _lowercase : Any = vocab_size _lowercase : Tuple = hidden_size _lowercase : str = encoder_ffn_dim _lowercase : Any = num_encoder_layers _lowercase : Any = num_encoder_attention_heads _lowercase : List[str] = decoder_ffn_dim _lowercase : Dict = num_decoder_layers _lowercase : Optional[int] = num_decoder_attention_heads _lowercase : List[str] = max_position_embeddings _lowercase : Any = init_std # Normal(0, this parameter) _lowercase : Any = activation_function # parameters for xlmprophetnet _lowercase : List[Any] = ngram _lowercase : List[Any] = num_buckets _lowercase : Optional[Any] = relative_max_distance _lowercase : Optional[int] = disable_ngram_loss _lowercase : Any = eps # 3 Types of Dropout _lowercase : Optional[Any] = attention_dropout _lowercase : List[str] = activation_dropout _lowercase : Optional[int] = dropout _lowercase : Dict = use_cache super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, add_cross_attention=lowerCamelCase, decoder_start_token_id=lowerCamelCase, **lowerCamelCase, ) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.')
21
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'], model_result['ss']): _lowercase : Union[str, Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[int] = 'sshleifer/tiny-gpt2' _lowercase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase) _lowercase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = 'sgugger/tiny-distilbert-classification' _lowercase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, only_pretrain_model=lowerCamelCase, ) _lowercase : Any = PyTorchBenchmark(lowerCamelCase) _lowercase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = 'sshleifer/tiny-gpt2' _lowercase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, torchscript=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Optional[Any] = PyTorchBenchmark(lowerCamelCase) _lowercase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == 'cpu', 'Cant do half precision') def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[Any] = 'sshleifer/tiny-gpt2' _lowercase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, fpaa=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Union[str, Any] = PyTorchBenchmark(lowerCamelCase) _lowercase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : int = 'sshleifer/tiny-gpt2' _lowercase : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase) # set architectures equal to `None` _lowercase : Tuple = None _lowercase : int = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : str = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = 'sshleifer/tiny-gpt2' _lowercase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Dict = PyTorchBenchmark(lowerCamelCase) _lowercase : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == 'cpu', 'Can\'t do half precision') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = 'sshleifer/tiny-gpt2' _lowercase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], fpaa=lowerCamelCase, multi_process=lowerCamelCase, ) _lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase) _lowercase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[str] = 'sshleifer/tiny-gpt2' _lowercase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase) _lowercase : int = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = 'sshleifer/tinier_bart' _lowercase : Any = AutoConfig.from_pretrained(lowerCamelCase) _lowercase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : int = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = 'sshleifer/tiny-gpt2' _lowercase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase) _lowercase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : int = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = 'sshleifer/tinier_bart' _lowercase : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase) _lowercase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Optional[Any] = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, save_to_csv=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(lowerCamelCase, 'inf_time.csv'), train_memory_csv_file=os.path.join(lowerCamelCase, 'train_mem.csv'), inference_memory_csv_file=os.path.join(lowerCamelCase, 'inf_mem.csv'), train_time_csv_file=os.path.join(lowerCamelCase, 'train_time.csv'), env_info_csv_file=os.path.join(lowerCamelCase, 'env.csv'), multi_process=lowerCamelCase, ) _lowercase : Union[str, Any] = PyTorchBenchmark(lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(lowerCamelCase, 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(lowerCamelCase, 'train_time.csv')).exists()) self.assertTrue(Path(os.path.join(lowerCamelCase, 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(lowerCamelCase, 'train_mem.csv')).exists()) self.assertTrue(Path(os.path.join(lowerCamelCase, 'env.csv')).exists()) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[int] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowerCamelCase): self.assertTrue(hasattr(lowerCamelCase, 'sequential')) self.assertTrue(hasattr(lowerCamelCase, 'cumulative')) self.assertTrue(hasattr(lowerCamelCase, 'current')) self.assertTrue(hasattr(lowerCamelCase, 'total')) with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(lowerCamelCase, 'log.txt'), log_print=lowerCamelCase, trace_memory_line_by_line=lowerCamelCase, multi_process=lowerCamelCase, ) _lowercase : Optional[Any] = PyTorchBenchmark(lowerCamelCase) _lowercase : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(lowerCamelCase, 'log.txt')).exists())
21
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : str = "bart" SCREAMING_SNAKE_CASE : Optional[int] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> int: if LOAD_DENSE_INDEX: _lowercase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowercase : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowercase : str = qar_model.eval() else: _lowercase , _lowercase : Any = (None, None) if MODEL_TYPE == "bart": _lowercase : Dict = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowercase : Any = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowercase : List[Any] = sas_model.eval() else: _lowercase , _lowercase : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> str: if LOAD_DENSE_INDEX: _lowercase : Optional[Any] = faiss.StandardGpuResources() _lowercase : Optional[int] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowercase : Tuple = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowercase : Any = faiss.IndexFlatIP(128 ) _lowercase : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: _lowercase , _lowercase : Any = (None, None) _lowercase : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : List[str] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowercase : Optional[Any] = elia['train_eli5'] _lowercase : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowercase : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = load_train_data() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=10 ) -> List[str]: _lowercase : Any = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) _lowercase , _lowercase : List[str] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[str] = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ) -> Dict: if source == "none": _lowercase , _lowercase : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowercase , _lowercase : Dict = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase , _lowercase : str = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) _lowercase : List[Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowercase : Union[str, Any] = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=256 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ) -> Dict: with torch.no_grad(): _lowercase : str = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : List[Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : Any = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Optional[int] = action_list.index(action_st) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : int = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : Dict = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : int = "wiki40b" SCREAMING_SNAKE_CASE : int = "dense" SCREAMING_SNAKE_CASE : str = "beam" SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : List[str] = 64 SCREAMING_SNAKE_CASE : Union[str, Any] = 256 SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : Any = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : int = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : int = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Any = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : str = None # start main text SCREAMING_SNAKE_CASE : List[str] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : List[str] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : Optional[int] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE : int = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : Optional[Any] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : List[Any] = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : Any = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : List[Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : str = find_nearest_training(question) SCREAMING_SNAKE_CASE : Any = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : str = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
21
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> List[List[ImageInput]]: if isinstance(lowerCamelCase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCamelCase_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCamelCase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = ["""pixel_values"""] def __init__( self, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = PILImageResampling.BILINEAR, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = True, lowerCamelCase = 1 / 2_55, lowerCamelCase = True, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> None: """simple docstring""" super().__init__(**lowerCamelCase) _lowercase : str = size if size is not None else {'shortest_edge': 2_56} _lowercase : Any = get_size_dict(lowerCamelCase, default_to_square=lowerCamelCase) _lowercase : List[str] = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _lowercase : Optional[Any] = get_size_dict(lowerCamelCase, param_name='crop_size') _lowercase : Optional[int] = do_resize _lowercase : Tuple = size _lowercase : Any = do_center_crop _lowercase : Any = crop_size _lowercase : int = resample _lowercase : int = do_rescale _lowercase : str = rescale_factor _lowercase : Tuple = offset _lowercase : List[str] = do_normalize _lowercase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = PILImageResampling.BILINEAR, lowerCamelCase = None, **lowerCamelCase, ) -> np.ndarray: """simple docstring""" _lowercase : Union[str, Any] = get_size_dict(lowerCamelCase, default_to_square=lowerCamelCase) if "shortest_edge" in size: _lowercase : Dict = get_resize_output_image_size(lowerCamelCase, size['shortest_edge'], default_to_square=lowerCamelCase) elif "height" in size and "width" in size: _lowercase : List[Any] = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''') return resize(lowerCamelCase, size=lowerCamelCase, resample=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, **lowerCamelCase, ) -> np.ndarray: """simple docstring""" _lowercase : Dict = get_size_dict(lowerCamelCase) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''') return center_crop(lowerCamelCase, size=(size['height'], size['width']), data_format=lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = True, lowerCamelCase = None, **lowerCamelCase, ) -> Dict: """simple docstring""" _lowercase : str = image.astype(np.floataa) if offset: _lowercase : List[str] = image - (scale / 2) return rescale(lowerCamelCase, scale=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, **lowerCamelCase, ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = ChannelDimension.FIRST, ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.') # All transformations expect numpy arrays. _lowercase : Tuple = to_numpy_array(lowerCamelCase) if do_resize: _lowercase : Optional[Any] = self.resize(image=lowerCamelCase, size=lowerCamelCase, resample=lowerCamelCase) if do_center_crop: _lowercase : Dict = self.center_crop(lowerCamelCase, size=lowerCamelCase) if do_rescale: _lowercase : Dict = self.rescale(image=lowerCamelCase, scale=lowerCamelCase, offset=lowerCamelCase) if do_normalize: _lowercase : Optional[Any] = self.normalize(image=lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase) _lowercase : Tuple = to_channel_dimension_format(lowerCamelCase, lowerCamelCase) return image def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = ChannelDimension.FIRST, **lowerCamelCase, ) -> PIL.Image.Image: """simple docstring""" _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : Optional[int] = resample if resample is not None else self.resample _lowercase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : Optional[int] = offset if offset is not None else self.offset _lowercase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Any = image_mean if image_mean is not None else self.image_mean _lowercase : Union[str, Any] = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = size if size is not None else self.size _lowercase : Any = get_size_dict(lowerCamelCase, default_to_square=lowerCamelCase) _lowercase : List[str] = crop_size if crop_size is not None else self.crop_size _lowercase : Any = get_size_dict(lowerCamelCase, param_name='crop_size') if not valid_images(lowerCamelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') _lowercase : List[str] = make_batched(lowerCamelCase) _lowercase : Any = [ [ self._preprocess_image( image=lowerCamelCase, do_resize=lowerCamelCase, size=lowerCamelCase, resample=lowerCamelCase, do_center_crop=lowerCamelCase, crop_size=lowerCamelCase, do_rescale=lowerCamelCase, rescale_factor=lowerCamelCase, offset=lowerCamelCase, do_normalize=lowerCamelCase, image_mean=lowerCamelCase, image_std=lowerCamelCase, data_format=lowerCamelCase, ) for img in video ] for video in videos ] _lowercase : Dict = {'pixel_values': videos} return BatchFeature(data=lowerCamelCase, tensor_type=lowerCamelCase)
21
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
1
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('only integers accepted as input' ) else: _lowercase : Any = str(abs(lowerCamelCase_ ) ) _lowercase : Dict = [list(lowerCamelCase_ ) for char in range(len(lowerCamelCase_ ) )] for index in range(len(lowerCamelCase_ ) ): num_transpositions[index].pop(lowerCamelCase_ ) return max( int(''.join(list(lowerCamelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
21
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Any = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Tuple = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : str = after_output[0] _lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Any = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Tuple = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Any = to_atuple(vision_model.config.patch_size) _lowercase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" pt_model.to(lowerCamelCase) pt_model.eval() # prepare inputs _lowercase : Any = inputs_dict _lowercase : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : Tuple = pt_model(**lowerCamelCase).to_tuple() _lowercase : Any = fx_model(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase) _lowercase : List[Any] = fx_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase) _lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase) pt_model_loaded.to(lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[Any] = pt_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : str = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase) _lowercase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @is_pt_flax_cross_test def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = config_inputs_dict.pop('vision_config') _lowercase : str = config_inputs_dict.pop('text_config') _lowercase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : List[Any] = model_a(**lowerCamelCase) _lowercase : Tuple = after_outputs[0] _lowercase : Dict = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_flax class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : List[Any] = 13 _lowercase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[Any] = FlaxViTModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = FlaxViTModelTester(self) _lowercase : Any = FlaxBertModelTester(self) _lowercase : Dict = vit_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : List[str] = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : Tuple = 13 _lowercase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = FlaxCLIPVisionModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = FlaxCLIPVisionModelTester(self) _lowercase : Union[str, Any] = FlaxBertModelTester(self) _lowercase : Tuple = clip_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Dict = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian', logit_scale_init_value=1.0) _lowercase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : List[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : List[Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3))
21
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : Node | None class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Node | None = None for i in sorted(lowerCamelCase, reverse=lowerCamelCase): _lowercase : Tuple = Node(lowerCamelCase, self.head) def __iter__( self) -> Iterator[int]: """simple docstring""" _lowercase : Union[str, Any] = self.head while node: yield node.data _lowercase : int = node.next_node def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __str__( self) -> str: """simple docstring""" return " -> ".join([str(lowerCamelCase) for node in self]) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList: return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
21
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> List[int]: if isinstance(lowerCamelCase_ , np.ndarray ): return list(tensor.shape ) _lowercase : Optional[Any] = tf.shape(lowerCamelCase_ ) if tensor.shape == tf.TensorShape(lowerCamelCase_ ): return dynamic _lowercase : List[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase_ )] def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=lowerCamelCase_ , name=lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=1e-5 , lowerCamelCase_=-1 ) -> Tuple: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _lowercase , _lowercase : Tuple = tf.nn.moments(lowerCamelCase_ , axes=[axis] , keepdims=lowerCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowercase : Optional[Any] = [1] * inputs.shape.rank _lowercase : Any = shape_list(lowerCamelCase_ )[axis] _lowercase : List[str] = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Optional[Any] = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) # Compute layer normalization using the batch_normalization # function. _lowercase : List[str] = tf.nn.batch_normalization( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , offset=lowerCamelCase_ , scale=lowerCamelCase_ , variance_epsilon=lowerCamelCase_ , ) return outputs def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=0 , lowerCamelCase_=-1 ) -> Optional[Any]: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowercase : Optional[int] = tf.shape(lowerCamelCase_ ) _lowercase : Optional[int] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowercase : Any = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> tf.Tensor: if not isinstance(lowerCamelCase_ , tf.Tensor ): _lowercase : List[str] = tf.convert_to_tensor(lowerCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowercase : List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowercase : Any = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = "input_ids" ) -> None: tf.debugging.assert_less( lowerCamelCase_ , tf.cast(lowerCamelCase_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : List[str] = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowercase : Union[str, Any] = [x for x in data if len(lowerCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) _lowercase : int = np.asarray(lowerCamelCase_ ) _lowercase : Optional[int] = 1 _lowercase : str = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowercase : Tuple = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase_ ): _lowercase : Optional[int] = chunk_data else: _lowercase : int = data def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if name in group.attrs: _lowercase : Optional[int] = [n.decode('utf8' ) if hasattr(lowerCamelCase_ , 'decode' ) else n for n in group.attrs[name]] else: _lowercase : List[str] = [] _lowercase : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(lowerCamelCase_ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: def _expand_single_ad_tensor(lowerCamelCase_ ): if isinstance(lowerCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase_ )
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = KandinskyImgaImgPipeline lowercase_ : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowercase_ : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowercase_ : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ : Union[str, Any] = False @property def UpperCamelCase ( self) -> str: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> int: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 1_00 @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def UpperCamelCase ( self) -> int: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=10_05, ) _lowercase : Optional[int] = MultilingualCLIP(lowerCamelCase) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Optional[Any] = UNetaDConditionModel(**lowerCamelCase) return model @property def UpperCamelCase ( self) -> str: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.dummy_text_encoder _lowercase : List[Any] = self.dummy_tokenizer _lowercase : int = self.dummy_unet _lowercase : int = self.dummy_movq _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : List[Any] = DDIMScheduler(**lowerCamelCase) _lowercase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" _lowercase : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(lowerCamelCase) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Tuple = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB').resize((2_56, 2_56)) if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = 'cpu' _lowercase : Tuple = self.get_dummy_components() _lowercase : str = self.pipeline_class(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = pipe(**self.get_dummy_inputs(lowerCamelCase)) _lowercase : Optional[int] = output.images _lowercase : List[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase), return_dict=lowerCamelCase, )[0] _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') _lowercase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa) pipe_prior.to(lowerCamelCase) _lowercase : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1', torch_dtype=torch.floataa) _lowercase : List[Any] = pipeline.to(lowerCamelCase) pipeline.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = torch.Generator(device='cpu').manual_seed(0) _lowercase , _lowercase : List[Any] = pipe_prior( lowerCamelCase, generator=lowerCamelCase, num_inference_steps=5, negative_prompt='', ).to_tuple() _lowercase : Union[str, Any] = pipeline( lowerCamelCase, image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=1_00, height=7_68, width=7_68, strength=0.2, output_type='np', ) _lowercase : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase)
21
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCamelCase_( ) -> Any: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCamelCase_ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def UpperCamelCase_( ) -> Any: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def UpperCamelCase_( ) -> Optional[Any]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCamelCase_ ): http_head('https://huggingface.co' )
21
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
1
import os import pytest from transformers.dynamic_module_utils import get_imports SCREAMING_SNAKE_CASE : Optional[int] = "\nimport os\n" SCREAMING_SNAKE_CASE : str = "\ndef foo():\n import os\n return False\n" SCREAMING_SNAKE_CASE : str = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" SCREAMING_SNAKE_CASE : Tuple = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" SCREAMING_SNAKE_CASE : Dict = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" SCREAMING_SNAKE_CASE : Dict = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" SCREAMING_SNAKE_CASE : Tuple = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" SCREAMING_SNAKE_CASE : Tuple = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" SCREAMING_SNAKE_CASE : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" SCREAMING_SNAKE_CASE : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" SCREAMING_SNAKE_CASE : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case' , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: _lowercase : List[str] = os.path.join(lowerCamelCase_ , 'test_file.py' ) with open(lowerCamelCase_ , 'w' ) as _tmp_file: _tmp_file.write(lowerCamelCase_ ) _lowercase : Tuple = get_imports(lowerCamelCase_ ) assert parsed_imports == ["os"]
21
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _enforce_args(lowerCamelCase_ , lowerCamelCase_ ) if n == 0: return 0 _lowercase : Union[str, Any] = float('-inf' ) for i in range(1 , n + 1 ): _lowercase : int = max( lowerCamelCase_ , prices[i - 1] + naive_cut_rod_recursive(n - i , lowerCamelCase_ ) ) return max_revue def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: _enforce_args(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Optional[Any] = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowercase : Any = float('-inf' ) for i in range(1 , n + 1 ): _lowercase : List[Any] = max( lowerCamelCase_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowerCamelCase_ , lowerCamelCase_ ) , ) _lowercase : Dict = max_revenue return max_rev[n] def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _enforce_args(lowerCamelCase_ , lowerCamelCase_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowercase : int = [float('-inf' ) for _ in range(n + 1 )] _lowercase : str = 0 for i in range(1 , n + 1 ): _lowercase : Tuple = max_rev[i] for j in range(1 , i + 1 ): _lowercase : Any = max(lowerCamelCase_ , prices[j - 1] + max_rev[i - j] ) _lowercase : Optional[Any] = max_revenue_i return max_rev[n] def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if n < 0: _lowercase : Optional[int] = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(lowerCamelCase_ ) if n > len(lowerCamelCase_ ): _lowercase : Tuple = ( 'Each integral piece of rod must have a corresponding price. ' F'''Got n = {n} but length of prices = {len(lowerCamelCase_ )}''' ) raise ValueError(lowerCamelCase_ ) def UpperCamelCase_( ) -> Optional[int]: _lowercase : List[str] = [6, 10, 12, 15, 20, 23] _lowercase : Any = len(lowerCamelCase_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowercase : Tuple = 36 _lowercase : int = top_down_cut_rod(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Tuple = bottom_up_cut_rod(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : int = naive_cut_rod_recursive(lowerCamelCase_ , lowerCamelCase_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
21
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=64, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=1, ) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = seq_length _lowercase : Optional[Any] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : List[str] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : List[str] = num_labels _lowercase : Any = num_choices _lowercase : Tuple = scope _lowercase : Optional[Any] = q_groups _lowercase : List[str] = k_groups _lowercase : Optional[int] = v_groups _lowercase : List[str] = post_attention_groups _lowercase : Union[str, Any] = intermediate_groups _lowercase : int = output_groups def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Dict = None _lowercase : int = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = SqueezeBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = SqueezeBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : int = SqueezeBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : List[str] = SqueezeBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = self.num_choices _lowercase : str = SqueezeBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Dict = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase_ : Optional[int] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = True lowercase_ : int = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = SqueezeBertModelTester(self) _lowercase : Dict = ConfigTester(self, config_class=lowerCamelCase, dim=37) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = SqueezeBertModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_sentencepiece @require_tokenizers @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') _lowercase : Optional[int] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]]) _lowercase : List[str] = model(lowerCamelCase)[0] _lowercase : Union[str, Any] = torch.Size((1, 3)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-4))
21
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets SCREAMING_SNAKE_CASE : Optional[int] = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" SCREAMING_SNAKE_CASE : List[str] = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" SCREAMING_SNAKE_CASE : Optional[int] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: return float((preds == labels).mean() ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: _lowercase : Optional[int] = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Any = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) _lowercase : Optional[int] = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCamelCase( datasets.Metric ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]') return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32'), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32'), }), codebase_urls=[], reference_urls=[], format='numpy', ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase, lowerCamelCase)} elif self.config_name == "stsb": return pearson_and_spearman(lowerCamelCase, lowerCamelCase) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCamelCase, lowerCamelCase) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCamelCase, lowerCamelCase)} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]')
21
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase( unittest.TestCase ): lowercase_ : Dict = JukeboxTokenizer lowercase_ : Dict = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" import torch _lowercase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics') _lowercase : Optional[Any] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" import torch _lowercase : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics') _lowercase : List[str] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
21
1
# flake8: noqa # Lint as: python3 SCREAMING_SNAKE_CASE : int = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
21
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase_ : int = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCamelCase ( self, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(lowerCamelCase)) _lowercase : Union[str, Any] = torch.manual_seed(lowerCamelCase) _lowercase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : str = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[Any] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs() _lowercase : List[str] = pipe(**lowerCamelCase).images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) # using the PNDM scheduler by default _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np', ) _lowercase : List[Any] = output.images _lowercase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : List[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) _lowercase : str = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler') _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCamelCase, output_type='np', ) _lowercase : str = output.images _lowercase : str = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
21
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE : Any = get_logger() SCREAMING_SNAKE_CASE : Optional[dict] = None class _lowerCamelCase( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__( self, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[Any]: """simple docstring""" super().__init__(features=lowerCamelCase) import jax from jaxlib.xla_client import Device if isinstance(lowerCamelCase, lowerCamelCase): raise ValueError( F'''Expected {device} to be a `str` not {type(lowerCamelCase)}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.') _lowercase : int = device if isinstance(lowerCamelCase, lowerCamelCase) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowercase : List[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default ''' F'''device: {str(jax.devices()[0])}.''') _lowercase : Dict = str(jax.devices()[0]) _lowercase : str = jnp_array_kwargs @staticmethod def UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(lowerCamelCase): device for device in jax.devices()} def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" import jax import jax.numpy as jnp if isinstance(lowerCamelCase, lowerCamelCase) and column: if all( isinstance(lowerCamelCase, jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(lowerCamelCase, axis=0) return column def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" import jax import jax.numpy as jnp if isinstance(lowerCamelCase, (str, bytes, type(lowerCamelCase))): return value elif isinstance(lowerCamelCase, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() _lowercase : Any = {} if isinstance(lowerCamelCase, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowercase : Dict = {'dtype': jnp.intaa} else: _lowercase : List[str] = {'dtype': jnp.intaa} elif isinstance(lowerCamelCase, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): _lowercase : Tuple = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCamelCase, PIL.Image.Image): _lowercase : List[str] = np.asarray(lowerCamelCase) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowercase : Any = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(lowerCamelCase, **{**default_dtype, **self.jnp_array_kwargs}) def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(lowerCamelCase, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(lowerCamelCase, '__array__') and not isinstance(lowerCamelCase, jax.Array): _lowercase : Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCamelCase, np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCamelCase) for substruct in data_struct]) elif isinstance(lowerCamelCase, (list, tuple)): return self._consolidate([self.recursive_tensorize(lowerCamelCase) for substruct in data_struct]) return self._tensorize(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" return map_nested(self._recursive_tensorize, lowerCamelCase, map_list=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Mapping: """simple docstring""" _lowercase : Dict = self.numpy_arrow_extractor().extract_row(lowerCamelCase) _lowercase : Tuple = self.python_features_decoder.decode_row(lowerCamelCase) return self.recursive_tensorize(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> "jax.Array": """simple docstring""" _lowercase : Optional[Any] = self.numpy_arrow_extractor().extract_column(lowerCamelCase) _lowercase : Union[str, Any] = self.python_features_decoder.decode_column(lowerCamelCase, pa_table.column_names[0]) _lowercase : List[str] = self.recursive_tensorize(lowerCamelCase) _lowercase : Tuple = self._consolidate(lowerCamelCase) return column def UpperCamelCase ( self, lowerCamelCase) -> Mapping: """simple docstring""" _lowercase : str = self.numpy_arrow_extractor().extract_batch(lowerCamelCase) _lowercase : Dict = self.python_features_decoder.decode_batch(lowerCamelCase) _lowercase : List[str] = self.recursive_tensorize(lowerCamelCase) for column_name in batch: _lowercase : str = self._consolidate(batch[column_name]) return batch
21
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = 1 _lowercase : Any = 3 _lowercase : Tuple = (32, 32) _lowercase : Tuple = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image @property def UpperCamelCase ( self) -> str: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) return model @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) return model @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=50_06, ) return RobertaSeriesModelWithTransformation(lowerCamelCase) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" def extract(*lowerCamelCase, **lowerCamelCase): class _lowerCamelCase: def __init__( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = torch.ones([0]) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" self.pixel_values.to(lowerCamelCase) return self return Out() return extract def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : Optional[Any] = self.dummy_vae _lowercase : List[Any] = self.dummy_text_encoder _lowercase : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Tuple = 77 _lowercase : int = self.dummy_image.to(lowerCamelCase) _lowercase : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Optional[int] = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : Dict = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Any = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, ) _lowercase : Optional[int] = output.images _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Optional[Any] = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, return_dict=lowerCamelCase, )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Tuple = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : str = self.dummy_vae _lowercase : Optional[Any] = self.dummy_text_encoder _lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Optional[Any] = 77 _lowercase : str = self.dummy_image.to(lowerCamelCase) # put models in fp16 _lowercase : List[str] = unet.half() _lowercase : List[Any] = vae.half() _lowercase : Any = bert.half() # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Any = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = 'A painting of a squirrel eating a burger' _lowercase : Optional[Any] = torch.manual_seed(0) _lowercase : Union[str, Any] = alt_pipe( [prompt], generator=lowerCamelCase, num_inference_steps=2, output_type='np', image=lowerCamelCase, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : str = init_image.resize((7_60, 5_04)) _lowercase : Optional[int] = 'BAAI/AltDiffusion' _lowercase : str = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : List[str] = 'A fantasy landscape, trending on artstation' _lowercase : Any = torch.manual_seed(0) _lowercase : Dict = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : List[str] = output.images[0] _lowercase : Tuple = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowercase : Optional[Any] = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : str = init_image.resize((7_68, 5_12)) _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy') _lowercase : str = 'BAAI/AltDiffusion' _lowercase : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : int = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : int = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : Union[str, Any] = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
21
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase, lowerCamelCase=7, lowerCamelCase=3, lowerCamelCase=30, lowerCamelCase=4_00, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=True, lowerCamelCase=[0.5, 0.5, 0.5], lowerCamelCase=[0.5, 0.5, 0.5], lowerCamelCase=True, lowerCamelCase=1 / 2_55, lowerCamelCase=True, ) -> str: """simple docstring""" _lowercase : Union[str, Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} _lowercase : str = parent _lowercase : str = batch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = min_resolution _lowercase : int = max_resolution _lowercase : int = do_resize _lowercase : str = size _lowercase : Optional[int] = do_normalize _lowercase : Dict = image_mean _lowercase : List[Any] = image_std _lowercase : List[Any] = do_rescale _lowercase : Tuple = rescale_factor _lowercase : List[str] = do_pad def UpperCamelCase ( self) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=False) -> List[Any]: """simple docstring""" if not batched: _lowercase : Optional[Any] = image_inputs[0] if isinstance(lowerCamelCase, Image.Image): _lowercase , _lowercase : List[str] = image.size else: _lowercase , _lowercase : int = image.shape[1], image.shape[2] if w < h: _lowercase : Union[str, Any] = int(self.size['shortest_edge'] * h / w) _lowercase : List[Any] = self.size['shortest_edge'] elif w > h: _lowercase : Dict = self.size['shortest_edge'] _lowercase : Optional[Any] = int(self.size['shortest_edge'] * w / h) else: _lowercase : Dict = self.size['shortest_edge'] _lowercase : str = self.size['shortest_edge'] else: _lowercase : Union[str, Any] = [] for image in image_inputs: _lowercase , _lowercase : List[str] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _lowercase : Optional[Any] = max(lowerCamelCase, key=lambda lowerCamelCase: item[0])[0] _lowercase : Dict = max(lowerCamelCase, key=lambda lowerCamelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Tuple = DetaImageProcessor if is_vision_available() else None def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = DetaImageProcessingTester(self) @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase, 'image_mean')) self.assertTrue(hasattr(lowerCamelCase, 'image_std')) self.assertTrue(hasattr(lowerCamelCase, 'do_normalize')) self.assertTrue(hasattr(lowerCamelCase, 'do_resize')) self.assertTrue(hasattr(lowerCamelCase, 'do_rescale')) self.assertTrue(hasattr(lowerCamelCase, 'do_pad')) self.assertTrue(hasattr(lowerCamelCase, 'size')) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Any = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 13_33}) self.assertEqual(image_processor.do_pad, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image) # Test not batched input _lowercase : int = image_processing(image_inputs[0], return_tensors='pt').pixel_values _lowercase , _lowercase : Any = self.image_processor_tester.get_expected_values(lowerCamelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowercase , _lowercase : Any = self.image_processor_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase) _lowercase : List[Any] = image_processing(lowerCamelCase, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray) # Test not batched input _lowercase : Tuple = image_processing(image_inputs[0], return_tensors='pt').pixel_values _lowercase , _lowercase : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowercase : Any = image_processing(lowerCamelCase, return_tensors='pt').pixel_values _lowercase , _lowercase : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor) # Test not batched input _lowercase : Dict = image_processing(image_inputs[0], return_tensors='pt').pixel_values _lowercase , _lowercase : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowercase : Union[str, Any] = image_processing(lowerCamelCase, return_tensors='pt').pixel_values _lowercase , _lowercase : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase, batched=lowerCamelCase) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r') as f: _lowercase : List[Any] = json.loads(f.read()) _lowercase : int = {'image_id': 3_97_69, 'annotations': target} # encode them _lowercase : int = DetaImageProcessor() _lowercase : Dict = image_processing(images=lowerCamelCase, annotations=lowerCamelCase, return_tensors='pt') # verify pixel values _lowercase : Dict = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase) _lowercase : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase, atol=1E-4)) # verify area _lowercase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase)) # verify boxes _lowercase : str = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase, atol=1E-3)) # verify image_id _lowercase : Optional[int] = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase)) # verify is_crowd _lowercase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase)) # verify class_labels _lowercase : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase)) # verify orig_size _lowercase : Union[str, Any] = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase)) # verify size _lowercase : Tuple = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase)) @slow def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r') as f: _lowercase : Any = json.loads(f.read()) _lowercase : str = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} _lowercase : int = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them _lowercase : Union[str, Any] = DetaImageProcessor(format='coco_panoptic') _lowercase : int = image_processing(images=lowerCamelCase, annotations=lowerCamelCase, masks_path=lowerCamelCase, return_tensors='pt') # verify pixel values _lowercase : Optional[int] = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase) _lowercase : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase, atol=1E-4)) # verify area _lowercase : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase)) # verify boxes _lowercase : Optional[int] = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase) _lowercase : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase, atol=1E-3)) # verify image_id _lowercase : Optional[int] = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase)) # verify is_crowd _lowercase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase)) # verify class_labels _lowercase : Any = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase)) # verify masks _lowercase : Any = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), lowerCamelCase) # verify orig_size _lowercase : str = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase)) # verify size _lowercase : Optional[Any] = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase))
21
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter SCREAMING_SNAKE_CASE : Tuple = True except ImportError: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _lowerCamelCase( _a ): @staticmethod def UpperCamelCase ( lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Tuple = parser.add_parser('add-new-model') add_new_model_parser.add_argument('--testing', action='store_true', help='If in testing mode.') add_new_model_parser.add_argument('--testing_file', type=lowerCamelCase, help='Configuration file on which to run.') add_new_model_parser.add_argument( '--path', type=lowerCamelCase, help='Path to cookiecutter. Should only be used for testing purposes.') add_new_model_parser.set_defaults(func=lowerCamelCase) def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, *lowerCamelCase) -> str: """simple docstring""" _lowercase : Dict = testing _lowercase : Tuple = testing_file _lowercase : List[Any] = path def UpperCamelCase ( self) -> Dict: """simple docstring""" warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.') if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n') # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _lowercase : Tuple = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(lowerCamelCase) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.') _lowercase : Optional[int] = ( Path(lowerCamelCase).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) _lowercase : List[Any] = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase)) else: with open(self._testing_file, 'r') as configuration_file: _lowercase : Tuple = json.load(lowerCamelCase) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path), no_input=lowerCamelCase, extra_context=lowerCamelCase, ) _lowercase : Dict = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json', 'r') as configuration_file: _lowercase : Dict = json.load(lowerCamelCase) _lowercase : List[str] = configuration['lowercase_modelname'] _lowercase : List[Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'''{directory}/configuration.json''') _lowercase : List[str] = 'PyTorch' in generate_tensorflow_pytorch_and_flax _lowercase : Optional[Any] = 'TensorFlow' in generate_tensorflow_pytorch_and_flax _lowercase : Tuple = 'Flax' in generate_tensorflow_pytorch_and_flax _lowercase : List[str] = F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''', exist_ok=lowerCamelCase) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''', 'w'): pass shutil.move( F'''{directory}/__init__.py''', F'''{model_dir}/__init__.py''', ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''', F'''{model_dir}/configuration_{lowercase_model_name}.py''', ) def remove_copy_lines(lowerCamelCase): with open(lowerCamelCase, 'r') as f: _lowercase : Any = f.readlines() with open(lowerCamelCase, 'w') as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''') shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''', F'''{model_dir}/modeling_{lowercase_model_name}.py''', ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''', F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''', ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''') os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''') if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''') shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''', F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''', ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''', F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''', ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''') os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''') if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''') shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''', F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''', ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''', F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''', ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''') os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''') shutil.move( F'''{directory}/{lowercase_model_name}.md''', F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''', ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''', F'''{model_dir}/tokenization_{lowercase_model_name}.py''', ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''', F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''', ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase, lowerCamelCase, lowerCamelCase): # Create temp file _lowercase , _lowercase : str = mkstemp() _lowercase : List[Any] = False with fdopen(lowerCamelCase, 'w') as new_file: with open(lowerCamelCase) as old_file: for line in old_file: new_file.write(lowerCamelCase) if line_to_copy_below in line: _lowercase : Dict = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''') # Copy the file permissions from the old file to the new file copymode(lowerCamelCase, lowerCamelCase) # Remove original file remove(lowerCamelCase) # Move new file move(lowerCamelCase, lowerCamelCase) def skip_units(lowerCamelCase): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase): with open(lowerCamelCase) as datafile: _lowercase : Any = [] _lowercase : Union[str, Any] = False _lowercase : Optional[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: _lowercase : Tuple = line.split('"')[1] _lowercase : Any = skip_units(lowerCamelCase) elif "# Below: " in line and "##" not in line: _lowercase : Dict = line.split('"')[1] _lowercase : List[Any] = skip_units(lowerCamelCase) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = [] elif "# Replace with" in line and "##" not in line: _lowercase : Any = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase) remove(lowerCamelCase) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''') os.rmdir(lowerCamelCase)
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
from sklearn.metrics import recall_score import datasets SCREAMING_SNAKE_CASE : Optional[int] = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" SCREAMING_SNAKE_CASE : str = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" SCREAMING_SNAKE_CASE : List[str] = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCamelCase( datasets.Metric ): def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }), reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'], ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=1, lowerCamelCase="binary", lowerCamelCase=None, lowerCamelCase="warn", ) -> str: """simple docstring""" _lowercase : Tuple = recall_score( lowerCamelCase, lowerCamelCase, labels=lowerCamelCase, pos_label=lowerCamelCase, average=lowerCamelCase, sample_weight=lowerCamelCase, zero_division=lowerCamelCase, ) return {"recall": float(lowerCamelCase) if score.size == 1 else score}
21
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : str = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Dict = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Tuple = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : Any = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.99_95 ) -> Tuple: if not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : List[Any] = True _lowercase : Any = va.device _lowercase : Union[str, Any] = va.cpu().numpy() _lowercase : int = va.cpu().numpy() _lowercase : int = np.sum(va * va / (np.linalg.norm(lowerCamelCase_ ) * np.linalg.norm(lowerCamelCase_ )) ) if np.abs(lowerCamelCase_ ) > DOT_THRESHOLD: _lowercase : Any = (1 - t) * va + t * va else: _lowercase : Dict = np.arccos(lowerCamelCase_ ) _lowercase : str = np.sin(lowerCamelCase_ ) _lowercase : int = theta_a * t _lowercase : Dict = np.sin(lowerCamelCase_ ) _lowercase : Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowercase : List[Any] = sin_theta_t / sin_theta_a _lowercase : Dict = sa * va + sa * va if inputs_are_torch: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) return va def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: for param in model.parameters(): _lowercase : Any = value class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=lowerCamelCase, text_encoder=lowerCamelCase, clip_model=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, coca_model=lowerCamelCase, coca_tokenizer=lowerCamelCase, coca_transform=lowerCamelCase, ) _lowercase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCamelCase) else feature_extractor.size['shortest_edge'] ) _lowercase : Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, lowerCamelCase) set_requires_grad(self.clip_model, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase = "auto") -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength), lowerCamelCase) _lowercase : List[Any] = max(num_inference_steps - init_timestep, 0) _lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase, torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase)}''') _lowercase : Any = image.to(device=lowerCamelCase, dtype=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCamelCase) ] _lowercase : int = torch.cat(lowerCamelCase, dim=0) else: _lowercase : int = self.vae.encode(lowerCamelCase).latent_dist.sample(lowerCamelCase) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : str = 0.1_8_2_1_5 * init_latents _lowercase : List[str] = init_latents.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = randn_tensor(init_latents.shape, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) # get latents _lowercase : Any = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = init_latents return latents def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = self.coca_transform(lowerCamelCase).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowercase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Tuple = self.feature_extractor.preprocess(lowerCamelCase) _lowercase : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _lowercase : int = self.clip_model.get_image_features(lowerCamelCase) _lowercase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : int = image_embeddings_clip.repeat_interleave(lowerCamelCase, dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : List[Any] = latents.detach().requires_grad_() _lowercase : Union[str, Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Tuple = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowercase : Any = self.scheduler.alphas_cumprod[timestep] _lowercase : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowercase : List[str] = torch.sqrt(lowerCamelCase) _lowercase : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCamelCase): _lowercase : Dict = self.scheduler.sigmas[index] _lowercase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Dict = 1 / 0.1_8_2_1_5 * sample _lowercase : Optional[Any] = self.vae.decode(lowerCamelCase).sample _lowercase : int = (image / 2 + 0.5).clamp(0, 1) _lowercase : Any = transforms.Resize(self.feature_extractor_size)(lowerCamelCase) _lowercase : Optional[Any] = self.normalize(lowerCamelCase).to(latents.dtype) _lowercase : List[str] = self.clip_model.get_image_features(lowerCamelCase) _lowercase : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : Optional[Any] = spherical_dist_loss(lowerCamelCase, lowerCamelCase).mean() * clip_guidance_scale _lowercase : str = -torch.autograd.grad(lowerCamelCase, lowerCamelCase)[0] if isinstance(self.scheduler, lowerCamelCase): _lowercase : Union[str, Any] = latents.detach() + grads * (sigma**2) _lowercase : List[str] = noise_pred_original else: _lowercase : List[Any] = noise_pred_original - torch.sqrt(lowerCamelCase) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 0.6, lowerCamelCase = 50, lowerCamelCase = 7.5, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1_00, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, lowerCamelCase = 0.8, lowerCamelCase = 0.1, lowerCamelCase = 0.1, ) -> int: """simple docstring""" if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(lowerCamelCase, torch.Generator) and batch_size > 1: _lowercase : Dict = [generator] + [None] * (batch_size - 1) _lowercase : Optional[int] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowercase : str = ', '.join(lowerCamelCase) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : List[Any] = self.get_image_description(lowerCamelCase) if style_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : Dict = self.get_image_description(lowerCamelCase) # get prompt text embeddings for content and style _lowercase : Optional[int] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowercase : Union[str, Any] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowercase : Any = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) # duplicate text embeddings for each generation per prompt _lowercase : Dict = text_embeddings.repeat_interleave(lowerCamelCase, dim=0) # set timesteps _lowercase : Dict = 'offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_offset: _lowercase : Any = 1 self.scheduler.set_timesteps(lowerCamelCase, **lowerCamelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowercase , _lowercase : List[Any] = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device) _lowercase : str = timesteps[:1].repeat(lowerCamelCase) # Preprocess image _lowercase : str = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : int = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : Optional[int] = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) if clip_guidance_scale > 0: _lowercase : Optional[int] = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = slerp( lowerCamelCase, lowerCamelCase, lowerCamelCase) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : Tuple = content_text_input.input_ids.shape[-1] _lowercase : Union[str, Any] = self.tokenizer([''], padding='max_length', max_length=lowerCamelCase, return_tensors='pt') _lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowercase : Union[str, Any] = uncond_embeddings.repeat_interleave(lowerCamelCase, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowercase : List[Any] = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='cpu', dtype=lowerCamelCase).to( self.device) else: _lowercase : Any = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _lowercase : Tuple = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowercase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : Dict = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_eta: _lowercase : List[Any] = eta # check if the scheduler accepts generator _lowercase : Dict = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowercase : str = generator with self.progress_bar(total=lowerCamelCase): for i, t in enumerate(lowerCamelCase): # expand the latents if we are doing classifier free guidance _lowercase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : List[Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Dict = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample # perform classifier free guidance if do_classifier_free_guidance: _lowercase , _lowercase : Optional[Any] = noise_pred.chunk(2) _lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowercase : Tuple = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowercase , _lowercase : List[Any] = self.cond_fn( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Any = 1 / 0.1_8_2_1_5 * latents _lowercase : List[str] = self.vae.decode(lowerCamelCase).sample _lowercase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowercase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase)
21
1
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _lowerCamelCase( _a ): lowercase_ : List[str] = """trajectory_transformer""" lowercase_ : Optional[Any] = ["""past_key_values"""] lowercase_ : Any = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, lowerCamelCase=1_00, lowerCamelCase=5, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=2_49, lowerCamelCase=6, lowerCamelCase=17, lowerCamelCase=25, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=1_28, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.0_0_0_6, lowerCamelCase=5_12, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=1, lowerCamelCase=True, lowerCamelCase=1, lowerCamelCase=5_02_56, lowerCamelCase=5_02_56, **lowerCamelCase, ) -> Tuple: """simple docstring""" _lowercase : int = vocab_size _lowercase : Dict = action_weight _lowercase : Any = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Tuple = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : Optional[Any] = learning_rate _lowercase : Tuple = n_layer _lowercase : str = n_head _lowercase : Union[str, Any] = n_embd _lowercase : Dict = embd_pdrop _lowercase : Optional[int] = attn_pdrop _lowercase : Union[str, Any] = resid_pdrop _lowercase : Any = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : Any = use_cache super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase)
21
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ConsistencyModelPipeline lowercase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ : List[str] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet', ) return unet @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet_class_cond', ) return unet def UpperCamelCase ( self, lowerCamelCase=False) -> Dict: """simple docstring""" if class_cond: _lowercase : Union[str, Any] = self.dummy_cond_unet else: _lowercase : Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Tuple: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Optional[int] = self.get_dummy_components() _lowercase : str = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Dict = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : int = image[0, -3:, -3:, -1] _lowercase : Dict = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Any = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase) _lowercase : Any = 0 _lowercase : List[str] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.get_dummy_components() _lowercase : Optional[Any] = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : List[str] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Union[str, Any] = 1 _lowercase : Tuple = None _lowercase : Tuple = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Dict = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Optional[Any] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = 1 _lowercase : int = None _lowercase : Tuple = 0 _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase=False, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) _lowercase : str = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _lowercase : Optional[Any] = self.get_fixed_latents(seed=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase, shape=lowerCamelCase) _lowercase : Tuple = latents return inputs def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Any: """simple docstring""" if type(lowerCamelCase) == str: _lowercase : Union[str, Any] = torch.device(lowerCamelCase) _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[str] = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) return latents def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Any = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Union[str, Any] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs() _lowercase : int = 1 _lowercase : Optional[Any] = None _lowercase : str = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[int] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : int = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) _lowercase : int = 1 _lowercase : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : int = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
21
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase_( lowerCamelCase_ ) -> int: return x + 2 class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'x = 3' _lowercase : str = {} _lowercase : Dict = evaluate(lowerCamelCase, {}, state=lowerCamelCase) assert result == 3 self.assertDictEqual(lowerCamelCase, {'x': 3}) _lowercase : Any = 'x = y' _lowercase : Optional[Any] = {'y': 5} _lowercase : List[str] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 5, 'y': 5}) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = 'y = add_two(x)' _lowercase : Tuple = {'x': 3} _lowercase : List[Any] = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 5}) # Won't work without the tool with CaptureStdout() as out: _lowercase : Tuple = evaluate(lowerCamelCase, {}, state=lowerCamelCase) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = 'x = 3' _lowercase : Optional[int] = {} _lowercase : Tuple = evaluate(lowerCamelCase, {}, state=lowerCamelCase) assert result == 3 self.assertDictEqual(lowerCamelCase, {'x': 3}) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' _lowercase : Optional[int] = {'x': 3} _lowercase : Union[str, Any] = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 5}) self.assertDictEqual(lowerCamelCase, {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = 'x = 3\ny = 5' _lowercase : Tuple = {} _lowercase : Union[str, Any] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 5}) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = 'text = f\'This is x: {x}.\'' _lowercase : int = {'x': 3} _lowercase : Optional[int] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase, {'x': 3, 'text': 'This is x: 3.'}) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' _lowercase : Optional[int] = {'x': 3} _lowercase : str = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 2}) _lowercase : Union[str, Any] = {'x': 8} _lowercase : List[str] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 8, 'y': 5}) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[str] = 'test_list = [x, add_two(x)]' _lowercase : Dict = {'x': 3} _lowercase : Dict = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) self.assertListEqual(lowerCamelCase, [3, 5]) self.assertDictEqual(lowerCamelCase, {'x': 3, 'test_list': [3, 5]}) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = 'y = x' _lowercase : int = {'x': 3} _lowercase : List[str] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) assert result == 3 self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 3}) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = 'test_list = [x, add_two(x)]\ntest_list[1]' _lowercase : Dict = {'x': 3} _lowercase : Optional[Any] = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 3, 'test_list': [3, 5]}) _lowercase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' _lowercase : Dict = {'x': 3} _lowercase : Tuple = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = 'x = 0\nfor i in range(3):\n x = i' _lowercase : Optional[int] = {} _lowercase : Optional[int] = evaluate(lowerCamelCase, {'range': range}, state=lowerCamelCase) assert result == 2 self.assertDictEqual(lowerCamelCase, {'x': 2, 'i': 2})
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
from __future__ import annotations import time import numpy as np SCREAMING_SNAKE_CASE : Optional[Any] = [8, 5, 9, 7] SCREAMING_SNAKE_CASE : int = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> None: """simple docstring""" _lowercase : List[str] = claim_vector _lowercase : int = allocated_resources_table _lowercase : Dict = maximum_claim_table def UpperCamelCase ( self) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def UpperCamelCase ( self) -> list[int]: """simple docstring""" return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation()) def UpperCamelCase ( self) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i]) - np.array(lowerCamelCase)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def UpperCamelCase ( self) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(lowerCamelCase): i for i in self.__need()} def UpperCamelCase ( self, **lowerCamelCase) -> None: """simple docstring""" _lowercase : Union[str, Any] = self.__need() _lowercase : List[str] = self.__allocated_resources_table _lowercase : List[Any] = self.__available_resources() _lowercase : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n') while need_list: _lowercase : int = False for each_need in need_list: _lowercase : Dict = True for index, need in enumerate(lowerCamelCase): if need > available_resources[index]: _lowercase : Tuple = False break if execution: _lowercase : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _lowercase : Tuple = original_need_index print(F'''Process {process_number + 1} is executing.''') # remove the process run from stack need_list.remove(lowerCamelCase) # update available/freed resources stack _lowercase : Optional[Any] = np.array(lowerCamelCase) + np.array( alloc_resources_table[process_number]) print( 'Updated available resource stack for processes: ' + ' '.join([str(lowerCamelCase) for x in available_resources])) break if safe: print('The process is in a safe state.\n') else: print('System in unsafe state. Aborting...\n') break def UpperCamelCase ( self) -> List[Any]: """simple docstring""" print(' ' * 9 + 'Allocated Resource Table') for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(lowerCamelCase) + 1}''' + ' '.join(F'''{it:>8}''' for it in item) + '\n') print(' ' * 9 + 'System Resource Table') for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(lowerCamelCase) + 1}''' + ' '.join(F'''{it:>8}''' for it in item) + '\n') print( 'Current Usage by Active Processes: ' + ' '.join(str(lowerCamelCase) for x in self.__claim_vector)) print( 'Initial Available Resources: ' + ' '.join(str(lowerCamelCase) for x in self.__available_resources())) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
21
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> bool: if len(lowerCamelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _lowercase : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
def UpperCamelCase_( lowerCamelCase_ ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowercase : str = [True] * (num + 1) _lowercase : str = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCamelCase_ ): _lowercase : Dict = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
21
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase_( lowerCamelCase_ ) -> Any: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Dict = TFVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Dict = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Optional[int] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : Dict = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Tuple: """simple docstring""" _lowercase , _lowercase : Optional[int] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Any = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Union[str, Any] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : Union[str, Any] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Optional[int] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : str = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : List[Any] = after_output[0].numpy() _lowercase : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Dict: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : int = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : Dict = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Optional[int] = to_atuple(vision_model.config.patch_size) _lowercase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : Any = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[Any] = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @slow def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Optional[int] = after_outputs[0].numpy() _lowercase : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-random-bert') _lowercase : Union[str, Any] = 13 _lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : str = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : int = TFViTModel(lowerCamelCase, name='vision_model') _lowercase : Union[str, Any] = TFBertModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = TFViTModelTester(self) _lowercase : List[Any] = TFBertModelTester(self) _lowercase : Any = vit_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : str = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf', 'hf-internal-testing/tiny-random-roberta') _lowercase : Dict = 13 _lowercase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : int = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : Tuple = random_attention_mask([batch_size, 4]) _lowercase : Optional[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase , _lowercase : Dict = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : List[Any] = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : List[Any] = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowercase : Dict = to_atuple(vision_model.config.image_size) _lowercase : List[str] = to_atuple(vision_model.config.patch_size) _lowercase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Any = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = TFDeiTModel(lowerCamelCase, name='vision_model') _lowercase : str = TFRobertaModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = TFDeiTModelTester(self) _lowercase : Tuple = TFRobertaModelTester(self) _lowercase : Any = vit_model_tester.prepare_config_and_inputs() _lowercase : List[Any] = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Optional[Any] = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf', 'hf-internal-testing/tiny-random-bert') _lowercase : List[Any] = 13 _lowercase : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : List[str] = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : List[Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : str = TFCLIPVisionModel(lowerCamelCase, name='vision_model') _lowercase : List[str] = TFBertModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Any = TFCLIPVisionModelTester(self) _lowercase : Tuple = TFBertModelTester(self) _lowercase : Optional[Any] = clip_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Any = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian', logit_scale_init_value=1.0, from_pt=lowerCamelCase) _lowercase : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : int = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : Union[str, Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Any = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy(), lowerCamelCase, atol=1E-3))
21
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Any = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Tuple = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : str = after_output[0] _lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Any = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Tuple = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Any = to_atuple(vision_model.config.patch_size) _lowercase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" pt_model.to(lowerCamelCase) pt_model.eval() # prepare inputs _lowercase : Any = inputs_dict _lowercase : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : Tuple = pt_model(**lowerCamelCase).to_tuple() _lowercase : Any = fx_model(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase) _lowercase : List[Any] = fx_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase) _lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase) pt_model_loaded.to(lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[Any] = pt_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : str = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase) _lowercase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @is_pt_flax_cross_test def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = config_inputs_dict.pop('vision_config') _lowercase : str = config_inputs_dict.pop('text_config') _lowercase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : List[Any] = model_a(**lowerCamelCase) _lowercase : Tuple = after_outputs[0] _lowercase : Dict = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_flax class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : List[Any] = 13 _lowercase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[Any] = FlaxViTModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = FlaxViTModelTester(self) _lowercase : Any = FlaxBertModelTester(self) _lowercase : Dict = vit_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : List[str] = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : Tuple = 13 _lowercase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = FlaxCLIPVisionModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = FlaxCLIPVisionModelTester(self) _lowercase : Union[str, Any] = FlaxBertModelTester(self) _lowercase : Tuple = clip_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Dict = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian', logit_scale_init_value=1.0) _lowercase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : List[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : List[Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3))
21
1
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: while second != 0: _lowercase : Tuple = first & second first ^= second _lowercase : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Optional[Any] = int(input("Enter the first number: ").strip()) SCREAMING_SNAKE_CASE : List[Any] = int(input("Enter the second number: ").strip()) print(F"{add(first, second) = }")
21
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
1
import os import numpy import onnx def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : Optional[Any] = a.name _lowercase : Dict = b.name _lowercase : List[str] = '' _lowercase : int = '' _lowercase : Optional[int] = a == b _lowercase : str = name_a _lowercase : Optional[int] = name_b return res def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCamelCase_ , lowerCamelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase_ , lowerCamelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: for n in graph_proto.node: _node_replace_input_with(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : List[str] = list(model.graph.initializer ) _lowercase : str = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowercase : List[Any] = inits[i].name _lowercase : Optional[int] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: _lowercase : str = os.path.dirname(lowerCamelCase_ ) _lowercase : Tuple = os.path.basename(lowerCamelCase_ ) _lowercase : Optional[int] = onnx.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) _lowercase : Optional[int] = list(model.graph.initializer ) _lowercase : Dict = set() _lowercase : Optional[int] = {} _lowercase : Union[str, Any] = [] _lowercase : Optional[int] = 0 for i in range(len(lowerCamelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCamelCase_ ) dup_set.add(lowerCamelCase_ ) _lowercase : Optional[int] = inits[j].data_type _lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowerCamelCase_ ) total_reduced_size += mem_size _lowercase : str = inits[i].name _lowercase : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase_ ) else: _lowercase : Tuple = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) _lowercase : int = sorted(lowerCamelCase_ ) _remove_dup_initializers_from_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Tuple = 'optimized_' + model_file_name _lowercase : int = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) onnx.save(lowerCamelCase_ , lowerCamelCase_ ) return new_model
21
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
1
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCamelCase_( lowerCamelCase_ ) -> str: return "".join(sorted(lowerCamelCase_ ) ) def UpperCamelCase_( lowerCamelCase_ ) -> list[str]: return word_by_signature[signature(lowerCamelCase_ )] SCREAMING_SNAKE_CASE : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") SCREAMING_SNAKE_CASE : List[str] = sorted({word.strip().lower() for word in data.splitlines()}) SCREAMING_SNAKE_CASE : int = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
21
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : str = "bart" SCREAMING_SNAKE_CASE : Optional[int] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> int: if LOAD_DENSE_INDEX: _lowercase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowercase : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowercase : str = qar_model.eval() else: _lowercase , _lowercase : Any = (None, None) if MODEL_TYPE == "bart": _lowercase : Dict = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowercase : Any = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowercase : List[Any] = sas_model.eval() else: _lowercase , _lowercase : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> str: if LOAD_DENSE_INDEX: _lowercase : Optional[Any] = faiss.StandardGpuResources() _lowercase : Optional[int] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowercase : Tuple = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowercase : Any = faiss.IndexFlatIP(128 ) _lowercase : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: _lowercase , _lowercase : Any = (None, None) _lowercase : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : List[str] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowercase : Optional[Any] = elia['train_eli5'] _lowercase : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowercase : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = load_train_data() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=10 ) -> List[str]: _lowercase : Any = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) _lowercase , _lowercase : List[str] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[str] = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ) -> Dict: if source == "none": _lowercase , _lowercase : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowercase , _lowercase : Dict = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase , _lowercase : str = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) _lowercase : List[Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowercase : Union[str, Any] = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=256 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ) -> Dict: with torch.no_grad(): _lowercase : str = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : List[Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : Any = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Optional[int] = action_list.index(action_st) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : int = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : Dict = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : int = "wiki40b" SCREAMING_SNAKE_CASE : int = "dense" SCREAMING_SNAKE_CASE : str = "beam" SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : List[str] = 64 SCREAMING_SNAKE_CASE : Union[str, Any] = 256 SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : Any = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : int = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : int = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Any = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : str = None # start main text SCREAMING_SNAKE_CASE : List[str] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : List[str] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : Optional[int] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE : int = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : Optional[Any] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : List[Any] = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : Any = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : List[Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : str = find_nearest_training(question) SCREAMING_SNAKE_CASE : Any = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : str = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
21
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[str] = CycleDiffusionPipeline lowercase_ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } lowercase_ : int = PipelineTesterMixin.required_optional_params - {"""latents"""} lowercase_ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) lowercase_ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : int = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) _lowercase : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', num_train_timesteps=10_00, clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0) _lowercase : List[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0) _lowercase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) _lowercase : List[Any] = CLIPTextModel(lowerCamelCase) _lowercase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase : int = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> str: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : List[Any] = image / 2 + 0.5 if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : List[str] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : str = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : str = self.get_dummy_components() _lowercase : str = CycleDiffusionPipeline(**lowerCamelCase) _lowercase : List[Any] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Dict = pipe(**lowerCamelCase) _lowercase : Any = output.images _lowercase : Any = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _lowercase : Tuple = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCamelCase, 'half'): _lowercase : Optional[int] = module.half() _lowercase : List[str] = CycleDiffusionPipeline(**lowerCamelCase) _lowercase : int = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[int] = pipe(**lowerCamelCase) _lowercase : List[Any] = output.images _lowercase : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _lowercase : List[Any] = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @skip_mps def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline') def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png') _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy') _lowercase : str = init_image.resize((5_12, 5_12)) _lowercase : Dict = 'CompVis/stable-diffusion-v1-4' _lowercase : Optional[int] = DDIMScheduler.from_pretrained(lowerCamelCase, subfolder='scheduler') _lowercase : Optional[int] = CycleDiffusionPipeline.from_pretrained( lowerCamelCase, scheduler=lowerCamelCase, safety_checker=lowerCamelCase, torch_dtype=torch.floataa, revision='fp16') pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : int = 'A black colored car' _lowercase : Union[str, Any] = 'A blue colored car' _lowercase : Tuple = torch.manual_seed(0) _lowercase : Tuple = pipe( prompt=lowerCamelCase, source_prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=1_00, eta=0.1, strength=0.8_5, guidance_scale=3, source_guidance_scale=1, generator=lowerCamelCase, output_type='np', ) _lowercase : Optional[int] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image).max() < 5E-1 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png') _lowercase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy') _lowercase : Optional[Any] = init_image.resize((5_12, 5_12)) _lowercase : Optional[Any] = 'CompVis/stable-diffusion-v1-4' _lowercase : Tuple = DDIMScheduler.from_pretrained(lowerCamelCase, subfolder='scheduler') _lowercase : Any = CycleDiffusionPipeline.from_pretrained(lowerCamelCase, scheduler=lowerCamelCase, safety_checker=lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : List[str] = 'A black colored car' _lowercase : Tuple = 'A blue colored car' _lowercase : int = torch.manual_seed(0) _lowercase : Tuple = pipe( prompt=lowerCamelCase, source_prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=1_00, eta=0.1, strength=0.8_5, guidance_scale=3, source_guidance_scale=1, generator=lowerCamelCase, output_type='np', ) _lowercase : Tuple = output.images assert np.abs(image - expected_image).max() < 2E-2
21
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_( lowerCamelCase_ ) -> Any: warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , lowerCamelCase_ , ) if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : int = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase , _lowercase : Dict = image[0].size _lowercase , _lowercase : List[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowercase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : Optional[Any] = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Optional[int] = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Dict = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : List[Any] = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ ) -> str: if isinstance(lowerCamelCase_ , torch.Tensor ): return mask elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : Dict = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowercase , _lowercase : Dict = mask[0].size _lowercase , _lowercase : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowercase : List[str] = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] _lowercase : Any = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Any = mask.astype(np.floataa ) / 2_55.0 _lowercase : List[str] = 0 _lowercase : Dict = 1 _lowercase : int = torch.from_numpy(lowerCamelCase_ ) elif isinstance(mask[0] , torch.Tensor ): _lowercase : Tuple = torch.cat(lowerCamelCase_ , dim=0 ) return mask class _lowerCamelCase( _a ): lowercase_ : UNetaDModel lowercase_ : RePaintScheduler def __init__( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase) @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 2_50, lowerCamelCase = 0.0, lowerCamelCase = 10, lowerCamelCase = 10, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _lowercase : Tuple = image _lowercase : List[str] = _preprocess_image(lowerCamelCase) _lowercase : List[Any] = original_image.to(device=self.device, dtype=self.unet.dtype) _lowercase : int = _preprocess_mask(lowerCamelCase) _lowercase : Dict = mask_image.to(device=self.device, dtype=self.unet.dtype) _lowercase : Optional[int] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _lowercase : int = original_image.shape _lowercase : Dict = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowerCamelCase, lowerCamelCase, lowerCamelCase, self.device) _lowercase : Optional[Any] = eta _lowercase : Dict = self.scheduler.timesteps[0] + 1 _lowercase : Optional[Any] = generator[0] if isinstance(lowerCamelCase, lowerCamelCase) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): if t < t_last: # predict the noise residual _lowercase : int = self.unet(lowerCamelCase, lowerCamelCase).sample # compute previous image: x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowercase : int = self.scheduler.undo_step(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = t _lowercase : Dict = (image / 2 + 0.5).clamp(0, 1) _lowercase : Optional[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : Tuple = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase)
21
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : str = 32 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 16 ) -> Dict: _lowercase : Optional[int] = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowercase : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) _lowercase : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase : str = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _lowercase : List[str] = 8 else: _lowercase : List[Any] = None return tokenizer.pad( lowerCamelCase_ , padding='longest' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. _lowercase : Any = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) _lowercase : Optional[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE : Tuple = mocked_dataloaders # noqa: F811 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCamelCase_ ) == "1": _lowercase : int = 2 # Initialize accelerator _lowercase : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : str = config['lr'] _lowercase : Any = int(config['num_epochs'] ) _lowercase : int = int(config['seed'] ) _lowercase : Dict = int(config['batch_size'] ) _lowercase : int = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCamelCase_ ) def inner_training_loop(lowerCamelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowercase : Dict = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) _lowercase , _lowercase : Tuple = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate scheduler _lowercase : int = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[str] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase : str = model(**lowerCamelCase_ ) _lowercase : List[str] = outputs.loss accelerator.backward(lowerCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : List[str] = model(**lowerCamelCase_ ) _lowercase : List[Any] = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _lowercase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase_( ) -> List[Any]: _lowercase : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowercase : Union[str, Any] = parser.parse_args() _lowercase : Optional[int] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
21
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : Node | None class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Node | None = None for i in sorted(lowerCamelCase, reverse=lowerCamelCase): _lowercase : Tuple = Node(lowerCamelCase, self.head) def __iter__( self) -> Iterator[int]: """simple docstring""" _lowercase : Union[str, Any] = self.head while node: yield node.data _lowercase : int = node.next_node def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __str__( self) -> str: """simple docstring""" return " -> ".join([str(lowerCamelCase) for node in self]) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList: return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
21
1
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = KandinskyImgaImgPipeline lowercase_ : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowercase_ : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowercase_ : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ : Union[str, Any] = False @property def UpperCamelCase ( self) -> str: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> int: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 1_00 @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def UpperCamelCase ( self) -> int: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=10_05, ) _lowercase : Optional[int] = MultilingualCLIP(lowerCamelCase) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Optional[Any] = UNetaDConditionModel(**lowerCamelCase) return model @property def UpperCamelCase ( self) -> str: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.dummy_text_encoder _lowercase : List[Any] = self.dummy_tokenizer _lowercase : int = self.dummy_unet _lowercase : int = self.dummy_movq _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : List[Any] = DDIMScheduler(**lowerCamelCase) _lowercase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" _lowercase : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(lowerCamelCase) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Tuple = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB').resize((2_56, 2_56)) if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = 'cpu' _lowercase : Tuple = self.get_dummy_components() _lowercase : str = self.pipeline_class(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = pipe(**self.get_dummy_inputs(lowerCamelCase)) _lowercase : Optional[int] = output.images _lowercase : List[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase), return_dict=lowerCamelCase, )[0] _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') _lowercase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa) pipe_prior.to(lowerCamelCase) _lowercase : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1', torch_dtype=torch.floataa) _lowercase : List[Any] = pipeline.to(lowerCamelCase) pipeline.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = torch.Generator(device='cpu').manual_seed(0) _lowercase , _lowercase : List[Any] = pipe_prior( lowerCamelCase, generator=lowerCamelCase, num_inference_steps=5, negative_prompt='', ).to_tuple() _lowercase : Union[str, Any] = pipeline( lowerCamelCase, image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=1_00, height=7_68, width=7_68, strength=0.2, output_type='np', ) _lowercase : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase)
21
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : str = StableDiffusionLatentUpscalePipeline lowercase_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } lowercase_ : Dict = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} lowercase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : Dict = frozenset([] ) lowercase_ : Dict = True @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = 1 _lowercase : List[str] = 4 _lowercase : Optional[Any] = (16, 16) _lowercase : List[Any] = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[Any] = UNetaDConditionModel( act_fn='gelu', attention_head_dim=8, norm_num_groups=lowerCamelCase, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=1_60, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ), in_channels=8, mid_block_type=lowerCamelCase, only_cross_attention=lowerCamelCase, out_channels=5, resnet_time_scale_shift='scale_shift', time_embedding_type='fourier', timestep_post_act='gelu', up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D'), ) _lowercase : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) _lowercase : Optional[Any] = EulerDiscreteScheduler(prediction_type='sample') _lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, hidden_act='quick_gelu', projection_dim=5_12, ) _lowercase : Optional[Any] = CLIPTextModel(lowerCamelCase) _lowercase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase : Optional[int] = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' _lowercase : int = self.get_dummy_components() _lowercase : Optional[Any] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 2_56, 2_56, 3)) _lowercase : Union[str, Any] = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5]) _lowercase : List[Any] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3) def UpperCamelCase ( self) -> Any: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _lowercase : List[Any] = self.get_dummy_components() _lowercase : Dict = self.pipeline_class(**lowerCamelCase) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[Any] = 2 _lowercase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowercase : int = getattr(lowerCamelCase, scheduler_enum.name) _lowercase : Dict = scheduler_cls.from_config(pipe.scheduler.config) _lowercase : str = pipe(**lowerCamelCase)[0] outputs.append(lowerCamelCase) assert check_same_shape(lowerCamelCase) @require_torch_gpu @slow class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = torch.manual_seed(33) _lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', torch_dtype=torch.floataa) pipe.to('cuda') _lowercase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa) upscaler.to('cuda') _lowercase : List[str] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _lowercase : Any = pipe(lowerCamelCase, generator=lowerCamelCase, output_type='latent').images _lowercase : List[Any] = upscaler( prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=20, guidance_scale=0, generator=lowerCamelCase, output_type='np', ).images[0] _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy') assert np.abs((expected_image - image).mean()) < 5E-2 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = torch.manual_seed(33) _lowercase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa) upscaler.to('cuda') _lowercase : Any = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _lowercase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png') _lowercase : int = upscaler( prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=20, guidance_scale=0, generator=lowerCamelCase, output_type='np', ).images[0] _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy') assert np.abs((expected_image - image).max()) < 5E-2
21
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
from ...processing_utils import ProcessorMixin class _lowerCamelCase( _a ): lowercase_ : List[Any] = """WhisperFeatureExtractor""" lowercase_ : List[str] = """WhisperTokenizer""" def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" super().__init__(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.feature_extractor _lowercase : int = False def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=True) -> List[str]: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase, language=lowerCamelCase, no_timestamps=lowerCamelCase) def __call__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCamelCase, **lowerCamelCase) _lowercase : Any = kwargs.pop('audio', lowerCamelCase) _lowercase : Union[str, Any] = kwargs.pop('sampling_rate', lowerCamelCase) _lowercase : List[str] = kwargs.pop('text', lowerCamelCase) if len(lowerCamelCase) > 0: _lowercase : int = args[0] _lowercase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: _lowercase : Dict = self.feature_extractor(lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase) if text is not None: _lowercase : Dict = self.tokenizer(lowerCamelCase, **lowerCamelCase) if text is None: return inputs elif audio is None: return encodings else: _lowercase : Union[str, Any] = encodings['input_ids'] return inputs def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase="np") -> str: """simple docstring""" return self.tokenizer.get_prompt_ids(lowerCamelCase, return_tensors=lowerCamelCase)
21
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=64, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=1, ) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = seq_length _lowercase : Optional[Any] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : List[str] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : List[str] = num_labels _lowercase : Any = num_choices _lowercase : Tuple = scope _lowercase : Optional[Any] = q_groups _lowercase : List[str] = k_groups _lowercase : Optional[int] = v_groups _lowercase : List[str] = post_attention_groups _lowercase : Union[str, Any] = intermediate_groups _lowercase : int = output_groups def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Dict = None _lowercase : int = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = SqueezeBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = SqueezeBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : int = SqueezeBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : List[str] = SqueezeBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = self.num_choices _lowercase : str = SqueezeBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Dict = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase_ : Optional[int] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = True lowercase_ : int = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = SqueezeBertModelTester(self) _lowercase : Dict = ConfigTester(self, config_class=lowerCamelCase, dim=37) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = SqueezeBertModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_sentencepiece @require_tokenizers @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') _lowercase : Optional[int] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]]) _lowercase : List[str] = model(lowerCamelCase)[0] _lowercase : Union[str, Any] = torch.Size((1, 3)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-4))
21
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase="None", lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, ) -> str: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[int] = batch_size _lowercase : Tuple = seq_length _lowercase : Tuple = is_training _lowercase : Any = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Tuple = use_labels _lowercase : Any = vocab_size _lowercase : int = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : Union[str, Any] = intermediate_size _lowercase : str = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : Tuple = num_choices _lowercase : Optional[int] = relative_attention _lowercase : Optional[int] = position_biased_input _lowercase : Tuple = pos_att_type _lowercase : Dict = scope def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowercase : Optional[int] = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : List[Any] = None if self.use_labels: _lowercase : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = self.get_config() _lowercase : str = 3_00 return config def UpperCamelCase ( self, lowerCamelCase) -> Tuple: """simple docstring""" self.parent.assertListEqual(list(result.loss.size()), []) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = DebertaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase)[0] _lowercase : Union[str, Any] = model(lowerCamelCase, token_type_ids=lowerCamelCase)[0] _lowercase : Any = model(lowerCamelCase)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Dict = DebertaForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : str = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[Any] = self.num_labels _lowercase : int = DebertaForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : Optional[int] = DebertaForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[str] = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Tuple = DebertaForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Optional[int] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Union[str, Any] = True lowercase_ : Optional[int] = False lowercase_ : Union[str, Any] = False lowercase_ : Optional[int] = False lowercase_ : Dict = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Any = DebertaModelTester(self) _lowercase : List[str] = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Optional[int] = DebertaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase( unittest.TestCase ): @unittest.skip(reason='Model not available yet') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = DebertaModel.from_pretrained('microsoft/deberta-base') _lowercase : List[Any] = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) _lowercase : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _lowercase : List[str] = model(lowerCamelCase, attention_mask=lowerCamelCase)[0] # compare the actual values for a slice. _lowercase : Optional[Any] = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], lowerCamelCase, atol=1E-4), F'''{output[:, 1:4, 1:4]}''')
21
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase( unittest.TestCase ): lowercase_ : Dict = JukeboxTokenizer lowercase_ : Dict = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" import torch _lowercase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics') _lowercase : Optional[Any] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" import torch _lowercase : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics') _lowercase : List[str] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
21
1
import colorsys from PIL import Image # type: ignore def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : str = x _lowercase : int = y for step in range(lowerCamelCase_ ): # noqa: B007 _lowercase : Optional[Any] = a * a - b * b + x _lowercase : List[str] = 2 * a * b + y _lowercase : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def UpperCamelCase_( lowerCamelCase_ ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def UpperCamelCase_( lowerCamelCase_ ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCamelCase_ , 1 , 1 ) ) def UpperCamelCase_( lowerCamelCase_ = 800 , lowerCamelCase_ = 600 , lowerCamelCase_ = -0.6 , lowerCamelCase_ = 0 , lowerCamelCase_ = 3.2 , lowerCamelCase_ = 50 , lowerCamelCase_ = True , ) -> Image.Image: _lowercase : Optional[Any] = Image.new('RGB' , (image_width, image_height) ) _lowercase : str = img.load() # loop through the image-coordinates for image_x in range(lowerCamelCase_ ): for image_y in range(lowerCamelCase_ ): # determine the figure-coordinates based on the image-coordinates _lowercase : Dict = figure_width / image_width * image_height _lowercase : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width _lowercase : List[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height _lowercase : Any = get_distance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _lowercase : Dict = get_color_coded_rgb(lowerCamelCase_ ) else: _lowercase : Any = get_black_and_white_rgb(lowerCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure SCREAMING_SNAKE_CASE : int = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase_ : int = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCamelCase ( self, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(lowerCamelCase)) _lowercase : Union[str, Any] = torch.manual_seed(lowerCamelCase) _lowercase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : str = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[Any] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs() _lowercase : List[str] = pipe(**lowerCamelCase).images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) # using the PNDM scheduler by default _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np', ) _lowercase : List[Any] = output.images _lowercase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : List[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) _lowercase : str = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler') _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCamelCase, output_type='np', ) _lowercase : str = output.images _lowercase : str = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
21
1
from __future__ import annotations import requests def UpperCamelCase_( lowerCamelCase_ ) -> dict: _lowercase : List[Any] = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCamelCase_ ).json() def UpperCamelCase_( lowerCamelCase_ = 10 ) -> list[dict]: _lowercase : List[Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : str = requests.get(lowerCamelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCamelCase_ ) for story_id in story_ids] def UpperCamelCase_( lowerCamelCase_ = 10 ) -> str: _lowercase : str = hackernews_top_stories(lowerCamelCase_ ) return "\n".join('* [{title}]({url})'.format(**lowerCamelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
21
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = 1 _lowercase : Any = 3 _lowercase : Tuple = (32, 32) _lowercase : Tuple = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image @property def UpperCamelCase ( self) -> str: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) return model @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) return model @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=50_06, ) return RobertaSeriesModelWithTransformation(lowerCamelCase) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" def extract(*lowerCamelCase, **lowerCamelCase): class _lowerCamelCase: def __init__( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = torch.ones([0]) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" self.pixel_values.to(lowerCamelCase) return self return Out() return extract def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : Optional[Any] = self.dummy_vae _lowercase : List[Any] = self.dummy_text_encoder _lowercase : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Tuple = 77 _lowercase : int = self.dummy_image.to(lowerCamelCase) _lowercase : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Optional[int] = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : Dict = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Any = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, ) _lowercase : Optional[int] = output.images _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Optional[Any] = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, return_dict=lowerCamelCase, )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Tuple = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : str = self.dummy_vae _lowercase : Optional[Any] = self.dummy_text_encoder _lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Optional[Any] = 77 _lowercase : str = self.dummy_image.to(lowerCamelCase) # put models in fp16 _lowercase : List[str] = unet.half() _lowercase : List[Any] = vae.half() _lowercase : Any = bert.half() # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Any = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = 'A painting of a squirrel eating a burger' _lowercase : Optional[Any] = torch.manual_seed(0) _lowercase : Union[str, Any] = alt_pipe( [prompt], generator=lowerCamelCase, num_inference_steps=2, output_type='np', image=lowerCamelCase, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : str = init_image.resize((7_60, 5_04)) _lowercase : Optional[int] = 'BAAI/AltDiffusion' _lowercase : str = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : List[str] = 'A fantasy landscape, trending on artstation' _lowercase : Any = torch.manual_seed(0) _lowercase : Dict = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : List[str] = output.images[0] _lowercase : Tuple = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowercase : Optional[Any] = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : str = init_image.resize((7_68, 5_12)) _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy') _lowercase : str = 'BAAI/AltDiffusion' _lowercase : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : int = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : int = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : Union[str, Any] = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
21
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
1
import re def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : str = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = "0094702343221" print(is_sri_lankan_phone_number(phone))
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
import numpy as np import qiskit def UpperCamelCase_( lowerCamelCase_ = 8 , lowerCamelCase_ = None ) -> str: _lowercase : int = np.random.default_rng(seed=lowerCamelCase_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowercase : List[str] = 6 * key_len # Measurement basis for Alice's qubits. _lowercase : Optional[Any] = rng.integers(2 , size=lowerCamelCase_ ) # The set of states Alice will prepare. _lowercase : str = rng.integers(2 , size=lowerCamelCase_ ) # Measurement basis for Bob's qubits. _lowercase : Any = rng.integers(2 , size=lowerCamelCase_ ) # Quantum Circuit to simulate BB84 _lowercase : Dict = qiskit.QuantumCircuit(lowerCamelCase_ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowerCamelCase_ ): if alice_state[index] == 1: bbaa_circ.x(lowerCamelCase_ ) if alice_basis[index] == 1: bbaa_circ.h(lowerCamelCase_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowerCamelCase_ ): if bob_basis[index] == 1: bbaa_circ.h(lowerCamelCase_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowercase : Optional[Any] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowercase : Optional[int] = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=1 , seed_simulator=lowerCamelCase_ ) # Returns the result of measurement. _lowercase : Optional[Any] = job.result().get_counts(lowerCamelCase_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowercase : List[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowercase : Optional[int] = gen_key[:key_len] if len(lowerCamelCase_ ) >= key_len else gen_key.ljust(lowerCamelCase_ , '0' ) return key if __name__ == "__main__": print(F"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
21
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : str = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Dict = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Tuple = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : Any = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.99_95 ) -> Tuple: if not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : List[Any] = True _lowercase : Any = va.device _lowercase : Union[str, Any] = va.cpu().numpy() _lowercase : int = va.cpu().numpy() _lowercase : int = np.sum(va * va / (np.linalg.norm(lowerCamelCase_ ) * np.linalg.norm(lowerCamelCase_ )) ) if np.abs(lowerCamelCase_ ) > DOT_THRESHOLD: _lowercase : Any = (1 - t) * va + t * va else: _lowercase : Dict = np.arccos(lowerCamelCase_ ) _lowercase : str = np.sin(lowerCamelCase_ ) _lowercase : int = theta_a * t _lowercase : Dict = np.sin(lowerCamelCase_ ) _lowercase : Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowercase : List[Any] = sin_theta_t / sin_theta_a _lowercase : Dict = sa * va + sa * va if inputs_are_torch: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) return va def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: for param in model.parameters(): _lowercase : Any = value class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=lowerCamelCase, text_encoder=lowerCamelCase, clip_model=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, coca_model=lowerCamelCase, coca_tokenizer=lowerCamelCase, coca_transform=lowerCamelCase, ) _lowercase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCamelCase) else feature_extractor.size['shortest_edge'] ) _lowercase : Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, lowerCamelCase) set_requires_grad(self.clip_model, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase = "auto") -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength), lowerCamelCase) _lowercase : List[Any] = max(num_inference_steps - init_timestep, 0) _lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase, torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase)}''') _lowercase : Any = image.to(device=lowerCamelCase, dtype=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCamelCase) ] _lowercase : int = torch.cat(lowerCamelCase, dim=0) else: _lowercase : int = self.vae.encode(lowerCamelCase).latent_dist.sample(lowerCamelCase) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : str = 0.1_8_2_1_5 * init_latents _lowercase : List[str] = init_latents.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = randn_tensor(init_latents.shape, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) # get latents _lowercase : Any = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = init_latents return latents def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = self.coca_transform(lowerCamelCase).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowercase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Tuple = self.feature_extractor.preprocess(lowerCamelCase) _lowercase : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _lowercase : int = self.clip_model.get_image_features(lowerCamelCase) _lowercase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : int = image_embeddings_clip.repeat_interleave(lowerCamelCase, dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : List[Any] = latents.detach().requires_grad_() _lowercase : Union[str, Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Tuple = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowercase : Any = self.scheduler.alphas_cumprod[timestep] _lowercase : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowercase : List[str] = torch.sqrt(lowerCamelCase) _lowercase : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCamelCase): _lowercase : Dict = self.scheduler.sigmas[index] _lowercase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Dict = 1 / 0.1_8_2_1_5 * sample _lowercase : Optional[Any] = self.vae.decode(lowerCamelCase).sample _lowercase : int = (image / 2 + 0.5).clamp(0, 1) _lowercase : Any = transforms.Resize(self.feature_extractor_size)(lowerCamelCase) _lowercase : Optional[Any] = self.normalize(lowerCamelCase).to(latents.dtype) _lowercase : List[str] = self.clip_model.get_image_features(lowerCamelCase) _lowercase : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : Optional[Any] = spherical_dist_loss(lowerCamelCase, lowerCamelCase).mean() * clip_guidance_scale _lowercase : str = -torch.autograd.grad(lowerCamelCase, lowerCamelCase)[0] if isinstance(self.scheduler, lowerCamelCase): _lowercase : Union[str, Any] = latents.detach() + grads * (sigma**2) _lowercase : List[str] = noise_pred_original else: _lowercase : List[Any] = noise_pred_original - torch.sqrt(lowerCamelCase) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 0.6, lowerCamelCase = 50, lowerCamelCase = 7.5, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1_00, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, lowerCamelCase = 0.8, lowerCamelCase = 0.1, lowerCamelCase = 0.1, ) -> int: """simple docstring""" if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(lowerCamelCase, torch.Generator) and batch_size > 1: _lowercase : Dict = [generator] + [None] * (batch_size - 1) _lowercase : Optional[int] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowercase : str = ', '.join(lowerCamelCase) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : List[Any] = self.get_image_description(lowerCamelCase) if style_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : Dict = self.get_image_description(lowerCamelCase) # get prompt text embeddings for content and style _lowercase : Optional[int] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowercase : Union[str, Any] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowercase : Any = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) # duplicate text embeddings for each generation per prompt _lowercase : Dict = text_embeddings.repeat_interleave(lowerCamelCase, dim=0) # set timesteps _lowercase : Dict = 'offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_offset: _lowercase : Any = 1 self.scheduler.set_timesteps(lowerCamelCase, **lowerCamelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowercase , _lowercase : List[Any] = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device) _lowercase : str = timesteps[:1].repeat(lowerCamelCase) # Preprocess image _lowercase : str = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : int = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : Optional[int] = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) if clip_guidance_scale > 0: _lowercase : Optional[int] = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = slerp( lowerCamelCase, lowerCamelCase, lowerCamelCase) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : Tuple = content_text_input.input_ids.shape[-1] _lowercase : Union[str, Any] = self.tokenizer([''], padding='max_length', max_length=lowerCamelCase, return_tensors='pt') _lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowercase : Union[str, Any] = uncond_embeddings.repeat_interleave(lowerCamelCase, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowercase : List[Any] = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='cpu', dtype=lowerCamelCase).to( self.device) else: _lowercase : Any = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _lowercase : Tuple = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowercase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : Dict = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_eta: _lowercase : List[Any] = eta # check if the scheduler accepts generator _lowercase : Dict = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowercase : str = generator with self.progress_bar(total=lowerCamelCase): for i, t in enumerate(lowerCamelCase): # expand the latents if we are doing classifier free guidance _lowercase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : List[Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Dict = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample # perform classifier free guidance if do_classifier_free_guidance: _lowercase , _lowercase : Optional[Any] = noise_pred.chunk(2) _lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowercase : Tuple = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowercase , _lowercase : List[Any] = self.cond_fn( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Any = 1 / 0.1_8_2_1_5 * latents _lowercase : List[str] = self.vae.decode(lowerCamelCase).sample _lowercase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowercase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase)
21
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _lowerCamelCase( nn.Module ): lowercase_ : int lowercase_ : int lowercase_ : float = 0.0 lowercase_ : int = 1 lowercase_ : int = 1 lowercase_ : bool = True lowercase_ : bool = False lowercase_ : bool = False lowercase_ : bool = False lowercase_ : jnp.dtype = jnp.floataa def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = [] _lowercase : int = [] for i in range(self.num_layers): _lowercase : Dict = self.in_channels if i == 0 else self.out_channels _lowercase : Optional[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(lowerCamelCase) _lowercase : str = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(lowerCamelCase) _lowercase : Dict = resnets _lowercase : Tuple = attentions if self.add_downsample: _lowercase : Dict = FlaxDownsampleaD(self.out_channels, dtype=self.dtype) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=True) -> Dict: """simple docstring""" _lowercase : int = () for resnet, attn in zip(self.resnets, self.attentions): _lowercase : int = resnet(lowerCamelCase, lowerCamelCase, deterministic=lowerCamelCase) _lowercase : Optional[Any] = attn(lowerCamelCase, lowerCamelCase, deterministic=lowerCamelCase) output_states += (hidden_states,) if self.add_downsample: _lowercase : str = self.downsamplers_a(lowerCamelCase) output_states += (hidden_states,) return hidden_states, output_states class _lowerCamelCase( nn.Module ): lowercase_ : int lowercase_ : int lowercase_ : float = 0.0 lowercase_ : int = 1 lowercase_ : bool = True lowercase_ : jnp.dtype = jnp.floataa def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[Any] = [] for i in range(self.num_layers): _lowercase : Dict = self.in_channels if i == 0 else self.out_channels _lowercase : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(lowerCamelCase) _lowercase : str = resnets if self.add_downsample: _lowercase : int = FlaxDownsampleaD(self.out_channels, dtype=self.dtype) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=True) -> List[Any]: """simple docstring""" _lowercase : Tuple = () for resnet in self.resnets: _lowercase : List[str] = resnet(lowerCamelCase, lowerCamelCase, deterministic=lowerCamelCase) output_states += (hidden_states,) if self.add_downsample: _lowercase : Any = self.downsamplers_a(lowerCamelCase) output_states += (hidden_states,) return hidden_states, output_states class _lowerCamelCase( nn.Module ): lowercase_ : int lowercase_ : int lowercase_ : int lowercase_ : float = 0.0 lowercase_ : int = 1 lowercase_ : int = 1 lowercase_ : bool = True lowercase_ : bool = False lowercase_ : bool = False lowercase_ : bool = False lowercase_ : jnp.dtype = jnp.floataa def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = [] _lowercase : Optional[Any] = [] for i in range(self.num_layers): _lowercase : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowercase : Any = self.prev_output_channel if i == 0 else self.out_channels _lowercase : Union[str, Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(lowerCamelCase) _lowercase : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(lowerCamelCase) _lowercase : Tuple = resnets _lowercase : List[Any] = attentions if self.add_upsample: _lowercase : int = FlaxUpsampleaD(self.out_channels, dtype=self.dtype) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=True) -> Tuple: """simple docstring""" for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states _lowercase : Dict = res_hidden_states_tuple[-1] _lowercase : Dict = res_hidden_states_tuple[:-1] _lowercase : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) _lowercase : Any = resnet(lowerCamelCase, lowerCamelCase, deterministic=lowerCamelCase) _lowercase : Dict = attn(lowerCamelCase, lowerCamelCase, deterministic=lowerCamelCase) if self.add_upsample: _lowercase : int = self.upsamplers_a(lowerCamelCase) return hidden_states class _lowerCamelCase( nn.Module ): lowercase_ : int lowercase_ : int lowercase_ : int lowercase_ : float = 0.0 lowercase_ : int = 1 lowercase_ : bool = True lowercase_ : jnp.dtype = jnp.floataa def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Dict = [] for i in range(self.num_layers): _lowercase : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowercase : List[Any] = self.prev_output_channel if i == 0 else self.out_channels _lowercase : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(lowerCamelCase) _lowercase : Optional[int] = resnets if self.add_upsample: _lowercase : Dict = FlaxUpsampleaD(self.out_channels, dtype=self.dtype) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=True) -> Any: """simple docstring""" for resnet in self.resnets: # pop res hidden states _lowercase : int = res_hidden_states_tuple[-1] _lowercase : Union[str, Any] = res_hidden_states_tuple[:-1] _lowercase : Any = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) _lowercase : str = resnet(lowerCamelCase, lowerCamelCase, deterministic=lowerCamelCase) if self.add_upsample: _lowercase : List[Any] = self.upsamplers_a(lowerCamelCase) return hidden_states class _lowerCamelCase( nn.Module ): lowercase_ : int lowercase_ : float = 0.0 lowercase_ : int = 1 lowercase_ : int = 1 lowercase_ : bool = False lowercase_ : bool = False lowercase_ : jnp.dtype = jnp.floataa def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = [ FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) ] _lowercase : Union[str, Any] = [] for _ in range(self.num_layers): _lowercase : Dict = FlaxTransformeraDModel( in_channels=self.in_channels, n_heads=self.num_attention_heads, d_head=self.in_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(lowerCamelCase) _lowercase : Dict = FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(lowerCamelCase) _lowercase : Optional[Any] = resnets _lowercase : str = attentions def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=True) -> int: """simple docstring""" _lowercase : str = self.resnets[0](lowerCamelCase, lowerCamelCase) for attn, resnet in zip(self.attentions, self.resnets[1:]): _lowercase : List[str] = attn(lowerCamelCase, lowerCamelCase, deterministic=lowerCamelCase) _lowercase : Tuple = resnet(lowerCamelCase, lowerCamelCase, deterministic=lowerCamelCase) return hidden_states
21
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ConsistencyModelPipeline lowercase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ : List[str] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet', ) return unet @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet_class_cond', ) return unet def UpperCamelCase ( self, lowerCamelCase=False) -> Dict: """simple docstring""" if class_cond: _lowercase : Union[str, Any] = self.dummy_cond_unet else: _lowercase : Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Tuple: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Optional[int] = self.get_dummy_components() _lowercase : str = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Dict = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : int = image[0, -3:, -3:, -1] _lowercase : Dict = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Any = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase) _lowercase : Any = 0 _lowercase : List[str] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.get_dummy_components() _lowercase : Optional[Any] = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : List[str] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Union[str, Any] = 1 _lowercase : Tuple = None _lowercase : Tuple = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Dict = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Optional[Any] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = 1 _lowercase : int = None _lowercase : Tuple = 0 _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase=False, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) _lowercase : str = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _lowercase : Optional[Any] = self.get_fixed_latents(seed=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase, shape=lowerCamelCase) _lowercase : Tuple = latents return inputs def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Any: """simple docstring""" if type(lowerCamelCase) == str: _lowercase : Union[str, Any] = torch.device(lowerCamelCase) _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[str] = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) return latents def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Any = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Union[str, Any] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs() _lowercase : int = 1 _lowercase : Optional[Any] = None _lowercase : str = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[int] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : int = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) _lowercase : int = 1 _lowercase : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : int = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
21
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class _lowerCamelCase: lowercase_ : Optional[str] = field( default="""cifar10""", metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """The column name of the images in the files."""} ) lowercase_ : Optional[str] = field(default=_a, metadata={"""help""": """A folder containing the training data."""} ) lowercase_ : Optional[str] = field(default=_a, metadata={"""help""": """A folder containing the validation data."""} ) lowercase_ : Optional[float] = field( default=0.15, metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[str] = {} if self.train_dir is not None: _lowercase : Optional[int] = self.train_dir if self.validation_dir is not None: _lowercase : Union[str, Any] = self.validation_dir _lowercase : Any = data_files if data_files else None @dataclass class _lowerCamelCase: lowercase_ : str = field( default=_a, metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) }, ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) }, ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase_ : str = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) lowercase_ : str = field(default=_a, metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) lowercase_ : float = field( default=0.75, metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class _lowerCamelCase( _a ): lowercase_ : float = field( default=1e-3, metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase : Any = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def UpperCamelCase_( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , lowerCamelCase_ , lowerCamelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowercase : Any = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowercase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _lowercase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowercase : List[Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase_ ) and data_args.train_val_split > 0.0: _lowercase : Optional[Any] = ds['train'].train_test_split(data_args.train_val_split ) _lowercase : List[Any] = split['train'] _lowercase : Optional[int] = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : str = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _lowercase : int = ViTMAEConfig.from_pretrained(model_args.config_name , **lowerCamelCase_ ) elif model_args.model_name_or_path: _lowercase : str = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase_ ) else: _lowercase : str = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowercase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCamelCase_ ) elif model_args.model_name_or_path: _lowercase : Any = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCamelCase_ ) else: _lowercase : List[str] = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowercase : Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _lowercase : Any = ViTMAEForPreTraining(lowerCamelCase_ ) if training_args.do_train: _lowercase : int = ds['train'].column_names else: _lowercase : List[str] = ds['validation'].column_names if data_args.image_column_name is not None: _lowercase : Union[str, Any] = data_args.image_column_name elif "image" in column_names: _lowercase : int = 'image' elif "img" in column_names: _lowercase : Optional[int] = 'img' else: _lowercase : Dict = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowercase : Optional[Any] = image_processor.size['shortest_edge'] else: _lowercase : Union[str, Any] = (image_processor.size['height'], image_processor.size['width']) _lowercase : str = Compose( [ Lambda(lambda lowerCamelCase_ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCamelCase_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowerCamelCase_ ): _lowercase : List[Any] = [transforms(lowerCamelCase_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _lowercase : Optional[Any] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCamelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _lowercase : Optional[int] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCamelCase_ ) # Compute absolute learning rate _lowercase : int = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowercase : Dict = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _lowercase : Optional[Any] = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: _lowercase : str = None if training_args.resume_from_checkpoint is not None: _lowercase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase : Tuple = last_checkpoint _lowercase : Dict = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowercase : Union[str, Any] = trainer.evaluate() trainer.log_metrics('eval' , lowerCamelCase_ ) trainer.save_metrics('eval' , lowerCamelCase_ ) # Write model card and (optionally) push to hub _lowercase : Tuple = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
21
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
21
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> bool: if len(lowerCamelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _lowercase : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
1
SCREAMING_SNAKE_CASE : dict[tuple[int, int, int], int] = {} def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowercase : Dict = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowercase : str = _calculate(days - 1 , lowerCamelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowercase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowercase : Tuple = _calculate(days - 1 , lowerCamelCase_ , 0 ) _lowercase : Tuple = state_late + state_absent + state_ontime _lowercase : str = prizestrings return prizestrings def UpperCamelCase_( lowerCamelCase_ = 30 ) -> int: return _calculate(lowerCamelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
21
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Any = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Tuple = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : str = after_output[0] _lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Any = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Tuple = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Any = to_atuple(vision_model.config.patch_size) _lowercase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" pt_model.to(lowerCamelCase) pt_model.eval() # prepare inputs _lowercase : Any = inputs_dict _lowercase : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : Tuple = pt_model(**lowerCamelCase).to_tuple() _lowercase : Any = fx_model(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase) _lowercase : List[Any] = fx_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase) _lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase) pt_model_loaded.to(lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[Any] = pt_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : str = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase) _lowercase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @is_pt_flax_cross_test def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = config_inputs_dict.pop('vision_config') _lowercase : str = config_inputs_dict.pop('text_config') _lowercase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : List[Any] = model_a(**lowerCamelCase) _lowercase : Tuple = after_outputs[0] _lowercase : Dict = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_flax class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : List[Any] = 13 _lowercase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[Any] = FlaxViTModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = FlaxViTModelTester(self) _lowercase : Any = FlaxBertModelTester(self) _lowercase : Dict = vit_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : List[str] = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : Tuple = 13 _lowercase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = FlaxCLIPVisionModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = FlaxCLIPVisionModelTester(self) _lowercase : Union[str, Any] = FlaxBertModelTester(self) _lowercase : Tuple = clip_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Dict = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian', logit_scale_init_value=1.0) _lowercase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : List[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : List[Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3))
21
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 SCREAMING_SNAKE_CASE : int = get_tests_dir("fixtures/dummy_feature_extractor_config.json") SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir("fixtures/vocab.json") SCREAMING_SNAKE_CASE : int = get_tests_dir("fixtures") class _lowerCamelCase( unittest.TestCase ): lowercase_ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = 0 def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h') self.assertIsInstance(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Union[str, Any] = WavaVecaConfig() _lowercase : int = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h') # save in new folder model_config.save_pretrained(lowerCamelCase) processor.save_pretrained(lowerCamelCase) _lowercase : Optional[int] = AutoProcessor.from_pretrained(lowerCamelCase) self.assertIsInstance(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCamelCase, os.path.join(lowerCamelCase, lowerCamelCase)) copyfile(lowerCamelCase, os.path.join(lowerCamelCase, 'vocab.json')) _lowercase : Optional[Any] = AutoProcessor.from_pretrained(lowerCamelCase) self.assertIsInstance(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Any = WavaVecaFeatureExtractor() _lowercase : int = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h') _lowercase : List[Any] = WavaVecaProcessor(lowerCamelCase, lowerCamelCase) # save in new folder processor.save_pretrained(lowerCamelCase) # drop `processor_class` in tokenizer with open(os.path.join(lowerCamelCase, lowerCamelCase), 'r') as f: _lowercase : Union[str, Any] = json.load(lowerCamelCase) config_dict.pop('processor_class') with open(os.path.join(lowerCamelCase, lowerCamelCase), 'w') as f: f.write(json.dumps(lowerCamelCase)) _lowercase : Any = AutoProcessor.from_pretrained(lowerCamelCase) self.assertIsInstance(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : List[str] = WavaVecaFeatureExtractor() _lowercase : int = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h') _lowercase : Optional[Any] = WavaVecaProcessor(lowerCamelCase, lowerCamelCase) # save in new folder processor.save_pretrained(lowerCamelCase) # drop `processor_class` in feature extractor with open(os.path.join(lowerCamelCase, lowerCamelCase), 'r') as f: _lowercase : Optional[Any] = json.load(lowerCamelCase) config_dict.pop('processor_class') with open(os.path.join(lowerCamelCase, lowerCamelCase), 'w') as f: f.write(json.dumps(lowerCamelCase)) _lowercase : Optional[Any] = AutoProcessor.from_pretrained(lowerCamelCase) self.assertIsInstance(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : str = WavaVecaConfig(processor_class='Wav2Vec2Processor') model_config.save_pretrained(lowerCamelCase) # copy relevant files copyfile(lowerCamelCase, os.path.join(lowerCamelCase, 'vocab.json')) # create emtpy sample processor with open(os.path.join(lowerCamelCase, lowerCamelCase), 'w') as f: f.write('{}') _lowercase : Optional[Any] = AutoProcessor.from_pretrained(lowerCamelCase) self.assertIsInstance(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" with self.assertRaises(lowerCamelCase): _lowercase : Dict = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase): _lowercase : str = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase) _lowercase : Optional[Any] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase) self.assertTrue(processor.special_attribute_present) self.assertEqual(processor.__class__.__name__, 'NewProcessor') _lowercase : int = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor') _lowercase : Union[str, Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast') # Test we can also load the slow version _lowercase : str = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase, use_fast=lowerCamelCase) _lowercase : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present) self.assertEqual(new_tokenizer.__class__.__name__, 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer') def UpperCamelCase ( self) -> List[str]: """simple docstring""" try: AutoConfig.register('custom', lowerCamelCase) AutoFeatureExtractor.register(lowerCamelCase, lowerCamelCase) AutoTokenizer.register(lowerCamelCase, slow_tokenizer_class=lowerCamelCase) AutoProcessor.register(lowerCamelCase, lowerCamelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase): AutoProcessor.register(lowerCamelCase, lowerCamelCase) # Now that the config is registered, it can be used as any other config with the auto-API _lowercase : Union[str, Any] = CustomFeatureExtractor.from_pretrained(lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : List[str] = os.path.join(lowerCamelCase, 'vocab.txt') with open(lowerCamelCase, 'w', encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _lowercase : Optional[int] = CustomTokenizer(lowerCamelCase) _lowercase : int = CustomProcessor(lowerCamelCase, lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCamelCase) _lowercase : Optional[int] = AutoProcessor.from_pretrained(lowerCamelCase) self.assertIsInstance(lowerCamelCase, lowerCamelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self) -> Dict: """simple docstring""" class _lowerCamelCase( _a ): lowercase_ : List[str] = False class _lowerCamelCase( _a ): lowercase_ : Optional[Any] = False class _lowerCamelCase( _a ): lowercase_ : Any = """AutoFeatureExtractor""" lowercase_ : Tuple = """AutoTokenizer""" lowercase_ : int = False try: AutoConfig.register('custom', lowerCamelCase) AutoFeatureExtractor.register(lowerCamelCase, lowerCamelCase) AutoTokenizer.register(lowerCamelCase, slow_tokenizer_class=lowerCamelCase) AutoProcessor.register(lowerCamelCase, lowerCamelCase) # If remote code is not set, the default is to use local classes. _lowercase : int = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor') self.assertEqual(processor.__class__.__name__, 'NewProcessor') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote code is disabled, we load the local ones. _lowercase : Tuple = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase) self.assertEqual(processor.__class__.__name__, 'NewProcessor') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub. _lowercase : int = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase) self.assertEqual(processor.__class__.__name__, 'NewProcessor') self.assertTrue(processor.special_attribute_present) self.assertTrue(processor.feature_extractor.special_attribute_present) self.assertTrue(processor.tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Any = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(processor.__class__.__name__, 'BertTokenizerFast') def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[str] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext') self.assertEqual(processor.__class__.__name__, 'ConvNextImageProcessor') @is_staging_test class _lowerCamelCase( unittest.TestCase ): lowercase_ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCamelCase ( cls) -> Optional[int]: """simple docstring""" _lowercase : int = TOKEN HfFolder.save_token(lowerCamelCase) @classmethod def UpperCamelCase ( cls) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token, repo_id='test-processor') except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-processor-org') except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-processor') except HTTPError: pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = WavaVecaProcessor.from_pretrained(lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase, 'test-processor'), push_to_hub=lowerCamelCase, use_auth_token=self._token) _lowercase : Tuple = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''') for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase, getattr(new_processor.feature_extractor, lowerCamelCase)) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab()) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = WavaVecaProcessor.from_pretrained(lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase, 'test-processor-org'), push_to_hub=lowerCamelCase, use_auth_token=self._token, organization='valid_org', ) _lowercase : Union[str, Any] = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org') for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase, getattr(new_processor.feature_extractor, lowerCamelCase)) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab()) def UpperCamelCase ( self) -> Any: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _lowercase : int = CustomFeatureExtractor.from_pretrained(lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Optional[int] = os.path.join(lowerCamelCase, 'vocab.txt') with open(lowerCamelCase, 'w', encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _lowercase : Tuple = CustomTokenizer(lowerCamelCase) _lowercase : Union[str, Any] = CustomProcessor(lowerCamelCase, lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''', token=self._token) _lowercase : Dict = Repository(lowerCamelCase, clone_from=F'''{USER}/test-dynamic-processor''', token=self._token) processor.save_pretrained(lowerCamelCase) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map, { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', }, ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCamelCase, 'tokenizer_config.json')) as f: _lowercase : int = json.load(lowerCamelCase) self.assertDictEqual( tokenizer_config['auto_map'], { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', }, ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase, 'custom_feature_extraction.py'))) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase, 'custom_tokenization.py'))) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase, 'custom_processing.py'))) repo.push_to_hub() _lowercase : List[str] = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''', trust_remote_code=lowerCamelCase) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__, 'CustomProcessor')
21
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
1
import mpmath # for roots of unity import numpy as np class _lowerCamelCase: def __init__( self, lowerCamelCase=None, lowerCamelCase=None) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = list(poly_a or [0])[:] _lowercase : int = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowercase : Optional[Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() _lowercase : Union[str, Any] = len(self.polyB) # Add 0 to make lengths equal a power of 2 _lowercase : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform _lowercase : str = complex(mpmath.root(x=1, n=self.c_max_length, k=1)) # The product _lowercase : Optional[Any] = self.__multiply() def UpperCamelCase ( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCamelCase) <= 1: return dft[0] # _lowercase : Optional[Any] = self.c_max_length // 2 while next_ncol > 0: _lowercase : Any = [[] for i in range(lowerCamelCase)] _lowercase : List[str] = self.root**next_ncol # First half of next step _lowercase : str = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(lowerCamelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step _lowercase : Any = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(lowerCamelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update _lowercase : str = new_dft _lowercase : Union[str, Any] = next_ncol // 2 return dft[0] def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = self.__dft('A') _lowercase : str = self.__dft('B') _lowercase : int = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT _lowercase : int = 2 while next_ncol <= self.c_max_length: _lowercase : Optional[int] = [[] for i in range(lowerCamelCase)] _lowercase : Union[str, Any] = self.root ** (next_ncol // 2) _lowercase : int = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update _lowercase : Optional[Any] = new_inverse_c next_ncol *= 2 # Unpack _lowercase : Any = [round(x[0].real, 8) + round(x[0].imag, 8) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = 'A = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A])) _lowercase : int = 'B = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B])) _lowercase : Optional[int] = 'A*B = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product)) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
21
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
1
import os from collections.abc import Iterator def UpperCamelCase_( lowerCamelCase_ = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(lowerCamelCase_ ): _lowercase : Union[str, Any] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowerCamelCase_ )[1] in (".py", ".ipynb"): yield os.path.join(lowerCamelCase_ , lowerCamelCase_ ).lstrip('./' ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: return F'''{i * " "}*''' if i else "\n##" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : int = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowerCamelCase_ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(lowerCamelCase_ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def UpperCamelCase_( lowerCamelCase_ = "." ) -> None: _lowercase : List[str] = '' for filepath in sorted(good_file_paths(lowerCamelCase_ ) ): _lowercase , _lowercase : int = os.path.split(lowerCamelCase_ ) if filepath != old_path: _lowercase : List[str] = print_path(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Optional[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : List[str] = F'''{filepath}/{filename}'''.replace(' ' , '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'''{md_prefix(lowerCamelCase_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
21
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : str = "bart" SCREAMING_SNAKE_CASE : Optional[int] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> int: if LOAD_DENSE_INDEX: _lowercase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowercase : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowercase : str = qar_model.eval() else: _lowercase , _lowercase : Any = (None, None) if MODEL_TYPE == "bart": _lowercase : Dict = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowercase : Any = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowercase : List[Any] = sas_model.eval() else: _lowercase , _lowercase : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> str: if LOAD_DENSE_INDEX: _lowercase : Optional[Any] = faiss.StandardGpuResources() _lowercase : Optional[int] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowercase : Tuple = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowercase : Any = faiss.IndexFlatIP(128 ) _lowercase : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: _lowercase , _lowercase : Any = (None, None) _lowercase : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : List[str] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowercase : Optional[Any] = elia['train_eli5'] _lowercase : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowercase : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = load_train_data() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=10 ) -> List[str]: _lowercase : Any = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) _lowercase , _lowercase : List[str] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[str] = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ) -> Dict: if source == "none": _lowercase , _lowercase : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowercase , _lowercase : Dict = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase , _lowercase : str = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) _lowercase : List[Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowercase : Union[str, Any] = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=256 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ) -> Dict: with torch.no_grad(): _lowercase : str = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : List[Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : Any = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Optional[int] = action_list.index(action_st) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : int = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : Dict = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : int = "wiki40b" SCREAMING_SNAKE_CASE : int = "dense" SCREAMING_SNAKE_CASE : str = "beam" SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : List[str] = 64 SCREAMING_SNAKE_CASE : Union[str, Any] = 256 SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : Any = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : int = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : int = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Any = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : str = None # start main text SCREAMING_SNAKE_CASE : List[str] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : List[str] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : Optional[int] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE : int = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : Optional[Any] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : List[Any] = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : Any = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : List[Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : str = find_nearest_training(question) SCREAMING_SNAKE_CASE : Any = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : str = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
21
1
def UpperCamelCase_( lowerCamelCase_ = 1000 ) -> int: _lowercase : Tuple = -1 _lowercase : List[str] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _lowercase : Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) _lowercase : Tuple = n - a - b if c * c == (a * a + b * b): _lowercase : str = a * b * c if candidate >= product: _lowercase : Any = candidate return product if __name__ == "__main__": print(F"{solution() = }")
21
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCamelCase_( lowerCamelCase_ ) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_ ) class _lowerCamelCase: def __init__( self, *, lowerCamelCase = np.inf, lowerCamelCase = "linear", lowerCamelCase = 0.0, ) -> None: """simple docstring""" _lowercase : str = regularization _lowercase : List[str] = gamma if kernel == "linear": _lowercase : int = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma, (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') _lowercase : Tuple = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _lowercase : Dict = F'''Unknown kernel: {kernel}''' raise ValueError(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> float: """simple docstring""" return np.dot(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" _lowercase : int = observations _lowercase : Optional[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_lowercase) , ) : Tuple = np.shape(lowerCamelCase) def to_minimize(lowerCamelCase) -> float: _lowercase : str = 0 ((_lowercase) , ) : Any = np.shape(lowerCamelCase) for i in range(lowerCamelCase): for j in range(lowerCamelCase): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i], observations[j]) ) return 1 / 2 * s - sum(lowerCamelCase) _lowercase : Tuple = LinearConstraint(lowerCamelCase, 0, 0) _lowercase : Dict = Bounds(0, self.regularization) _lowercase : Optional[int] = minimize( lowerCamelCase, np.ones(lowerCamelCase), bounds=lowerCamelCase, constraints=[ly_contraint]).x _lowercase : Optional[Any] = l_star # calculating mean offset of separation plane to points _lowercase : Optional[Any] = 0 for i in range(lowerCamelCase): for j in range(lowerCamelCase): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i], observations[j]) _lowercase : str = s / n def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n], lowerCamelCase) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
21
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
1
def UpperCamelCase_( lowerCamelCase_ ) -> list: def merge(lowerCamelCase_ , lowerCamelCase_ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCamelCase_ ) <= 1: return collection _lowercase : str = len(lowerCamelCase_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE : Any = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
21
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : Node | None class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Node | None = None for i in sorted(lowerCamelCase, reverse=lowerCamelCase): _lowercase : Tuple = Node(lowerCamelCase, self.head) def __iter__( self) -> Iterator[int]: """simple docstring""" _lowercase : Union[str, Any] = self.head while node: yield node.data _lowercase : int = node.next_node def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __str__( self) -> str: """simple docstring""" return " -> ".join([str(lowerCamelCase) for node in self]) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList: return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
21
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase( _a ): lowercase_ : Tuple = (UniPCMultistepScheduler,) lowercase_ : Dict = (("""num_inference_steps""", 25),) def UpperCamelCase ( self, **lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowerCamelCase) return config def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = dict(self.forward_default_kwargs) _lowercase : int = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : Union[str, Any] = self.dummy_sample _lowercase : Optional[Any] = 0.1 * sample _lowercase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Optional[Any] = self.get_scheduler_config(**lowerCamelCase) _lowercase : Tuple = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Dict = scheduler_class.from_pretrained(lowerCamelCase) new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase , _lowercase : Any = sample, sample for t in range(lowerCamelCase, time_step + scheduler.config.solver_order + 1): _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Optional[Any] = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : List[Any] = dict(self.forward_default_kwargs) _lowercase : Union[str, Any] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : int = self.dummy_sample _lowercase : Tuple = 0.1 * sample _lowercase : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Tuple = self.get_scheduler_config() _lowercase : int = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals (must be after setting timesteps) _lowercase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Union[str, Any] = scheduler_class.from_pretrained(lowerCamelCase) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residual (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase : str = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : List[str] = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" if scheduler is None: _lowercase : Optional[Any] = self.scheduler_classes[0] _lowercase : str = self.get_scheduler_config(**lowerCamelCase) _lowercase : List[str] = scheduler_class(**lowerCamelCase) _lowercase : str = self.scheduler_classes[0] _lowercase : Tuple = self.get_scheduler_config(**lowerCamelCase) _lowercase : str = scheduler_class(**lowerCamelCase) _lowercase : Dict = 10 _lowercase : Any = self.dummy_model() _lowercase : List[str] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Optional[Any] = model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample return sample def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[Any] = dict(self.forward_default_kwargs) _lowercase : Optional[int] = kwargs.pop('num_inference_steps', lowerCamelCase) for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config() _lowercase : int = scheduler_class(**lowerCamelCase) _lowercase : Optional[Any] = self.dummy_sample _lowercase : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase, 'set_timesteps'): scheduler.set_timesteps(lowerCamelCase) elif num_inference_steps is not None and not hasattr(lowerCamelCase, 'set_timesteps'): _lowercase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowercase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] _lowercase : List[str] = scheduler.timesteps[5] _lowercase : Any = scheduler.timesteps[6] _lowercase : int = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Tuple = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Dict = UniPCMultistepScheduler(**self.get_scheduler_config()) _lowercase : int = self.full_loop(scheduler=lowerCamelCase) _lowercase : int = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_4_6_4) < 1E-3 _lowercase : Tuple = DPMSolverSinglestepScheduler.from_config(scheduler.config) _lowercase : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config) _lowercase : str = DPMSolverMultistepScheduler.from_config(scheduler.config) _lowercase : Tuple = UniPCMultistepScheduler.from_config(scheduler.config) _lowercase : List[Any] = self.full_loop(scheduler=lowerCamelCase) _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_4_6_4) < 1E-3 def UpperCamelCase ( self) -> int: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase, prediction_type=lowerCamelCase, sample_max_value=lowerCamelCase, solver_order=lowerCamelCase, solver_type=lowerCamelCase, ) def UpperCamelCase ( self) -> int: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, ) _lowercase : Any = self.full_loop( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, ) assert not torch.isnan(lowerCamelCase).any(), "Samples have nan numbers" def UpperCamelCase ( self) -> str: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase) self.check_over_configs(lower_order_final=lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=0) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.full_loop() _lowercase : Tuple = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_4_6_4) < 1E-3 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = self.full_loop(prediction_type='v_prediction') _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.1_0_1_4) < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.scheduler_classes[0] _lowercase : Any = self.get_scheduler_config(thresholding=lowerCamelCase, dynamic_thresholding_ratio=0) _lowercase : List[Any] = scheduler_class(**lowerCamelCase) _lowercase : str = 10 _lowercase : Union[str, Any] = self.dummy_model() _lowercase : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : str = model(lowerCamelCase, lowerCamelCase) _lowercase : int = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase ( self, **lowerCamelCase) -> Any: """simple docstring""" for scheduler_class in self.scheduler_classes: _lowercase : Dict = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(scheduler.config.num_train_timesteps) assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = KandinskyImgaImgPipeline lowercase_ : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowercase_ : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowercase_ : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ : Union[str, Any] = False @property def UpperCamelCase ( self) -> str: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> int: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 1_00 @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def UpperCamelCase ( self) -> int: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=10_05, ) _lowercase : Optional[int] = MultilingualCLIP(lowerCamelCase) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Optional[Any] = UNetaDConditionModel(**lowerCamelCase) return model @property def UpperCamelCase ( self) -> str: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.dummy_text_encoder _lowercase : List[Any] = self.dummy_tokenizer _lowercase : int = self.dummy_unet _lowercase : int = self.dummy_movq _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : List[Any] = DDIMScheduler(**lowerCamelCase) _lowercase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" _lowercase : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(lowerCamelCase) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Tuple = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB').resize((2_56, 2_56)) if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = 'cpu' _lowercase : Tuple = self.get_dummy_components() _lowercase : str = self.pipeline_class(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = pipe(**self.get_dummy_inputs(lowerCamelCase)) _lowercase : Optional[int] = output.images _lowercase : List[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase), return_dict=lowerCamelCase, )[0] _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') _lowercase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa) pipe_prior.to(lowerCamelCase) _lowercase : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1', torch_dtype=torch.floataa) _lowercase : List[Any] = pipeline.to(lowerCamelCase) pipeline.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = torch.Generator(device='cpu').manual_seed(0) _lowercase , _lowercase : List[Any] = pipe_prior( lowerCamelCase, generator=lowerCamelCase, num_inference_steps=5, negative_prompt='', ).to_tuple() _lowercase : Union[str, Any] = pipeline( lowerCamelCase, image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=1_00, height=7_68, width=7_68, strength=0.2, output_type='np', ) _lowercase : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase)
21
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class _lowerCamelCase( _a ): lowercase_ : Tuple = """xlm-roberta""" def __init__( self, lowerCamelCase=3_05_22, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=2, lowerCamelCase="absolute", lowerCamelCase=True, lowerCamelCase=None, **lowerCamelCase, ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) _lowercase : int = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : Any = hidden_act _lowercase : List[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Any = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Optional[int] = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Tuple = position_embedding_type _lowercase : str = use_cache _lowercase : Optional[int] = classifier_dropout class _lowerCamelCase( _a ): @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowercase : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
21
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> int: # initialize config if "resnet-50" in model_name: _lowercase : Tuple = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: _lowercase : List[str] = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) _lowercase : List[Any] = DetrConfig(use_timm_backbone=lowerCamelCase_ , backbone_config=lowerCamelCase_ ) # set label attributes _lowercase : Optional[Any] = 'panoptic' in model_name if is_panoptic: _lowercase : List[Any] = 250 else: _lowercase : Optional[int] = 91 _lowercase : Optional[Any] = 'huggingface/label-files' _lowercase : Any = 'coco-detection-id2label.json' _lowercase : str = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : Dict = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : str = idalabel _lowercase : str = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: # here we list all keys to be renamed (original name on the left, our name on the right) _lowercase : List[str] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: _lowercase : List[Any] = state_dict.pop(lowerCamelCase_ ) _lowercase : Optional[Any] = val def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=False ) -> int: _lowercase : Dict = '' if is_panoptic: _lowercase : List[Any] = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowercase : int = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _lowercase : Optional[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase : List[Any] = in_proj_weight[:256, :] _lowercase : Any = in_proj_bias[:256] _lowercase : int = in_proj_weight[256:512, :] _lowercase : List[str] = in_proj_bias[256:512] _lowercase : List[str] = in_proj_weight[-256:, :] _lowercase : Dict = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowercase : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _lowercase : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase : Optional[int] = in_proj_weight[:256, :] _lowercase : Optional[int] = in_proj_bias[:256] _lowercase : List[Any] = in_proj_weight[256:512, :] _lowercase : List[Any] = in_proj_bias[256:512] _lowercase : Dict = in_proj_weight[-256:, :] _lowercase : Any = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _lowercase : List[str] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _lowercase : Dict = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowercase : int = in_proj_weight_cross_attn[:256, :] _lowercase : str = in_proj_bias_cross_attn[:256] _lowercase : Union[str, Any] = in_proj_weight_cross_attn[256:512, :] _lowercase : Tuple = in_proj_bias_cross_attn[256:512] _lowercase : List[str] = in_proj_weight_cross_attn[-256:, :] _lowercase : str = in_proj_bias_cross_attn[-256:] def UpperCamelCase_( ) -> int: _lowercase : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False ) -> Optional[Any]: _lowercase , _lowercase : Optional[Any] = get_detr_config(lowerCamelCase_ ) # load original model from torch hub _lowercase : List[str] = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F'''Converting model {model_name}...''' ) _lowercase : Any = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=lowerCamelCase_ ).eval() _lowercase : Optional[Any] = detr.state_dict() # rename keys for src, dest in create_rename_keys(lowerCamelCase_ ): if is_panoptic: _lowercase : List[str] = 'detr.' + src rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase_ , is_panoptic=lowerCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowercase : Tuple = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _lowercase : Dict = state_dict.pop(lowerCamelCase_ ) _lowercase : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowercase : List[Any] = state_dict.pop(lowerCamelCase_ ) _lowercase : Dict = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _lowercase : int = state_dict.pop(lowerCamelCase_ ) _lowercase : Any = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _lowercase : str = state_dict.pop(lowerCamelCase_ ) _lowercase : List[str] = val # finally, create HuggingFace model and load state dict _lowercase : str = DetrForSegmentation(lowerCamelCase_ ) if is_panoptic else DetrForObjectDetection(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() # verify our conversion on an image _lowercase : Optional[int] = 'coco_panoptic' if is_panoptic else 'coco_detection' _lowercase : List[Any] = DetrImageProcessor(format=lowerCamelCase_ ) _lowercase : Any = processor(images=prepare_img() , return_tensors='pt' ) _lowercase : Union[str, Any] = encoding['pixel_values'] _lowercase : int = detr(lowerCamelCase_ ) _lowercase : List[str] = model(lowerCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=64, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, ) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = parent _lowercase : Tuple = batch_size _lowercase : str = seq_length _lowercase : str = is_training _lowercase : Dict = use_input_mask _lowercase : Optional[int] = use_token_type_ids _lowercase : Optional[Any] = use_labels _lowercase : Any = vocab_size _lowercase : Tuple = hidden_size _lowercase : List[Any] = embedding_size _lowercase : Dict = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Any = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Optional[Any] = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : Dict = num_labels _lowercase : List[Any] = num_choices _lowercase : Tuple = scope def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : List[str] = None if self.use_input_mask: _lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Any = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowercase : Dict = None _lowercase : Optional[int] = None _lowercase : str = None if self.use_labels: _lowercase : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : List[str] = ids_tensor([self.batch_size], self.num_choices) _lowercase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = MegatronBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase) _lowercase : List[Any] = model(lowerCamelCase, token_type_ids=lowerCamelCase) _lowercase : Dict = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Optional[int] = MegatronBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : str = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Any = MegatronBertForCausalLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = MegatronBertForNextSentencePrediction(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : int = MegatronBertForPreTraining(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, next_sentence_label=lowerCamelCase, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Tuple = MegatronBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[str] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Dict = self.num_labels _lowercase : Tuple = MegatronBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MegatronBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_choices _lowercase : Optional[int] = MegatronBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Tuple = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : List[Any] = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[int] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[str] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Any = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase_ : int = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : List[str] = True # test_resize_embeddings = False lowercase_ : List[str] = False def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=False) -> Optional[int]: """simple docstring""" _lowercase : int = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) if return_labels: if model_class in get_values(lowerCamelCase): _lowercase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase) _lowercase : Any = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase) return inputs_dict def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[Any] = MegatronBertModelTester(self) _lowercase : List[Any] = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: return torch.tensor( lowerCamelCase_ , dtype=torch.long , device=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Optional[int] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase( unittest.TestCase ): @slow @unittest.skip('Model is not available.') def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _lowercase : Optional[int] = os.path.join(os.environ['MYDIR'], lowerCamelCase) _lowercase : Optional[Any] = MegatronBertModel.from_pretrained(lowerCamelCase) model.to(lowerCamelCase) model.half() _lowercase : List[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _lowercase : Tuple = model(lowerCamelCase)[0] _lowercase : Optional[Any] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : List[Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _lowercase : List[Any] = output[0, ii, jj] _lowercase : Dict = expected[3 * ii + jj] _lowercase : List[str] = 'ii={} jj={} a={} b={}'.format(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) self.assertTrue(math.isclose(lowerCamelCase, lowerCamelCase, rel_tol=lowerCamelCase, abs_tol=lowerCamelCase), msg=lowerCamelCase)
21
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=64, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=1, ) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = seq_length _lowercase : Optional[Any] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : List[str] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : List[str] = num_labels _lowercase : Any = num_choices _lowercase : Tuple = scope _lowercase : Optional[Any] = q_groups _lowercase : List[str] = k_groups _lowercase : Optional[int] = v_groups _lowercase : List[str] = post_attention_groups _lowercase : Union[str, Any] = intermediate_groups _lowercase : int = output_groups def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Dict = None _lowercase : int = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = SqueezeBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = SqueezeBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : int = SqueezeBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : List[str] = SqueezeBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = self.num_choices _lowercase : str = SqueezeBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Dict = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase_ : Optional[int] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = True lowercase_ : int = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = SqueezeBertModelTester(self) _lowercase : Dict = ConfigTester(self, config_class=lowerCamelCase, dim=37) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = SqueezeBertModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_sentencepiece @require_tokenizers @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') _lowercase : Optional[int] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]]) _lowercase : List[str] = model(lowerCamelCase)[0] _lowercase : Union[str, Any] = torch.Size((1, 3)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-4))
21
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> YolosConfig: _lowercase : Optional[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _lowercase : Optional[Any] = 192 _lowercase : Optional[int] = 768 _lowercase : List[Any] = 12 _lowercase : List[str] = 3 _lowercase : List[Any] = [800, 1333] _lowercase : int = False elif yolos_name == "yolos_s_dWr": _lowercase : Optional[int] = 330 _lowercase : Optional[Any] = 14 _lowercase : List[Any] = 6 _lowercase : Tuple = 1320 elif "yolos_s" in yolos_name: _lowercase : int = 384 _lowercase : int = 1536 _lowercase : List[str] = 12 _lowercase : int = 6 elif "yolos_b" in yolos_name: _lowercase : Dict = [800, 1344] _lowercase : Tuple = 91 _lowercase : str = 'huggingface/label-files' _lowercase : int = 'coco-detection-id2label.json' _lowercase : List[Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : List[str] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : Optional[int] = idalabel _lowercase : int = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ) -> List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _lowercase : Optional[int] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase : Any = in_proj_weight[: config.hidden_size, :] _lowercase : Optional[int] = in_proj_bias[: config.hidden_size] _lowercase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase : Optional[Any] = in_proj_weight[-config.hidden_size :, :] _lowercase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def UpperCamelCase_( lowerCamelCase_ ) -> str: if "backbone" in name: _lowercase : str = name.replace('backbone' , 'vit' ) if "cls_token" in name: _lowercase : Union[str, Any] = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: _lowercase : Tuple = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: _lowercase : Dict = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: _lowercase : Optional[Any] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: _lowercase : Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: _lowercase : List[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: _lowercase : Union[str, Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowercase : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : Optional[Any] = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: _lowercase : Dict = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: _lowercase : Optional[Any] = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: _lowercase : Tuple = name.replace('vit.norm' , 'vit.layernorm' ) return name def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> dict: for key in orig_state_dict.copy().keys(): _lowercase : Dict = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: _lowercase : List[Any] = key.split('.' ) _lowercase : Any = int(key_split[2] ) _lowercase : Union[str, Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _lowercase : str = val[:dim, :] _lowercase : List[Any] = val[ dim : dim * 2, : ] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[int] = val[:dim] _lowercase : Optional[Any] = val[dim : dim * 2] _lowercase : List[Any] = val[-dim:] else: _lowercase : str = val return orig_state_dict def UpperCamelCase_( ) -> torch.Tensor: _lowercase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Optional[int] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ) -> str: _lowercase : int = get_yolos_config(lowerCamelCase_ ) # load original state_dict _lowercase : Dict = torch.load(lowerCamelCase_ , map_location='cpu' )['model'] # load 🤗 model _lowercase : Optional[Any] = YolosForObjectDetection(lowerCamelCase_ ) model.eval() _lowercase : Optional[int] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by YolosImageProcessor _lowercase : List[str] = 800 if yolos_name != 'yolos_ti' else 512 _lowercase : Any = YolosImageProcessor(format='coco_detection' , size=lowerCamelCase_ ) _lowercase : int = image_processor(images=prepare_img() , return_tensors='pt' ) _lowercase : Union[str, Any] = model(**lowerCamelCase_ ) _lowercase , _lowercase : Any = outputs.logits, outputs.pred_boxes _lowercase , _lowercase : List[str] = None, None if yolos_name == "yolos_ti": _lowercase : Optional[int] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) _lowercase : Optional[int] = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": _lowercase : Dict = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) _lowercase : Tuple = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": _lowercase : Any = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) _lowercase : Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": _lowercase : Optional[Any] = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) _lowercase : Optional[int] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": _lowercase : Optional[int] = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) _lowercase : Dict = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: _lowercase : str = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) _lowercase : Any = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase_ , organization='hustvl' ) model.push_to_hub(lowerCamelCase_ , organization='hustvl' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
21
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase( unittest.TestCase ): lowercase_ : Dict = JukeboxTokenizer lowercase_ : Dict = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" import torch _lowercase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics') _lowercase : Optional[Any] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" import torch _lowercase : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics') _lowercase : List[str] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
21
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) @dataclass class _lowerCamelCase: lowercase_ : Optional[str] = field( default="""tab_fact""", metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowercase_ : Optional[str] = field( default="""tab_fact""", metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}, ) lowercase_ : int = field( default=10_24, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """A csv or a json file containing the training data."""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """A csv or a json file containing the validation data."""} ) lowercase_ : Optional[str] = field(default=_a, metadata={"""help""": """A csv or a json file containing the test data."""} ) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.') else: _lowercase : int = self.train_file.split('.')[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _lowercase : Optional[int] = self.validation_file.split('.')[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _lowerCamelCase: lowercase_ : str = field( default=_a, metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""}, ) lowercase_ : str = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) def UpperCamelCase_( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase : Optional[int] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowercase : Tuple = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) datasets.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowercase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowercase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _lowercase : Tuple = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _lowercase : Dict = data_args.train_file.split('.' )[-1] _lowercase : List[str] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _lowercase : Tuple = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files _lowercase : Optional[int] = load_dataset('csv' , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _lowercase : List[str] = load_dataset('json' , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _lowercase : Optional[Any] = raw_datasets['train'].features['label'].names _lowercase : int = len(lowerCamelCase_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _lowercase : int = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCamelCase_ , ) _lowercase : List[str] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _lowercase : Union[str, Any] = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowercase : Dict = False # Some models have set the order of the labels to use, so let's make sure we do use it. _lowercase : List[str] = {'Refused': 0, 'Entailed': 1} _lowercase : Any = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _lowercase : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCamelCase_ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCamelCase_ ): _lowercase : Optional[Any] = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] _lowercase : Any = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _lowercase : int = examples['statement'] _lowercase : Any = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) _lowercase : Dict = tokenizer(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ) _lowercase : List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): _lowercase : Tuple = raw_datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _lowercase : List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: _lowercase : str = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _lowercase : List[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: _lowercase : int = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) _lowercase : Dict = raw_datasets['test'] if data_args.max_predict_samples is not None: _lowercase : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCamelCase_ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_ ): _lowercase : List[Any] = p.predictions[0] if isinstance(p.predictions , lowerCamelCase_ ) else p.predictions _lowercase : Dict = np.argmax(lowerCamelCase_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowercase : Union[str, Any] = default_data_collator elif training_args.fpaa: _lowercase : Dict = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) else: _lowercase : Optional[int] = None # Initialize our Trainer _lowercase : str = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: _lowercase : Dict = None if training_args.resume_from_checkpoint is not None: _lowercase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase : Union[str, Any] = last_checkpoint _lowercase : List[str] = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) _lowercase : str = train_result.metrics _lowercase : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase_ ) ) _lowercase : Optional[Any] = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCamelCase_ ) trainer.save_metrics('train' , lowerCamelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowercase : Tuple = trainer.evaluate(eval_dataset=lowerCamelCase_ ) _lowercase : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase_ ) _lowercase : List[Any] = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('eval' , lowerCamelCase_ ) trainer.save_metrics('eval' , lowerCamelCase_ ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _lowercase : Tuple = predict_dataset.remove_columns('label' ) _lowercase : Any = trainer.predict(lowerCamelCase_ , metric_key_prefix='predict' ).predictions _lowercase : Union[str, Any] = np.argmax(lowerCamelCase_ , axis=1 ) _lowercase : int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCamelCase_ ): _lowercase : List[str] = label_list[item] writer.write(F'''{index}\t{item}\n''' ) _lowercase : str = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
21
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase_ : int = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCamelCase ( self, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(lowerCamelCase)) _lowercase : Union[str, Any] = torch.manual_seed(lowerCamelCase) _lowercase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : str = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[Any] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs() _lowercase : List[str] = pipe(**lowerCamelCase).images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) # using the PNDM scheduler by default _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np', ) _lowercase : List[Any] = output.images _lowercase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : List[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) _lowercase : str = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler') _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCamelCase, output_type='np', ) _lowercase : str = output.images _lowercase : str = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
21
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: def run_func(lowerCamelCase_ ): @wraps(lowerCamelCase_ ) def run_in_eager_mode(*lowerCamelCase_ , **lowerCamelCase_ ): return func(*lowerCamelCase_ , **lowerCamelCase_ ) @wraps(lowerCamelCase_ ) @tf.function(experimental_compile=lowerCamelCase_ ) def run_in_graph_mode(*lowerCamelCase_ , **lowerCamelCase_ ): return func(*lowerCamelCase_ , **lowerCamelCase_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> ["tf.Tensor"]: _lowercase : int = random.Random() _lowercase : List[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCamelCase_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowerCamelCase( _a ): lowercase_ : TensorFlowBenchmarkArguments lowercase_ : PretrainedConfig lowercase_ : str = "TensorFlow" @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return tf.__version__ def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> float: """simple docstring""" _lowercase : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') _lowercase : Optional[int] = self._prepare_inference_func(lowerCamelCase, lowerCamelCase, lowerCamelCase) return self._measure_speed(_inference) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> float: """simple docstring""" _lowercase : Dict = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') _lowercase : str = self._prepare_train_func(lowerCamelCase, lowerCamelCase, lowerCamelCase) return self._measure_speed(_train) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], lowerCamelCase) _lowercase : Optional[int] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') _lowercase : Any = self._prepare_inference_func(lowerCamelCase, lowerCamelCase, lowerCamelCase) return self._measure_memory(_inference) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], lowerCamelCase) _lowercase : Optional[int] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') _lowercase : Union[str, Any] = self._prepare_train_func(lowerCamelCase, lowerCamelCase, lowerCamelCase) return self._measure_memory(_train) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Callable[[], None]: """simple docstring""" _lowercase : List[str] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.') _lowercase : Union[str, Any] = ( hasattr(lowerCamelCase, 'architectures') and isinstance(config.architectures, lowerCamelCase) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowercase : List[Any] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _lowercase : Union[str, Any] = __import__('transformers', fromlist=[model_class]) _lowercase : Dict = getattr(lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = model_cls(lowerCamelCase) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.') else: _lowercase : Dict = TF_MODEL_MAPPING[config.__class__](lowerCamelCase) # encoder-decoder has vocab size saved differently _lowercase : Tuple = config.vocab_size if hasattr(lowerCamelCase, 'vocab_size') else config.encoder.vocab_size _lowercase : List[Any] = random_input_ids(lowerCamelCase, lowerCamelCase, lowerCamelCase) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla) def encoder_decoder_forward(): return model(lowerCamelCase, decoder_input_ids=lowerCamelCase, training=lowerCamelCase) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla) def encoder_forward(): return model(lowerCamelCase, training=lowerCamelCase) _lowercase : str = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Callable[[], None]: """simple docstring""" _lowercase : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.') if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.') _lowercase : Optional[Any] = ( hasattr(lowerCamelCase, 'architectures') and isinstance(config.architectures, lowerCamelCase) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowercase : List[Any] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _lowercase : str = __import__('transformers', fromlist=[model_class]) _lowercase : Tuple = getattr(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = model_cls(lowerCamelCase) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.') else: _lowercase : str = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase) # encoder-decoder has vocab size saved differently _lowercase : List[str] = config.vocab_size if hasattr(lowerCamelCase, 'vocab_size') else config.encoder.vocab_size _lowercase : Union[str, Any] = random_input_ids(lowerCamelCase, lowerCamelCase, lowerCamelCase) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla) def encoder_decoder_train(): _lowercase : Any = model(lowerCamelCase, decoder_input_ids=lowerCamelCase, labels=lowerCamelCase, training=lowerCamelCase)[0] _lowercase : List[str] = tf.gradients(lowerCamelCase, model.trainable_variables) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla) def encoder_train(): _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase, training=lowerCamelCase)[0] _lowercase : List[str] = tf.gradients(lowerCamelCase, model.trainable_variables) return gradients _lowercase : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase ( self, lowerCamelCase) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation') timeit.repeat(lowerCamelCase, repeat=1, number=5) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowercase : Dict = timeit.repeat( lowerCamelCase, repeat=self.args.repeat, number=10, ) return min(lowerCamelCase) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''') def UpperCamelCase ( self, lowerCamelCase) -> [Memory, MemorySummary]: """simple docstring""" logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.') with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.') _lowercase : str = start_memory_tracing('transformers') if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`') elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.') _lowercase : Dict = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.') # init nvml nvml.nvmlInit() func() _lowercase : int = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) _lowercase : str = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase) _lowercase : Dict = meminfo.used _lowercase : Any = Memory(lowerCamelCase) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.') _lowercase : str = None else: _lowercase : Any = measure_peak_memory_cpu(lowerCamelCase) _lowercase : Dict = Memory(lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else memory_bytes if self.args.trace_memory_line_by_line: _lowercase : Optional[int] = stop_memory_tracing(lowerCamelCase) if memory is None: _lowercase : List[str] = summary.total else: _lowercase : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''') return "N/A", None
21
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = 1 _lowercase : Any = 3 _lowercase : Tuple = (32, 32) _lowercase : Tuple = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image @property def UpperCamelCase ( self) -> str: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) return model @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) return model @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=50_06, ) return RobertaSeriesModelWithTransformation(lowerCamelCase) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" def extract(*lowerCamelCase, **lowerCamelCase): class _lowerCamelCase: def __init__( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = torch.ones([0]) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" self.pixel_values.to(lowerCamelCase) return self return Out() return extract def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : Optional[Any] = self.dummy_vae _lowercase : List[Any] = self.dummy_text_encoder _lowercase : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Tuple = 77 _lowercase : int = self.dummy_image.to(lowerCamelCase) _lowercase : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Optional[int] = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : Dict = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Any = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, ) _lowercase : Optional[int] = output.images _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Optional[Any] = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, return_dict=lowerCamelCase, )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Tuple = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : str = self.dummy_vae _lowercase : Optional[Any] = self.dummy_text_encoder _lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Optional[Any] = 77 _lowercase : str = self.dummy_image.to(lowerCamelCase) # put models in fp16 _lowercase : List[str] = unet.half() _lowercase : List[Any] = vae.half() _lowercase : Any = bert.half() # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Any = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = 'A painting of a squirrel eating a burger' _lowercase : Optional[Any] = torch.manual_seed(0) _lowercase : Union[str, Any] = alt_pipe( [prompt], generator=lowerCamelCase, num_inference_steps=2, output_type='np', image=lowerCamelCase, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : str = init_image.resize((7_60, 5_04)) _lowercase : Optional[int] = 'BAAI/AltDiffusion' _lowercase : str = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : List[str] = 'A fantasy landscape, trending on artstation' _lowercase : Any = torch.manual_seed(0) _lowercase : Dict = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : List[str] = output.images[0] _lowercase : Tuple = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowercase : Optional[Any] = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : str = init_image.resize((7_68, 5_12)) _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy') _lowercase : str = 'BAAI/AltDiffusion' _lowercase : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : int = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : int = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : Union[str, Any] = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
21
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE : Union[str, Any] = 256047 SCREAMING_SNAKE_CASE : str = 256145 @require_sentencepiece @require_tokenizers class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Optional[Any] = NllbTokenizer lowercase_ : str = NllbTokenizerFast lowercase_ : Any = True lowercase_ : Union[str, Any] = True lowercase_ : Any = {} def UpperCamelCase ( self) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowercase : List[Any] = NllbTokenizer(lowerCamelCase, keep_accents=lowerCamelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = NllbTokenizer(lowerCamelCase, keep_accents=lowerCamelCase) _lowercase : Union[str, Any] = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCamelCase, ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase), [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]], ) _lowercase : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCamelCase, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) _lowercase : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCamelCase) self.assertListEqual( lowerCamelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _lowercase : str = tokenizer.convert_ids_to_tokens(lowerCamelCase) self.assertListEqual( lowerCamelCase, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ], ) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase, **lowerCamelCase) _lowercase : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase, **lowerCamelCase) _lowercase : Union[str, Any] = tempfile.mkdtemp() _lowercase : Dict = tokenizer_r.save_pretrained(lowerCamelCase) _lowercase : Tuple = tokenizer_p.save_pretrained(lowerCamelCase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) _lowercase : Tuple = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f) self.assertSequenceEqual(lowerCamelCase, lowerCamelCase) # Checks everything loads correctly in the same way _lowercase : int = tokenizer_r.from_pretrained(lowerCamelCase) _lowercase : Optional[Any] = tokenizer_p.from_pretrained(lowerCamelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase, lowerCamelCase)) shutil.rmtree(lowerCamelCase) # Save tokenizer rust, legacy_format=True _lowercase : List[str] = tempfile.mkdtemp() _lowercase : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase, legacy_format=lowerCamelCase) _lowercase : List[str] = tokenizer_p.save_pretrained(lowerCamelCase) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase, lowerCamelCase) # Checks everything loads correctly in the same way _lowercase : Optional[Any] = tokenizer_r.from_pretrained(lowerCamelCase) _lowercase : List[str] = tokenizer_p.from_pretrained(lowerCamelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase, lowerCamelCase)) shutil.rmtree(lowerCamelCase) # Save tokenizer rust, legacy_format=False _lowercase : Dict = tempfile.mkdtemp() _lowercase : Dict = tokenizer_r.save_pretrained(lowerCamelCase, legacy_format=lowerCamelCase) _lowercase : Optional[int] = tokenizer_p.save_pretrained(lowerCamelCase) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way _lowercase : str = tokenizer_r.from_pretrained(lowerCamelCase) _lowercase : Optional[int] = tokenizer_p.from_pretrained(lowerCamelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase, lowerCamelCase)) shutil.rmtree(lowerCamelCase) @require_torch def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" if not self.test_seqaseq: return _lowercase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}'''): # Longer text that will definitely require truncation. _lowercase : Optional[int] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] _lowercase : Optional[int] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: _lowercase : str = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase, tgt_texts=lowerCamelCase, max_length=3, max_target_length=10, return_tensors='pt', src_lang='eng_Latn', tgt_lang='ron_Latn', ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 10) # max_target_length will default to max_length if not specified _lowercase : Optional[Any] = tokenizer.prepare_seqaseq_batch( lowerCamelCase, tgt_texts=lowerCamelCase, max_length=3, return_tensors='pt') self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 3) _lowercase : int = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase, max_length=3, max_target_length=10, return_tensors='pt') self.assertEqual(batch_encoder_only.input_ids.shape[1], 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3) self.assertNotIn('decoder_input_ids', lowerCamelCase) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.') def UpperCamelCase ( self) -> Dict: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _lowercase : int = [AddedToken('<special>', lstrip=lowerCamelCase)] _lowercase : Dict = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase) _lowercase : Optional[Any] = tokenizer_r.encode('Hey this is a <special> token') _lowercase : str = tokenizer_r.encode('<special>', add_special_tokens=lowerCamelCase)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: _lowercase : Tuple = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) _lowercase : str = self.tokenizer_class.from_pretrained( lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase) _lowercase : int = tokenizer_p.encode('Hey this is a <special> token') _lowercase : Optional[int] = tokenizer_cr.encode('Hey this is a <special> token') self.assertEqual(lowerCamelCase, lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase( unittest.TestCase ): lowercase_ : Tuple = """facebook/nllb-200-distilled-600M""" lowercase_ : Any = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowercase_ : str = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowercase_ : str = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def UpperCamelCase ( cls) -> Optional[int]: """simple docstring""" _lowercase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang='eng_Latn', tgt_lang='ron_Latn') _lowercase : str = 1 return cls def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'], 25_60_01) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'], 25_60_02) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'], 25_60_57) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" self.assertIn(lowerCamelCase, self.tokenizer.all_special_ids) # fmt: off _lowercase : int = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on _lowercase : str = self.tokenizer.decode(lowerCamelCase, skip_special_tokens=lowerCamelCase) _lowercase : List[Any] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) self.assertNotIn(self.tokenizer.eos_token, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0], lowerCamelCase) _lowercase : Any = 10 _lowercase : int = self.tokenizer(lowerCamelCase, max_length=lowerCamelCase, truncation=lowerCamelCase).input_ids[0] self.assertEqual(ids[-1], 2) self.assertEqual(ids[0], lowerCamelCase) self.assertEqual(len(lowerCamelCase), lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR']), [25_62_03, 3]) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Any = tempfile.mkdtemp() _lowercase : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase) _lowercase : Optional[int] = NllbTokenizer.from_pretrained(lowerCamelCase) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, lowerCamelCase) @require_torch def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=len(self.expected_src_tokens), return_tensors='pt', ) _lowercase : List[Any] = shift_tokens_right( batch['labels'], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id['ron_Latn']) self.assertIsInstance(lowerCamelCase, lowerCamelCase) self.assertEqual((2, 15), batch.input_ids.shape) self.assertEqual((2, 15), batch.attention_mask.shape) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, lowerCamelCase) self.assertEqual(lowerCamelCase, batch.decoder_input_ids[0, 0]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = self.tokenizer(self.src_text, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=3, return_tensors='pt') _lowercase : Optional[Any] = self.tokenizer( text_target=self.tgt_text, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=10, return_tensors='pt') _lowercase : Tuple = targets['input_ids'] _lowercase : Any = shift_tokens_right( lowerCamelCase, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.tokenizer._build_translation_inputs( 'A test', return_tensors='pt', src_lang='eng_Latn', tgt_lang='fra_Latn') self.assertEqual( nested_simplify(lowerCamelCase), { # A, test, EOS, en_XX 'input_ids': [[25_60_47, 70, 73_56, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_60_57, }, ) @require_torch def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : str = True _lowercase : List[Any] = self.tokenizer( 'UN Chief says there is no military solution in Syria', src_lang='eng_Latn', tgt_lang='fra_Latn') self.assertEqual( inputs.input_ids, [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47]) _lowercase : Any = False _lowercase : Dict = self.tokenizer( 'UN Chief says there is no military solution in Syria', src_lang='eng_Latn', tgt_lang='fra_Latn') self.assertEqual( inputs.input_ids, [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2])
21
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE : Optional[Any] = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 32 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 16 , lowerCamelCase_ = "bert-base-cased" ) -> Optional[Any]: _lowercase : str = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _lowercase : Dict = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) _lowercase : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase : List[str] = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=lowerCamelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase_ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowercase : Tuple = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) _lowercase : str = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: # Initialize accelerator _lowercase : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : Optional[int] = config['lr'] _lowercase : Tuple = int(config['num_epochs'] ) _lowercase : int = int(config['seed'] ) _lowercase : Tuple = int(config['batch_size'] ) _lowercase : Any = args.model_name_or_path set_seed(lowerCamelCase_ ) _lowercase , _lowercase : str = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) # Instantiate optimizer _lowercase : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase : int = optimizer_cls(params=model.parameters() , lr=lowerCamelCase_ ) if accelerator.state.deepspeed_plugin is not None: _lowercase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowercase : Tuple = 1 _lowercase : Union[str, Any] = (len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase : List[str] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=0 , num_training_steps=lowerCamelCase_ , ) else: _lowercase : Dict = DummyScheduler(lowerCamelCase_ , total_num_steps=lowerCamelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # We need to keep track of how many total steps we have iterated over _lowercase : Any = 0 # We also need to keep track of the stating epoch so files are named properly _lowercase : Union[str, Any] = 0 # Now we train the model _lowercase : Tuple = evaluate.load('glue' , 'mrpc' ) _lowercase : Any = 0 _lowercase : Optional[Any] = {} for epoch in range(lowerCamelCase_ , lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): _lowercase : List[str] = model(**lowerCamelCase_ ) _lowercase : Tuple = outputs.loss _lowercase : Tuple = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _lowercase : int = 0 for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : Dict = model(**lowerCamelCase_ ) _lowercase : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowercase , _lowercase : Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCamelCase_ ) - 1: _lowercase : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowercase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _lowercase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) _lowercase : List[str] = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: _lowercase : Union[str, Any] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=lowerCamelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowerCamelCase_ , ) parser.add_argument( '--output_dir' , type=lowerCamelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=lowerCamelCase_ , default=3 , help='Number of train epochs.' , ) _lowercase : List[str] = parser.parse_args() _lowercase : List[str] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = "▁" SCREAMING_SNAKE_CASE : List[str] = {"vocab_file": "sentencepiece.bpe.model"} SCREAMING_SNAKE_CASE : Optional[Any] = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } SCREAMING_SNAKE_CASE : Tuple = { "facebook/xglm-564M": 2048, } class _lowerCamelCase( _a ): lowercase_ : Dict = VOCAB_FILES_NAMES lowercase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Any = ["""input_ids""", """attention_mask"""] def __init__( self, lowerCamelCase, lowerCamelCase="<s>", lowerCamelCase="</s>", lowerCamelCase="</s>", lowerCamelCase="<s>", lowerCamelCase="<unk>", lowerCamelCase="<pad>", lowerCamelCase = None, **lowerCamelCase, ) -> None: """simple docstring""" _lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _lowercase : List[str] = 7 _lowercase : str = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words)] _lowercase : List[str] = kwargs.get('additional_special_tokens', []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCamelCase)) _lowercase : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token _lowercase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _lowercase : Any = len(self.sp_model) _lowercase : Optional[int] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(lowerCamelCase) _lowercase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self) -> Dict: """simple docstring""" _lowercase : Any = self.__dict__.copy() _lowercase : Optional[int] = None _lowercase : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : List[Any] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): _lowercase : str = {} _lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a _lowercase : Union[str, Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase)) return [1] + ([0] * len(lowerCamelCase)) + [1, 1] + ([0] * len(lowerCamelCase)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : Optional[Any] = self.sp_model.PieceToId(lowerCamelCase) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = ''.join(lowerCamelCase).replace(lowerCamelCase, ' ').strip() return out_string def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Optional[Any] = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase, 'wb') as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase) return (out_vocab_file,)
21
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : str = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Dict = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Tuple = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : Any = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.99_95 ) -> Tuple: if not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : List[Any] = True _lowercase : Any = va.device _lowercase : Union[str, Any] = va.cpu().numpy() _lowercase : int = va.cpu().numpy() _lowercase : int = np.sum(va * va / (np.linalg.norm(lowerCamelCase_ ) * np.linalg.norm(lowerCamelCase_ )) ) if np.abs(lowerCamelCase_ ) > DOT_THRESHOLD: _lowercase : Any = (1 - t) * va + t * va else: _lowercase : Dict = np.arccos(lowerCamelCase_ ) _lowercase : str = np.sin(lowerCamelCase_ ) _lowercase : int = theta_a * t _lowercase : Dict = np.sin(lowerCamelCase_ ) _lowercase : Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowercase : List[Any] = sin_theta_t / sin_theta_a _lowercase : Dict = sa * va + sa * va if inputs_are_torch: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) return va def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: for param in model.parameters(): _lowercase : Any = value class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=lowerCamelCase, text_encoder=lowerCamelCase, clip_model=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, coca_model=lowerCamelCase, coca_tokenizer=lowerCamelCase, coca_transform=lowerCamelCase, ) _lowercase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCamelCase) else feature_extractor.size['shortest_edge'] ) _lowercase : Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, lowerCamelCase) set_requires_grad(self.clip_model, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase = "auto") -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength), lowerCamelCase) _lowercase : List[Any] = max(num_inference_steps - init_timestep, 0) _lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase, torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase)}''') _lowercase : Any = image.to(device=lowerCamelCase, dtype=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCamelCase) ] _lowercase : int = torch.cat(lowerCamelCase, dim=0) else: _lowercase : int = self.vae.encode(lowerCamelCase).latent_dist.sample(lowerCamelCase) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : str = 0.1_8_2_1_5 * init_latents _lowercase : List[str] = init_latents.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = randn_tensor(init_latents.shape, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) # get latents _lowercase : Any = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = init_latents return latents def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = self.coca_transform(lowerCamelCase).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowercase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Tuple = self.feature_extractor.preprocess(lowerCamelCase) _lowercase : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _lowercase : int = self.clip_model.get_image_features(lowerCamelCase) _lowercase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : int = image_embeddings_clip.repeat_interleave(lowerCamelCase, dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : List[Any] = latents.detach().requires_grad_() _lowercase : Union[str, Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Tuple = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowercase : Any = self.scheduler.alphas_cumprod[timestep] _lowercase : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowercase : List[str] = torch.sqrt(lowerCamelCase) _lowercase : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCamelCase): _lowercase : Dict = self.scheduler.sigmas[index] _lowercase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Dict = 1 / 0.1_8_2_1_5 * sample _lowercase : Optional[Any] = self.vae.decode(lowerCamelCase).sample _lowercase : int = (image / 2 + 0.5).clamp(0, 1) _lowercase : Any = transforms.Resize(self.feature_extractor_size)(lowerCamelCase) _lowercase : Optional[Any] = self.normalize(lowerCamelCase).to(latents.dtype) _lowercase : List[str] = self.clip_model.get_image_features(lowerCamelCase) _lowercase : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : Optional[Any] = spherical_dist_loss(lowerCamelCase, lowerCamelCase).mean() * clip_guidance_scale _lowercase : str = -torch.autograd.grad(lowerCamelCase, lowerCamelCase)[0] if isinstance(self.scheduler, lowerCamelCase): _lowercase : Union[str, Any] = latents.detach() + grads * (sigma**2) _lowercase : List[str] = noise_pred_original else: _lowercase : List[Any] = noise_pred_original - torch.sqrt(lowerCamelCase) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 0.6, lowerCamelCase = 50, lowerCamelCase = 7.5, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1_00, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, lowerCamelCase = 0.8, lowerCamelCase = 0.1, lowerCamelCase = 0.1, ) -> int: """simple docstring""" if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(lowerCamelCase, torch.Generator) and batch_size > 1: _lowercase : Dict = [generator] + [None] * (batch_size - 1) _lowercase : Optional[int] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowercase : str = ', '.join(lowerCamelCase) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : List[Any] = self.get_image_description(lowerCamelCase) if style_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : Dict = self.get_image_description(lowerCamelCase) # get prompt text embeddings for content and style _lowercase : Optional[int] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowercase : Union[str, Any] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowercase : Any = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) # duplicate text embeddings for each generation per prompt _lowercase : Dict = text_embeddings.repeat_interleave(lowerCamelCase, dim=0) # set timesteps _lowercase : Dict = 'offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_offset: _lowercase : Any = 1 self.scheduler.set_timesteps(lowerCamelCase, **lowerCamelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowercase , _lowercase : List[Any] = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device) _lowercase : str = timesteps[:1].repeat(lowerCamelCase) # Preprocess image _lowercase : str = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : int = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : Optional[int] = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) if clip_guidance_scale > 0: _lowercase : Optional[int] = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = slerp( lowerCamelCase, lowerCamelCase, lowerCamelCase) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : Tuple = content_text_input.input_ids.shape[-1] _lowercase : Union[str, Any] = self.tokenizer([''], padding='max_length', max_length=lowerCamelCase, return_tensors='pt') _lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowercase : Union[str, Any] = uncond_embeddings.repeat_interleave(lowerCamelCase, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowercase : List[Any] = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='cpu', dtype=lowerCamelCase).to( self.device) else: _lowercase : Any = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _lowercase : Tuple = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowercase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : Dict = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_eta: _lowercase : List[Any] = eta # check if the scheduler accepts generator _lowercase : Dict = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowercase : str = generator with self.progress_bar(total=lowerCamelCase): for i, t in enumerate(lowerCamelCase): # expand the latents if we are doing classifier free guidance _lowercase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : List[Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Dict = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample # perform classifier free guidance if do_classifier_free_guidance: _lowercase , _lowercase : Optional[Any] = noise_pred.chunk(2) _lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowercase : Tuple = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowercase , _lowercase : List[Any] = self.cond_fn( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Any = 1 / 0.1_8_2_1_5 * latents _lowercase : List[str] = self.vae.decode(lowerCamelCase).sample _lowercase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowercase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase)
21
1
class _lowerCamelCase: def __init__( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = {} def UpperCamelCase ( self) -> None: """simple docstring""" print(self.vertex) for i in self.vertex: print(lowerCamelCase, ' -> ', ' -> '.join([str(lowerCamelCase) for j in self.vertex[i]])) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase) else: # else make a new vertex _lowercase : Optional[Any] = [to_vertex] def UpperCamelCase ( self) -> None: """simple docstring""" _lowercase : Dict = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" _lowercase : List[Any] = True print(lowerCamelCase, end=' ') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase, lowerCamelCase) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
21
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ConsistencyModelPipeline lowercase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ : List[str] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet', ) return unet @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet_class_cond', ) return unet def UpperCamelCase ( self, lowerCamelCase=False) -> Dict: """simple docstring""" if class_cond: _lowercase : Union[str, Any] = self.dummy_cond_unet else: _lowercase : Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Tuple: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Optional[int] = self.get_dummy_components() _lowercase : str = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Dict = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : int = image[0, -3:, -3:, -1] _lowercase : Dict = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Any = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase) _lowercase : Any = 0 _lowercase : List[str] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.get_dummy_components() _lowercase : Optional[Any] = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : List[str] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Union[str, Any] = 1 _lowercase : Tuple = None _lowercase : Tuple = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Dict = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Optional[Any] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = 1 _lowercase : int = None _lowercase : Tuple = 0 _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase=False, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) _lowercase : str = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _lowercase : Optional[Any] = self.get_fixed_latents(seed=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase, shape=lowerCamelCase) _lowercase : Tuple = latents return inputs def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Any: """simple docstring""" if type(lowerCamelCase) == str: _lowercase : Union[str, Any] = torch.device(lowerCamelCase) _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[str] = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) return latents def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Any = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Union[str, Any] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs() _lowercase : int = 1 _lowercase : Optional[Any] = None _lowercase : str = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[int] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : int = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) _lowercase : int = 1 _lowercase : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : int = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
21
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCamelCase: lowercase_ : Optional[Union[str, Path]] = None lowercase_ : bool = False lowercase_ : bool = False lowercase_ : bool = False lowercase_ : Optional[Dict] = None lowercase_ : Optional[str] = None lowercase_ : bool = False lowercase_ : bool = False lowercase_ : bool = False lowercase_ : bool = True lowercase_ : Optional[int] = None lowercase_ : int = 1 lowercase_ : Optional[Union[str, bool]] = None lowercase_ : bool = False lowercase_ : Optional[Dict] = None lowercase_ : Optional[str] = None def UpperCamelCase ( self) -> "DownloadConfig": """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCamelCase) for k, v in self.__dict__.items()})
21
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCamelCase( unittest.TestCase ): lowercase_ : Tuple = MODEL_FOR_CAUSAL_LM_MAPPING lowercase_ : Any = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = pipeline(task='text-generation', model='sshleifer/tiny-ctrl', framework='pt') # Using `do_sample=False` to force deterministic output _lowercase : Optional[Any] = text_generator('This is a test', do_sample=lowerCamelCase) self.assertEqual( lowerCamelCase, [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], ) _lowercase : int = text_generator(['This is a test', 'This is a second test']) self.assertEqual( lowerCamelCase, [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ], ) _lowercase : List[Any] = text_generator('This is a test', do_sample=lowerCamelCase, num_return_sequences=2, return_tensors=lowerCamelCase) self.assertEqual( lowerCamelCase, [ {'generated_token_ids': ANY(lowerCamelCase)}, {'generated_token_ids': ANY(lowerCamelCase)}, ], ) _lowercase : Any = text_generator.model.config.eos_token_id _lowercase : Union[str, Any] = '<pad>' _lowercase : List[str] = text_generator( ['This is a test', 'This is a second test'], do_sample=lowerCamelCase, num_return_sequences=2, batch_size=2, return_tensors=lowerCamelCase, ) self.assertEqual( lowerCamelCase, [ [ {'generated_token_ids': ANY(lowerCamelCase)}, {'generated_token_ids': ANY(lowerCamelCase)}, ], [ {'generated_token_ids': ANY(lowerCamelCase)}, {'generated_token_ids': ANY(lowerCamelCase)}, ], ], ) @require_tf def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = pipeline(task='text-generation', model='sshleifer/tiny-ctrl', framework='tf') # Using `do_sample=False` to force deterministic output _lowercase : int = text_generator('This is a test', do_sample=lowerCamelCase) self.assertEqual( lowerCamelCase, [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], ) _lowercase : Dict = text_generator(['This is a test', 'This is a second test'], do_sample=lowerCamelCase) self.assertEqual( lowerCamelCase, [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ], ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = TextGenerationPipeline(model=lowerCamelCase, tokenizer=lowerCamelCase) return text_generator, ["This is a test", "Another test"] def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = 'Hello I believe in' _lowercase : Optional[int] = pipeline('text-generation', model='hf-internal-testing/tiny-random-gpt2') _lowercase : int = text_generator(lowerCamelCase) self.assertEqual( lowerCamelCase, [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}], ) _lowercase : Optional[int] = text_generator(lowerCamelCase, stop_sequence=' fe') self.assertEqual(lowerCamelCase, [{'generated_text': 'Hello I believe in fe'}]) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Dict = text_generator.model _lowercase : List[Any] = text_generator.tokenizer _lowercase : Optional[int] = text_generator('This is a test') self.assertEqual(lowerCamelCase, [{'generated_text': ANY(lowerCamelCase)}]) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test')) _lowercase : List[str] = text_generator('This is a test', return_full_text=lowerCamelCase) self.assertEqual(lowerCamelCase, [{'generated_text': ANY(lowerCamelCase)}]) self.assertNotIn('This is a test', outputs[0]['generated_text']) _lowercase : int = pipeline(task='text-generation', model=lowerCamelCase, tokenizer=lowerCamelCase, return_full_text=lowerCamelCase) _lowercase : Dict = text_generator('This is a test') self.assertEqual(lowerCamelCase, [{'generated_text': ANY(lowerCamelCase)}]) self.assertNotIn('This is a test', outputs[0]['generated_text']) _lowercase : Tuple = text_generator('This is a test', return_full_text=lowerCamelCase) self.assertEqual(lowerCamelCase, [{'generated_text': ANY(lowerCamelCase)}]) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test')) _lowercase : int = text_generator(['This is great !', 'Something else'], num_return_sequences=2, do_sample=lowerCamelCase) self.assertEqual( lowerCamelCase, [ [{'generated_text': ANY(lowerCamelCase)}, {'generated_text': ANY(lowerCamelCase)}], [{'generated_text': ANY(lowerCamelCase)}, {'generated_text': ANY(lowerCamelCase)}], ], ) if text_generator.tokenizer.pad_token is not None: _lowercase : Optional[int] = text_generator( ['This is great !', 'Something else'], num_return_sequences=2, batch_size=2, do_sample=lowerCamelCase) self.assertEqual( lowerCamelCase, [ [{'generated_text': ANY(lowerCamelCase)}, {'generated_text': ANY(lowerCamelCase)}], [{'generated_text': ANY(lowerCamelCase)}, {'generated_text': ANY(lowerCamelCase)}], ], ) with self.assertRaises(lowerCamelCase): _lowercase : List[Any] = text_generator('test', return_full_text=lowerCamelCase, return_text=lowerCamelCase) with self.assertRaises(lowerCamelCase): _lowercase : Tuple = text_generator('test', return_full_text=lowerCamelCase, return_tensors=lowerCamelCase) with self.assertRaises(lowerCamelCase): _lowercase : int = text_generator('test', return_text=lowerCamelCase, return_tensors=lowerCamelCase) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _lowercase : Optional[int] = text_generator('') self.assertEqual(lowerCamelCase, [{'generated_text': ANY(lowerCamelCase)}]) else: with self.assertRaises((ValueError, AssertionError)): _lowercase : int = text_generator('') if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _lowercase : Optional[Any] = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): text_generator('This is a test' * 5_00, max_new_tokens=20) _lowercase : Dict = text_generator('This is a test' * 5_00, handle_long_generation='hole', max_new_tokens=20) # Hole strategy cannot work with self.assertRaises(lowerCamelCase): text_generator( 'This is a test' * 5_00, handle_long_generation='hole', max_new_tokens=tokenizer.model_max_length + 10, ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" import torch # Classic `model_kwargs` _lowercase : int = pipeline( model='hf-internal-testing/tiny-random-bloom', model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa}, ) self.assertEqual(pipe.model.device, torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloataa) _lowercase : int = pipe('This is a test') self.assertEqual( lowerCamelCase, [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ], ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _lowercase : Any = pipeline(model='hf-internal-testing/tiny-random-bloom', device_map='auto', torch_dtype=torch.bfloataa) self.assertEqual(pipe.model.device, torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloataa) _lowercase : int = pipe('This is a test') self.assertEqual( lowerCamelCase, [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ], ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _lowercase : List[str] = pipeline(model='hf-internal-testing/tiny-random-bloom', device_map='auto') self.assertEqual(pipe.model.device, torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.floataa) _lowercase : Tuple = pipe('This is a test') self.assertEqual( lowerCamelCase, [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ], ) @require_torch @require_torch_gpu def UpperCamelCase ( self) -> Any: """simple docstring""" import torch _lowercase : Any = pipeline(model='hf-internal-testing/tiny-random-bloom', device=0, torch_dtype=torch.floataa) pipe('This is a test') @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" import torch _lowercase : Optional[int] = pipeline(model='hf-internal-testing/tiny-random-bloom', device_map='auto', torch_dtype=torch.floataa) pipe('This is a test', do_sample=lowerCamelCase, top_p=0.5) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'Hello world' _lowercase : Tuple = pipeline('text-generation', model='hf-internal-testing/tiny-random-gpt2') if text_generator.model.framework == "tf": _lowercase : int = logging.get_logger('transformers.generation.tf_utils') else: _lowercase : Dict = logging.get_logger('transformers.generation.utils') _lowercase : List[str] = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowerCamelCase) as cl: _lowercase : int = text_generator(lowerCamelCase, max_length=10, max_new_tokens=1) self.assertIn(lowerCamelCase, cl.out) # The user only sets one -> no warning with CaptureLogger(lowerCamelCase) as cl: _lowercase : str = text_generator(lowerCamelCase, max_new_tokens=1) self.assertNotIn(lowerCamelCase, cl.out) with CaptureLogger(lowerCamelCase) as cl: _lowercase : Any = text_generator(lowerCamelCase, max_length=10) self.assertNotIn(lowerCamelCase, cl.out)
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : List[str] = RobertaTokenizer lowercase_ : Any = RobertaTokenizerFast lowercase_ : Dict = True lowercase_ : List[Any] = {"""cls_token""": """<s>"""} def UpperCamelCase ( self) -> int: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowercase : List[Any] = dict(zip(lowerCamelCase, range(len(lowerCamelCase)))) _lowercase : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase : Union[str, Any] = {'unk_token': '<unk>'} _lowercase : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCamelCase) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(lowerCamelCase)) def UpperCamelCase ( self, **lowerCamelCase) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map) return RobertaTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : int = 'lower newer' _lowercase : List[str] = 'lower newer' return input_text, output_text def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowercase : Any = 'lower newer' _lowercase : Tuple = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase : Dict = tokenizer.tokenize(lowerCamelCase) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = tokens + [tokenizer.unk_token] _lowercase : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase), lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=lowerCamelCase), [0, 3_14_14, 2_32, 3_28, 2]) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=lowerCamelCase), [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2], ) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Any = self.tokenizer_class.from_pretrained('roberta-base') _lowercase : Optional[int] = tokenizer.encode('sequence builders', add_special_tokens=lowerCamelCase) _lowercase : int = tokenizer.encode('multi-sequence build', add_special_tokens=lowerCamelCase) _lowercase : Optional[Any] = tokenizer.encode( 'sequence builders', add_special_tokens=lowerCamelCase, add_prefix_space=lowerCamelCase) _lowercase : int = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=lowerCamelCase, add_prefix_space=lowerCamelCase) _lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase) _lowercase : str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = self.get_tokenizer() _lowercase : Any = 'Encode this sequence.' _lowercase : int = tokenizer.byte_encoder[' '.encode('utf-8')[0]] # Testing encoder arguments _lowercase : Optional[int] = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase, add_prefix_space=lowerCamelCase) _lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase, add_prefix_space=lowerCamelCase) _lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(lowerCamelCase, lowerCamelCase) tokenizer.add_special_tokens({'bos_token': '<s>'}) _lowercase : Dict = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase) _lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(lowerCamelCase, lowerCamelCase) # Testing spaces after special tokens _lowercase : int = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase)}) # mask token has a left space _lowercase : Dict = tokenizer.convert_tokens_to_ids(lowerCamelCase) _lowercase : str = 'Encode <mask> sequence' _lowercase : List[Any] = 'Encode <mask>sequence' _lowercase : Optional[Any] = tokenizer.encode(lowerCamelCase) _lowercase : Tuple = encoded.index(lowerCamelCase) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = tokenizer.encode(lowerCamelCase) _lowercase : List[Any] = encoded.index(lowerCamelCase) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self) -> int: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _lowercase : Dict = self.rust_tokenizer_class.from_pretrained(lowerCamelCase, **lowerCamelCase) _lowercase : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase, **lowerCamelCase) _lowercase : Optional[int] = 'A, <mask> AllenNLP sentence.' _lowercase : str = tokenizer_r.encode_plus(lowerCamelCase, add_special_tokens=lowerCamelCase, return_token_type_ids=lowerCamelCase) _lowercase : List[str] = tokenizer_p.encode_plus(lowerCamelCase, add_special_tokens=lowerCamelCase, return_token_type_ids=lowerCamelCase) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids']), sum(tokens_p['token_type_ids'])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']), sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']), ) _lowercase : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) _lowercase : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'], [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual( lowerCamelCase, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( lowerCamelCase, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2): _lowercase : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase) _lowercase : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) _lowercase : Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state['add_prefix_space'], lowerCamelCase) self.assertEqual(post_processor_state['add_prefix_space'], lowerCamelCase) self.assertEqual(post_processor_state['trim_offsets'], lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _lowercase : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase : List[Any] = F'''{text_of_1_token} {text_of_1_token}''' _lowercase : Tuple = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, use_fast=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase) _lowercase : Optional[Any] = tokenizer_r(lowerCamelCase, return_offsets_mapping=lowerCamelCase, add_special_tokens=lowerCamelCase) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCamelCase))) self.assertEqual( encoding.offset_mapping[1], (len(lowerCamelCase) + 1, len(lowerCamelCase) + 1 + len(lowerCamelCase)), ) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, use_fast=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase) _lowercase : Dict = tokenizer_r(lowerCamelCase, return_offsets_mapping=lowerCamelCase, add_special_tokens=lowerCamelCase) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCamelCase))) self.assertEqual( encoding.offset_mapping[1], (len(lowerCamelCase) + 1, len(lowerCamelCase) + 1 + len(lowerCamelCase)), ) _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, use_fast=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase) _lowercase : int = tokenizer_r(lowerCamelCase, return_offsets_mapping=lowerCamelCase, add_special_tokens=lowerCamelCase) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCamelCase))) self.assertEqual( encoding.offset_mapping[1], (len(lowerCamelCase), len(lowerCamelCase) + 1 + len(lowerCamelCase)), ) _lowercase : Dict = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, use_fast=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase) _lowercase : int = tokenizer_r(lowerCamelCase, return_offsets_mapping=lowerCamelCase, add_special_tokens=lowerCamelCase) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCamelCase))) self.assertEqual( encoding.offset_mapping[1], (len(lowerCamelCase), len(lowerCamelCase) + 1 + len(lowerCamelCase)), ) _lowercase : Any = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, use_fast=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase) _lowercase : Any = tokenizer_r(lowerCamelCase, return_offsets_mapping=lowerCamelCase, add_special_tokens=lowerCamelCase) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(lowerCamelCase))) self.assertEqual( encoding.offset_mapping[1], (1 + len(lowerCamelCase) + 1, 1 + len(lowerCamelCase) + 1 + len(lowerCamelCase)), ) _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, use_fast=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase) _lowercase : Tuple = tokenizer_r(lowerCamelCase, return_offsets_mapping=lowerCamelCase, add_special_tokens=lowerCamelCase) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(lowerCamelCase))) self.assertEqual( encoding.offset_mapping[1], (1 + len(lowerCamelCase), 1 + len(lowerCamelCase) + 1 + len(lowerCamelCase)), ) _lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase, use_fast=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase) _lowercase : List[Any] = tokenizer_r(lowerCamelCase, return_offsets_mapping=lowerCamelCase, add_special_tokens=lowerCamelCase) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(lowerCamelCase))) self.assertEqual( encoding.offset_mapping[1], (1 + len(lowerCamelCase), 1 + len(lowerCamelCase) + 1 + len(lowerCamelCase)), )
21
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> bool: if len(lowerCamelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _lowercase : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None) -> List[Any]: """simple docstring""" _lowercase : Tuple = {} _lowercase : List[Any] = {} if prompt is not None: _lowercase : List[str] = prompt if generate_kwargs is not None: _lowercase : Optional[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _lowercase : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one') _lowercase : Union[str, Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self, lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> List[Any]: """simple docstring""" _lowercase : Any = load_image(lowerCamelCase) if prompt is not None: if not isinstance(lowerCamelCase, lowerCamelCase): raise ValueError( F'''Received an invalid text input, got - {type(lowerCamelCase)} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.') _lowercase : int = self.model.config.model_type if model_type == "git": _lowercase : Optional[int] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) _lowercase : str = self.tokenizer(text=lowerCamelCase, add_special_tokens=lowerCamelCase).input_ids _lowercase : Optional[int] = [self.tokenizer.cls_token_id] + input_ids _lowercase : int = torch.tensor(lowerCamelCase).unsqueeze(0) model_inputs.update({'input_ids': input_ids}) elif model_type == "pix2struct": _lowercase : List[Any] = self.image_processor(images=lowerCamelCase, header_text=lowerCamelCase, return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _lowercase : Optional[int] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) _lowercase : Optional[int] = self.tokenizer(lowerCamelCase, return_tensors=self.framework) model_inputs.update(lowerCamelCase) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''') else: _lowercase : int = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: _lowercase : Optional[Any] = None return model_inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> Any: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'], lowerCamelCase) and all(x is None for x in model_inputs['input_ids']) ): _lowercase : List[Any] = None if generate_kwargs is None: _lowercase : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _lowercase : Optional[int] = model_inputs.pop(self.model.main_input_name) _lowercase : Optional[Any] = self.model.generate(lowerCamelCase, **lowerCamelCase, **lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Any = [] for output_ids in model_outputs: _lowercase : List[str] = { 'generated_text': self.tokenizer.decode( lowerCamelCase, skip_special_tokens=lowerCamelCase, ) } records.append(lowerCamelCase) return records
21
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class _lowerCamelCase( _a ): lowercase_ : Optional[int] = """falcon""" lowercase_ : Dict = ["""past_key_values"""] def __init__( self, lowerCamelCase=6_50_24, lowerCamelCase=45_44, lowerCamelCase=32, lowerCamelCase=71, lowerCamelCase=1E-5, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=None, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=11, lowerCamelCase=11, **lowerCamelCase, ) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = vocab_size # Backward compatibility with n_embed kwarg _lowercase : Tuple = kwargs.pop('n_embed', lowerCamelCase) _lowercase : Optional[int] = hidden_size if n_embed is None else n_embed _lowercase : Optional[Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : int = layer_norm_epsilon _lowercase : Any = initializer_range _lowercase : Tuple = use_cache _lowercase : List[Any] = hidden_dropout _lowercase : Tuple = attention_dropout _lowercase : Optional[int] = bos_token_id _lowercase : int = eos_token_id _lowercase : str = num_attention_heads if num_kv_heads is None else num_kv_heads _lowercase : Optional[Any] = alibi _lowercase : Dict = new_decoder_architecture _lowercase : Any = multi_query # Ignored when new_decoder_architecture is True _lowercase : Tuple = parallel_attn _lowercase : List[Any] = bias super().__init__(bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return not self.alibi
21
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Any = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Tuple = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : str = after_output[0] _lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Any = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Tuple = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Any = to_atuple(vision_model.config.patch_size) _lowercase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" pt_model.to(lowerCamelCase) pt_model.eval() # prepare inputs _lowercase : Any = inputs_dict _lowercase : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : Tuple = pt_model(**lowerCamelCase).to_tuple() _lowercase : Any = fx_model(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase) _lowercase : List[Any] = fx_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase) _lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase) pt_model_loaded.to(lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[Any] = pt_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : str = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase) _lowercase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @is_pt_flax_cross_test def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = config_inputs_dict.pop('vision_config') _lowercase : str = config_inputs_dict.pop('text_config') _lowercase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : List[Any] = model_a(**lowerCamelCase) _lowercase : Tuple = after_outputs[0] _lowercase : Dict = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_flax class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : List[Any] = 13 _lowercase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[Any] = FlaxViTModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = FlaxViTModelTester(self) _lowercase : Any = FlaxBertModelTester(self) _lowercase : Dict = vit_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : List[str] = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : Tuple = 13 _lowercase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = FlaxCLIPVisionModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = FlaxCLIPVisionModelTester(self) _lowercase : Union[str, Any] = FlaxBertModelTester(self) _lowercase : Tuple = clip_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Dict = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian', logit_scale_init_value=1.0) _lowercase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : List[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : List[Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3))
21
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowerCamelCase( _a ): lowercase_ : Any = """blenderbot-small""" lowercase_ : List[Any] = ["""past_key_values"""] lowercase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self, lowerCamelCase=5_02_65, lowerCamelCase=5_12, lowerCamelCase=8, lowerCamelCase=20_48, lowerCamelCase=16, lowerCamelCase=8, lowerCamelCase=20_48, lowerCamelCase=16, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase="gelu", lowerCamelCase=5_12, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1, lowerCamelCase=False, lowerCamelCase=0, lowerCamelCase=1, lowerCamelCase=2, lowerCamelCase=2, **lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : Dict = vocab_size _lowercase : Dict = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : str = encoder_ffn_dim _lowercase : str = encoder_layers _lowercase : Any = encoder_attention_heads _lowercase : Any = decoder_ffn_dim _lowercase : List[str] = decoder_layers _lowercase : str = decoder_attention_heads _lowercase : Dict = dropout _lowercase : str = attention_dropout _lowercase : Union[str, Any] = activation_dropout _lowercase : Tuple = activation_function _lowercase : Optional[int] = init_std _lowercase : Any = encoder_layerdrop _lowercase : Optional[int] = decoder_layerdrop _lowercase : Optional[Any] = use_cache _lowercase : Dict = encoder_layers _lowercase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, decoder_start_token_id=lowerCamelCase, forced_eos_token_id=lowerCamelCase, **lowerCamelCase, ) class _lowerCamelCase( _a ): @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowercase : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: _lowercase : Tuple = {0: 'batch'} _lowercase : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowercase : str = {0: 'batch', 1: 'decoder_sequence'} _lowercase : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase, direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. _lowercase : Tuple = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: _lowercase , _lowercase : List[str] = self.num_layers for i in range(lowerCamelCase): _lowercase : int = {0: 'batch', 2: 'past_sequence + sequence'} _lowercase : str = {0: 'batch', 2: 'past_sequence + sequence'} else: _lowercase : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowercase : Any = super().outputs else: _lowercase : Tuple = super(lowerCamelCase, self).outputs if self.use_past: _lowercase , _lowercase : int = self.num_layers for i in range(lowerCamelCase): _lowercase : Any = {0: 'batch', 2: 'past_sequence + sequence'} _lowercase : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = -1, lowerCamelCase = -1, lowerCamelCase = False, lowerCamelCase = None, ) -> Mapping[str, Any]: """simple docstring""" _lowercase : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # Generate decoder inputs _lowercase : str = seq_length if not self.use_past else 1 _lowercase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowercase : Any = dict(**lowerCamelCase, **lowerCamelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch _lowercase , _lowercase : int = common_inputs['input_ids'].shape _lowercase : Dict = common_inputs['decoder_input_ids'].shape[1] _lowercase , _lowercase : int = self.num_attention_heads _lowercase : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowercase : Tuple = decoder_seq_length + 3 _lowercase : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowercase : int = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCamelCase, lowerCamelCase)], dim=1) _lowercase : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowercase , _lowercase : Dict = self.num_layers _lowercase : List[str] = min(lowerCamelCase, lowerCamelCase) _lowercase : str = max(lowerCamelCase, lowerCamelCase) - min_num_layers _lowercase : Optional[int] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCamelCase): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase), torch.zeros(lowerCamelCase), torch.zeros(lowerCamelCase), torch.zeros(lowerCamelCase), )) # TODO: test this. _lowercase : List[Any] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCamelCase, lowerCamelCase): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase), torch.zeros(lowerCamelCase))) return common_inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = -1, lowerCamelCase = -1, lowerCamelCase = False, lowerCamelCase = None, ) -> Mapping[str, Any]: """simple docstring""" _lowercase : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch _lowercase , _lowercase : Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowercase : Any = seqlen + 2 _lowercase , _lowercase : Dict = self.num_layers _lowercase , _lowercase : Optional[Any] = self.num_attention_heads _lowercase : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowercase : Tuple = common_inputs['attention_mask'].dtype _lowercase : Optional[int] = torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCamelCase, lowerCamelCase, dtype=lowerCamelCase)], dim=1) _lowercase : Any = [ (torch.zeros(lowerCamelCase), torch.zeros(lowerCamelCase)) for _ in range(lowerCamelCase) ] return common_inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = -1, lowerCamelCase = -1, lowerCamelCase = False, lowerCamelCase = None, ) -> Mapping[str, Any]: """simple docstring""" _lowercase : Tuple = compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowercase : List[str] = tokenizer.num_special_tokens_to_add(lowerCamelCase) _lowercase : int = compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCamelCase) # Generate dummy inputs according to compute batch and sequence _lowercase : Optional[int] = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size _lowercase : List[str] = dict(tokenizer(lowerCamelCase, return_tensors=lowerCamelCase)) return common_inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = -1, lowerCamelCase = -1, lowerCamelCase = False, lowerCamelCase = None, ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowercase : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase) elif self.task == "causal-lm": _lowercase : Any = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase) else: _lowercase : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase) return common_inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowercase : List[Any] = super()._flatten_past_key_values_(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) else: _lowercase : Tuple = super(lowerCamelCase, self)._flatten_past_key_values_( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
21
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
1
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
1
from torch import nn class _lowerCamelCase( nn.Module ): def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" super().__init__() _lowercase : List[str] = class_size _lowercase : Optional[int] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _lowercase : int = nn.Linear(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" _lowercase : Optional[Any] = self.mlp(lowerCamelCase) return logits
21
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : str = "bart" SCREAMING_SNAKE_CASE : Optional[int] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> int: if LOAD_DENSE_INDEX: _lowercase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowercase : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowercase : str = qar_model.eval() else: _lowercase , _lowercase : Any = (None, None) if MODEL_TYPE == "bart": _lowercase : Dict = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowercase : Any = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowercase : List[Any] = sas_model.eval() else: _lowercase , _lowercase : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> str: if LOAD_DENSE_INDEX: _lowercase : Optional[Any] = faiss.StandardGpuResources() _lowercase : Optional[int] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowercase : Tuple = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowercase : Any = faiss.IndexFlatIP(128 ) _lowercase : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: _lowercase , _lowercase : Any = (None, None) _lowercase : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : List[str] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowercase : Optional[Any] = elia['train_eli5'] _lowercase : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowercase : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = load_train_data() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=10 ) -> List[str]: _lowercase : Any = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) _lowercase , _lowercase : List[str] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[str] = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ) -> Dict: if source == "none": _lowercase , _lowercase : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowercase , _lowercase : Dict = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase , _lowercase : str = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) _lowercase : List[Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowercase : Union[str, Any] = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=256 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ) -> Dict: with torch.no_grad(): _lowercase : str = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : List[Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : Any = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Optional[int] = action_list.index(action_st) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : int = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : Dict = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : int = "wiki40b" SCREAMING_SNAKE_CASE : int = "dense" SCREAMING_SNAKE_CASE : str = "beam" SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : List[str] = 64 SCREAMING_SNAKE_CASE : Union[str, Any] = 256 SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : Any = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : int = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : int = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Any = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : str = None # start main text SCREAMING_SNAKE_CASE : List[str] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : List[str] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : Optional[int] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE : int = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : Optional[Any] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : List[Any] = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : Any = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : List[Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : str = find_nearest_training(question) SCREAMING_SNAKE_CASE : Any = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : str = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
21
1
from math import loga def UpperCamelCase_( lowerCamelCase_ ) -> int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) @dataclass class _lowerCamelCase( _a ): lowercase_ : int = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self, **lowerCamelCase) -> List[str]: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowercase : Tuple = deprecated_arg[3:] setattr(self, lowerCamelCase, not kwargs.pop(lowerCamelCase)) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''') _lowercase : Tuple = kwargs.pop('torchscript', self.torchscript) _lowercase : Optional[Any] = kwargs.pop('torch_xla_tpu_print_metrics', self.torch_xla_tpu_print_metrics) _lowercase : Dict = kwargs.pop('fp16_opt_level', self.fpaa_opt_level) super().__init__(**lowerCamelCase) lowercase_ : bool = field(default=_a, metadata={"""help""": """Trace the models using torchscript"""} ) lowercase_ : bool = field(default=_a, metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) lowercase_ : str = field( default="""O1""", metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) }, ) @cached_property def UpperCamelCase ( self) -> Tuple["torch.device", int]: """simple docstring""" requires_backends(self, ['torch']) logger.info('PyTorch: setting up devices') if not self.cuda: _lowercase : Union[str, Any] = torch.device('cpu') _lowercase : List[Any] = 0 elif is_torch_tpu_available(): _lowercase : int = xm.xla_device() _lowercase : Any = 0 else: _lowercase : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu') _lowercase : str = torch.cuda.device_count() return device, n_gpu @property def UpperCamelCase ( self) -> int: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def UpperCamelCase ( self) -> int: """simple docstring""" requires_backends(self, ['torch']) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCamelCase ( self) -> "torch.device": """simple docstring""" requires_backends(self, ['torch']) return self._setup_devices[0] @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) return self._setup_devices[1] @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.n_gpu > 0
21
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') _lowercase : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]], dtype=tf.intaa, ) # J'aime le camembert !" _lowercase : List[Any] = model(lowerCamelCase)['last_hidden_state'] _lowercase : Optional[int] = tf.TensorShape((1, 10, 7_68)) self.assertEqual(output.shape, lowerCamelCase) # compare the actual values for a slice. _lowercase : Any = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]], dtype=tf.floataa, ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4))
21
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE : Tuple = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : Node | None class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Node | None = None for i in sorted(lowerCamelCase, reverse=lowerCamelCase): _lowercase : Tuple = Node(lowerCamelCase, self.head) def __iter__( self) -> Iterator[int]: """simple docstring""" _lowercase : Union[str, Any] = self.head while node: yield node.data _lowercase : int = node.next_node def __len__( self) -> int: """simple docstring""" return sum(1 for _ in self) def __str__( self) -> str: """simple docstring""" return " -> ".join([str(lowerCamelCase) for node in self]) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> SortedLinkedList: return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
21
1
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = KandinskyImgaImgPipeline lowercase_ : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowercase_ : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowercase_ : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ : Union[str, Any] = False @property def UpperCamelCase ( self) -> str: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> int: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 1_00 @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def UpperCamelCase ( self) -> int: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=10_05, ) _lowercase : Optional[int] = MultilingualCLIP(lowerCamelCase) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Optional[Any] = UNetaDConditionModel(**lowerCamelCase) return model @property def UpperCamelCase ( self) -> str: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.dummy_text_encoder _lowercase : List[Any] = self.dummy_tokenizer _lowercase : int = self.dummy_unet _lowercase : int = self.dummy_movq _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : List[Any] = DDIMScheduler(**lowerCamelCase) _lowercase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" _lowercase : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(lowerCamelCase) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Tuple = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB').resize((2_56, 2_56)) if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = 'cpu' _lowercase : Tuple = self.get_dummy_components() _lowercase : str = self.pipeline_class(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = pipe(**self.get_dummy_inputs(lowerCamelCase)) _lowercase : Optional[int] = output.images _lowercase : List[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase), return_dict=lowerCamelCase, )[0] _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') _lowercase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa) pipe_prior.to(lowerCamelCase) _lowercase : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1', torch_dtype=torch.floataa) _lowercase : List[Any] = pipeline.to(lowerCamelCase) pipeline.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = torch.Generator(device='cpu').manual_seed(0) _lowercase , _lowercase : List[Any] = pipe_prior( lowerCamelCase, generator=lowerCamelCase, num_inference_steps=5, negative_prompt='', ).to_tuple() _lowercase : Union[str, Any] = pipeline( lowerCamelCase, image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=1_00, height=7_68, width=7_68, strength=0.2, output_type='np', ) _lowercase : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase)
21
1
from ..utils import DummyObject, requires_backends class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Tuple = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> int: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Dict: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Tuple = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch'])
21
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _lowerCamelCase( _a ): lowercase_ : int = """decision_transformer""" lowercase_ : str = ["""past_key_values"""] lowercase_ : str = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, lowerCamelCase=17, lowerCamelCase=4, lowerCamelCase=1_28, lowerCamelCase=40_96, lowerCamelCase=True, lowerCamelCase=1, lowerCamelCase=10_24, lowerCamelCase=3, lowerCamelCase=1, lowerCamelCase=None, lowerCamelCase="relu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=1E-5, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=5_02_56, lowerCamelCase=5_02_56, lowerCamelCase=False, lowerCamelCase=False, **lowerCamelCase, ) -> List[Any]: """simple docstring""" _lowercase : List[str] = state_dim _lowercase : Any = act_dim _lowercase : List[Any] = hidden_size _lowercase : int = max_ep_len _lowercase : Tuple = action_tanh _lowercase : Any = vocab_size _lowercase : int = n_positions _lowercase : Dict = n_layer _lowercase : Tuple = n_head _lowercase : Optional[int] = n_inner _lowercase : Optional[Any] = activation_function _lowercase : str = resid_pdrop _lowercase : List[Any] = embd_pdrop _lowercase : Optional[int] = attn_pdrop _lowercase : Any = layer_norm_epsilon _lowercase : List[Any] = initializer_range _lowercase : int = scale_attn_weights _lowercase : Optional[Any] = use_cache _lowercase : Union[str, Any] = scale_attn_by_inverse_layer_idx _lowercase : Tuple = reorder_and_upcast_attn _lowercase : Optional[int] = bos_token_id _lowercase : int = eos_token_id super().__init__(bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase)
21
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) _lowercase : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _lowercase : Tuple = dataset_size < in_memory_max_size else: _lowercase : Any = False _lowercase : Union[str, Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
21
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=64, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=1, ) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = seq_length _lowercase : Optional[Any] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : List[str] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : List[str] = num_labels _lowercase : Any = num_choices _lowercase : Tuple = scope _lowercase : Optional[Any] = q_groups _lowercase : List[str] = k_groups _lowercase : Optional[int] = v_groups _lowercase : List[str] = post_attention_groups _lowercase : Union[str, Any] = intermediate_groups _lowercase : int = output_groups def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Dict = None _lowercase : int = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = SqueezeBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = SqueezeBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : int = SqueezeBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : List[str] = SqueezeBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = self.num_choices _lowercase : str = SqueezeBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Dict = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase_ : Optional[int] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = True lowercase_ : int = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = SqueezeBertModelTester(self) _lowercase : Dict = ConfigTester(self, config_class=lowerCamelCase, dim=37) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = SqueezeBertModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_sentencepiece @require_tokenizers @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') _lowercase : Optional[int] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]]) _lowercase : List[str] = model(lowerCamelCase)[0] _lowercase : Union[str, Any] = torch.Size((1, 3)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-4))
21
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase=0.0_1, lowerCamelCase=10_00) -> Dict: """simple docstring""" _lowercase : List[str] = p_stop _lowercase : Tuple = max_length def __iter__( self) -> str: """simple docstring""" _lowercase : List[Any] = 0 _lowercase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 _lowercase : int = random.random() < self.p_stop class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=True) -> Optional[int]: """simple docstring""" _lowercase : Dict = [ BatchSamplerShard(lowerCamelCase, 2, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) for i in range(2) ] _lowercase : str = [list(lowerCamelCase) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCamelCase) for shard in batch_sampler_shards], [len(lowerCamelCase) for e in expected]) self.assertListEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[str] = BatchSampler(range(24), batch_size=3, drop_last=lowerCamelCase) _lowercase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = BatchSampler(range(24), batch_size=3, drop_last=lowerCamelCase) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowercase : Union[str, Any] = BatchSampler(range(21), batch_size=3, drop_last=lowerCamelCase) _lowercase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) _lowercase : Dict = BatchSampler(range(21), batch_size=3, drop_last=lowerCamelCase) _lowercase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowercase : Any = BatchSampler(range(22), batch_size=3, drop_last=lowerCamelCase) _lowercase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = BatchSampler(range(22), batch_size=3, drop_last=lowerCamelCase) _lowercase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowercase : Union[str, Any] = BatchSampler(range(20), batch_size=3, drop_last=lowerCamelCase) _lowercase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = BatchSampler(range(20), batch_size=3, drop_last=lowerCamelCase) _lowercase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) # Check the shards when the dataset is very small. _lowercase : Union[str, Any] = BatchSampler(range(2), batch_size=3, drop_last=lowerCamelCase) _lowercase : Dict = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = BatchSampler(range(2), batch_size=3, drop_last=lowerCamelCase) _lowercase : Dict = [[], []] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = BatchSampler(range(24), batch_size=4, drop_last=lowerCamelCase) _lowercase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase) _lowercase : List[str] = BatchSampler(range(24), batch_size=4, drop_last=lowerCamelCase) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase) # Check the shards when the dataset is not a round multiple of batch size. _lowercase : Union[str, Any] = BatchSampler(range(22), batch_size=4, drop_last=lowerCamelCase) _lowercase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase) _lowercase : Optional[Any] = BatchSampler(range(22), batch_size=4, drop_last=lowerCamelCase) _lowercase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowercase : Any = BatchSampler(range(21), batch_size=4, drop_last=lowerCamelCase) _lowercase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase) _lowercase : Tuple = BatchSampler(range(21), batch_size=4, drop_last=lowerCamelCase) _lowercase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase) # Check the shards when the dataset is very small. _lowercase : Union[str, Any] = BatchSampler(range(2), batch_size=4, drop_last=lowerCamelCase) _lowercase : int = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase) _lowercase : Dict = BatchSampler(range(2), batch_size=4, drop_last=lowerCamelCase) _lowercase : Dict = [[], []] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = BatchSampler(range(24), batch_size=3, drop_last=lowerCamelCase) _lowercase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) _lowercase : Any = BatchSampler(range(24), batch_size=3, drop_last=lowerCamelCase) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowercase : Any = BatchSampler(range(21), batch_size=3, drop_last=lowerCamelCase) _lowercase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) _lowercase : Optional[Any] = BatchSampler(range(21), batch_size=3, drop_last=lowerCamelCase) _lowercase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowercase : str = BatchSampler(range(22), batch_size=3, drop_last=lowerCamelCase) _lowercase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) _lowercase : str = BatchSampler(range(22), batch_size=3, drop_last=lowerCamelCase) _lowercase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowercase : List[Any] = BatchSampler(range(20), batch_size=3, drop_last=lowerCamelCase) _lowercase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) _lowercase : Dict = BatchSampler(range(20), batch_size=3, drop_last=lowerCamelCase) _lowercase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) # Check the shards when the dataset is very small. _lowercase : Union[str, Any] = BatchSampler(range(2), batch_size=3, drop_last=lowerCamelCase) _lowercase : int = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) _lowercase : Dict = BatchSampler(range(2), batch_size=3, drop_last=lowerCamelCase) _lowercase : Optional[int] = [[], []] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, even_batches=lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : str = BatchSampler(range(24), batch_size=4, drop_last=lowerCamelCase) _lowercase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) _lowercase : Optional[Any] = BatchSampler(range(24), batch_size=4, drop_last=lowerCamelCase) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) # Check the shards when the dataset is not a round multiple of batch size. _lowercase : int = BatchSampler(range(22), batch_size=4, drop_last=lowerCamelCase) _lowercase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) _lowercase : List[str] = BatchSampler(range(22), batch_size=4, drop_last=lowerCamelCase) _lowercase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowercase : List[str] = BatchSampler(range(21), batch_size=4, drop_last=lowerCamelCase) _lowercase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) _lowercase : Any = BatchSampler(range(21), batch_size=4, drop_last=lowerCamelCase) _lowercase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) # Check the shards when the dataset is very small. _lowercase : Any = BatchSampler(range(2), batch_size=4, drop_last=lowerCamelCase) _lowercase : int = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) _lowercase : str = BatchSampler(range(2), batch_size=4, drop_last=lowerCamelCase) _lowercase : Optional[int] = [[], []] self.check_batch_sampler_shards(lowerCamelCase, lowerCamelCase, split_batches=lowerCamelCase, even_batches=lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _lowercase : List[str] = [BatchSamplerShard(lowerCamelCase, 2, lowerCamelCase, even_batches=lowerCamelCase) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]), 3) self.assertEqual(len(batch_sampler_shards[1]), 2) self.assertListEqual(list(batch_sampler_shards[0]), [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]), [[3, 4], [9, 10, 11]]) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=2, lowerCamelCase=False) -> str: """simple docstring""" random.seed(lowerCamelCase) _lowercase : List[str] = list(lowerCamelCase) _lowercase : Optional[int] = [ IterableDatasetShard( lowerCamelCase, batch_size=lowerCamelCase, drop_last=lowerCamelCase, num_processes=lowerCamelCase, process_index=lowerCamelCase, split_batches=lowerCamelCase, ) for i in range(lowerCamelCase) ] _lowercase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCamelCase) iterable_dataset_lists.append(list(lowerCamelCase)) _lowercase : Tuple = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowercase : str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCamelCase), len(lowerCamelCase)) self.assertTrue(len(lowerCamelCase) % shard_batch_size == 0) _lowercase : Tuple = [] for idx in range(0, len(lowerCamelCase), lowerCamelCase): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCamelCase) < len(lowerCamelCase): reference += reference self.assertListEqual(lowerCamelCase, reference[: len(lowerCamelCase)]) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = 42 _lowercase : int = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCamelCase, lowerCamelCase, batch_size=4, drop_last=lowerCamelCase, split_batches=lowerCamelCase) self.check_iterable_dataset_shards(lowerCamelCase, lowerCamelCase, batch_size=4, drop_last=lowerCamelCase, split_batches=lowerCamelCase) self.check_iterable_dataset_shards(lowerCamelCase, lowerCamelCase, batch_size=4, drop_last=lowerCamelCase, split_batches=lowerCamelCase) self.check_iterable_dataset_shards(lowerCamelCase, lowerCamelCase, batch_size=4, drop_last=lowerCamelCase, split_batches=lowerCamelCase) # Edge case with a very small dataset _lowercase : Union[str, Any] = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(lowerCamelCase, lowerCamelCase, batch_size=4, drop_last=lowerCamelCase, split_batches=lowerCamelCase) self.check_iterable_dataset_shards(lowerCamelCase, lowerCamelCase, batch_size=4, drop_last=lowerCamelCase, split_batches=lowerCamelCase) self.check_iterable_dataset_shards(lowerCamelCase, lowerCamelCase, batch_size=4, drop_last=lowerCamelCase, split_batches=lowerCamelCase) self.check_iterable_dataset_shards(lowerCamelCase, lowerCamelCase, batch_size=4, drop_last=lowerCamelCase, split_batches=lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = BatchSampler(range(16), batch_size=4, drop_last=lowerCamelCase) _lowercase : str = SkipBatchSampler(lowerCamelCase, 2) self.assertListEqual(list(lowerCamelCase), [[8, 9, 10, 11], [12, 13, 14, 15]]) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = SkipDataLoader(list(range(16)), batch_size=4, skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[Any] = DataLoader(list(range(16)), batch_size=4) _lowercase : Optional[int] = skip_first_batches(lowerCamelCase, num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[Any] = DataLoaderShard(list(range(16)), batch_size=4) for idx, _ in enumerate(lowerCamelCase): self.assertEqual(dataloader.end_of_dataloader, idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase): self.assertEqual(dataloader.end_of_dataloader, idx == 3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" Accelerator() _lowercase : Optional[Any] = DataLoaderDispatcher(range(16), batch_size=4) for idx, _ in enumerate(lowerCamelCase): self.assertEqual(dataloader.end_of_dataloader, idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase): self.assertEqual(dataloader.end_of_dataloader, idx == 3)
21
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase( unittest.TestCase ): lowercase_ : Dict = JukeboxTokenizer lowercase_ : Dict = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" import torch _lowercase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics') _lowercase : Optional[Any] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" import torch _lowercase : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics') _lowercase : List[str] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
21
1